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LOCAL DOMAINS WITH TOPOLOGICALLY
T-NILPOTENT RADICAL

JAMES R. SMITH

This paper is concerned with local integral domains (no
chain condition) which have the following property: for each
ideal .7 + 0 of A and for each sequence (a,),.y of elements
of M(A), the maximal ideal of A, there is an M€ N such that
agay -+ ax € 7. A local domain with this property is called a
local domain with TTN, These rings are shown to be rings
with Krull dimension 1 and local demains with Krull dimension
1 are shown to be dominated by rank 1 valuation rings.
Modules over these rings are studied and results concerning
divisibility and existence of simple submodules are obtained.

Noetherian integral domains with TTN are studied. Inte-
gral extensions of these rings are also studied. By localization
of previous results, a characterization is given of those integral
domains A with the property that every nonzero torsion A-
module has a simple submodule.

H. Bass in [1] studied rings with the property that the Jacobson
radical was T-nilpotent (7' for transfinite), i.e., for each sequence
(@,),exy of elements of the Jacobson radical, a@,a,---a,=0 for
some k. Local integral domains with TTN are just local domains
with the property that A/.©7 has T-nilpotent radical for each ideal
&7 # 0 of A.

In this paper A will denote a ring. All rings will be assumed to
be commutative and have an identity. All modules will be unitary.

A will be called a local ring if A has a unique maximal ideal. If
A is a local ring, M(A) will denote its maximal ideal. If B is a local
subring of A4, A is said to dominate B if M(A) N B = M(B). For
convenience we agree that an integral domain is not a field.

If E and F' are A-modules, £ ® F will mean FQ ,F.

DEFINITION. An ideal .o~ of a ring A will be called topologically
T-nilpotent if for each ideal <% of A, <% < .o, <& # 0, and each sequ-
ence (a,);.y of elements of .o, there isan ne N with a, -+-a, € 2.

DEFINITION. An ideal .o~ of a ring A will be called topologically
nilpotent if for each ideal <% of A, &% ., <% # 0, and each
element a of 97, a"c < for some ne N.

It is clear that it suffices to consider ideals < which are nonzero
principal ideals.
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DEFINITION. A local ring A will be said to have TTN (respectively
Krull dimension 1) if M(A) is topologically T-nilpotent (respectively
topologically nilpotent.)

It is clear that “TTN?” is stronger than “Krull dim 1”.

ExampLEs. If K is a field, K[[X]], the ring of formal power
series in one indeterminant, is a local domain with 7T7TN. Formal
series in more indeterminants are local domains with neither TTN or
Krull dim 1. More generally, a discrete valuation ring has TTN.

It is easy to see that a local domain has Krull dimension 1 if
and only if it has only one nonzero prime ideal, for if there are prime
ideals .&# and &' with xe€ .9, x¢ .o, then 2" ¢ .&” 1.9’ % 0 for any
n. Conversely, if A is a local domain with only one nonzero prime
ideal, and x e M(A), any ideal .&” maximal with respect to 2" ¢ .o for
any n is a prime ideal. Hence this definition of Krull dimension 1
and the standard definition agree.

An example of a local domain with Krull dim 1 but not TTN
will be given after the following construction.

Let G be an ordered group, K a field. It is well known that
there is a field F with a valuation v such that v(F — {0}) = G and K
is the residue field; that is, if A is the valuation ring for », K and
[A/(M(A)] are isomorphic. (See McLane, [6]). This can be constructed
by letting F' be the set of formal power series with coefficients in K
and “exponents” in G; i.e., an element in F' looks like > ... @2 where
(au)ace is a family of elements of K with well-ordered support. Multi-
plication and addition are as power series. The unit is >j..¢ a.2°
where a, = 1,a, = 0 if a % 0. This same construction can be done
when G is not a group but a submonoid of the positive elements of
an ordered group. One still obtains a local ring with residue field K,
but it is not is general a valuation ring, much less a field. We will
call this ring K° (For a more detailed explanation, see [6].)

ExampPLE. Let K be a field, G the set of nonnegative real numbers
under addition. Then K¢ is a valuation ring with Krull dim 1 but
not TTN.

2. Relationships to valuation rings. The following theorem is
well-known.

THEOREM. Let A be a local domain, K its field of fraction.
Then there is a valuation v on K such that A ts dominated by the
valuation ring of v. (See [4], p.92).
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In this section it is proved that if A is a local domain with Krull
dim 1 the group of values can be picked as a subgroup of the additive
real numbers.

DEFINITION. A subgroup H of an ordered group G is called
isolated if whenever z,yeG, 2 =y = 0 and x < H, then ye H.

DEFINITION. An ordered group G is called Archimedean if when-
ever v,y€ @G and x > 0,y = 0 there is a positive integer n such that
ne > y.

It is easily shown that any Archimedean ordered group is order
and group isomorphic to a subgroup of the additive real numbers. (See
[8], p.45).

A valuation v: K— G, is said to be of rank 1 if »(K — {0}) is
Archimedean.

THEOREM. If a local domain A has Krull dim 1 then there is a
rank 1 valuation w on K, the field of fractions of A, such that A s
dominated by the wvaluation ring of w. If A also has TTN, there
is an sc H, the group of wvalues of w, s > 0, such that w(x) = s if
xe M(A).

Proof. A is dominated by a valuation ring V which is a subring
of K. Let G =v(K — {0}) where v: K— G., is a valuation on K which
has V as its valuation ring. Consider the set L of isolated proper
subgroups of G. If L is empty we are through. If not, I"= .., C
is an isolated subgroup of G, for it is easy to see I" is a subgroup:
and if xel’, 2 =0, then xeC for some Ce L. Soif yeG, 2=y >0,
then yeC so yel'. [' is also a proper subgroup, for if ae M(4),
a # 0, then v(a) ¢ C for any C e L, for if ¢/d € K, ¢, d € A, then v(¢/d) =
v(c) — v(d). But a"e(c) for some n. Hence v(a") = nv(a) = v(c) = 0.
So nwv(a) = v(c/d) > 0. If v(a)eC, then nv(e)e C and C is isolated,
so v(c/d)ye C. But ¢/d is arbitrary so C = G, a contradiction. Thus
if v(a) e C for any Ce L, v(a) ¢ Use. C so I" is a proper subgroup of
G. Thus I" is a—in fact the only—maximal isolated subgroup of G.
Then G/I" can be made into an ordered group by setting x + "=y + I"
in G/I" if =2y in G. It is easily verified that G/I" with this order
is an Archimedean ordered group. If ¢: G— G/I" is the canonical
surjection, we can extend ¢ to a map ¢*: G. — (G/I). by defining
¢*(0) = co. Then ¢*cv: K —(G/I'). is a valuation on K. Also if
xe K and v(x) = 0, then ¢*ow(x) = 0. By construction if xe M(A),
v(x) ¢ I" so then ¢*ov(x) = 0. So ¢*ow(x) > 0 if e M(A). Thus W,
the valuation ring of w = ¢*ov, dominates A.
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If A has TTN, suppose that the elements of the form w(w),
x € M(A), are not bounded away from zero. Then, identifying G/I’
with a subgroup of R, the additive real numbers, there is a sequence
(@)ney Of elements of M(A) with w(e,) =< 1/2", and a be M(A) with
w(b) > 2. Then w(aa, --- a,) = w(a,) + -+ + w(a,) < 2. So

Aoy * =+ Ay & (b)

for any integer %, a contradiction. Thus the theorem is proved.
COROLLARY. [Nuey M(A)" =0 2f A has TTN.

Proof. Let s be as above. Then if xe M(A)", w(x) = ns. No x
except 0 can satisfy this for all «.

The above theorem shows that a valuation ring has TTN if and
only if it is a discrete valuation ring.

From the proof of the theorem it is not hard to see the following.
Let 4 be a local domain with Krull dim 1. Let a valuation ring V
have these properties:

(1) V is a subring of K, the field of fractions of A.

(2) V has rank 1.

(3) V dominates A.

Then V is maximal with respect to these conditions. V is not unique
as is shown in § 5.
Many examples are furnished by the following easy proposition.

PROPOSITION. Let V be a rank 1 valuation ring, K its field of
fractions, v: K— R. the valuation. Let A be a local subring of V
such that there is an s€ R,s > 0 such that if xe M(A)v(x) =s. Also
suppose that there is a p € R such that M(A) contains {x e V|v(z) = p}.
Then A has TTN.

Proof. Let (a;);.y be a sequence of elements of M(A), a € M(A),
a # 0. Letn be such that ns > p + v(a). Then v(a,aa, -+ a,-1/a) =
ns — v(a) = p. So aa.a,---a,-1/aec M(A) so aa.q, -+ a, € (a).

This proposition does not allow a converse for we have the following
example of a local domain A with TTN, and a rank 1 valuation v on
K, the field of fractions of A, such that there are elements of K of
arbitrarily large valuation which are not in A. Let S={reRjx =
a2 +b,a,bez and /2 +b=v"]a|+ [b] +1}U{0}. Consider
F* = A for F a field. Let K be the field of fractions of 4. S is a
submonoid of the nonnegative real numbers under addition. Then 4 is
a local domain with M(A) being {x € A|v(z) > 0} where v: K — R U {}
is the obvious valuation.

It is easy to see that any » + 1 elements of M(A), ay, a,, -+ a,,
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are such that if a1/2 + besupp(®), where z = a0, -+ a,, then
a,/2 +b>1/la] +[b] + 1+ n. This fact will be used often sub-
sequently without direct reference.

To show that M(A) is topologically T-nilpotent it suffices to show
that if (a;);.y 1S @ sequence of elements of M(A), be M(A), b + 0, then
for some ne N, a@, ---a,b~e A, for then a.a, ---a,c(d). To do this
we show that for some %, supp (a.a, --- a,b™") = S. Let supp (b) = (d,);e;
where (d;);.; is a well-ordered family of elements of S with d, as least
element. Then an element in supp (b™) looks like

— d, + Zmd; - d)

where (n,);c; is a family of positive integers with finite support. If
we can show that there is an me N such that for any sequence
(n;);.; of nonnegative integers of finite support

—dy+ D n(d; — d)) +me S,
1€l

we are finished.
Let d, =s;,1/2 +t; for each iel. Let MeR be such that if
M >M

2/ M, —V2M, >2(1s0/ 2 | + [t]) + 20/ s, | + [E] + 1.
There are only a finite number elements of S,a1/2 + b, with
la| + ]| < M.

If /2 +b is such that a,/2 +b— (s 2 +¢) >0 there is an
ne N,n > 0, such that n(a/2 +b— (s1/2 + t))eS. For if

(@—s)/2 +(b—t)=c¢,
let n be such that

vrs Vo= F b -Gl + 1
&

Notice that if s3/2 + tes there is a pe N such that
$1/2 +t—(sq/2 +t) +peS.

So there is a ge N such that — d, + >, ni(d; — d,) + g€ S, where the
sum runs over all d; with |s;| + |t;| < M, for there are only a finite
number of these in S and for each one there are only a finite number
of integers ¢ with ¢(d; — d,) ¢ S. On the other hand, if |s;| + |t;| =
M,|s,| +|t;| = M, then (d;, — d,) + (d; — d,) € S; for
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&> VTl FT6l = VI 2V
d; > vTs [+ 161 =V 2vH

so d; + d; — 2d, >/ M, + M, — 2d,

>VM, +vM, +2v7Ts] + 6] +1+2(s1/2 |+ |t]) — 2d,
>V |8+ 8 — 28|+t +t;— 2t +1.

So for large enough m, > ., n(d; — d,)) —d, + meS. So A has TTN.

There are elements in K with arbitrarily large values whose values
are not in S.

It is not hard to see that this is, up to isomorphism, the only
rank 1 valuation on K such that elements of A have nonnegative
order and elements of M(A) have strictly positive order, for if a,
beZ,a1/2 + b >0, then n(ay/ 2 + b)e S for some ne N, n > 0.

Notice that in each example given of a local domain A with TTN,
for each nonzero ideal .97 of A there is an n € N such that M(4)" c .o~
Whether this is true in general is doubtful, but at present there are
no examples to the contrary.

3. In this section the relationship of “A has TTN” to divisibility
and other concepts is explored.

DEFINITION. An A-module E is called divisible if for all x e E,
ac€A,a =+ 0, there is ay ¢ E such that ay = .

THEOREM. If A is a local domain with TTN, an A-module FE
1s divisible if and only if M(A)E = E.

Proof. Suppose M(A)E = E. LetacA,a+ 0,xeE. Then A/(a)
has T-nilpotent radical M(A)/(a), and M(A)/(a) - E/(a)E = E/(a)E. Thus
by Bass [1 p.473] E/(a)E =0 or E = (a)E. So for some y e E, x = ay.
So E is divisible. The opposite implication is trivial.

THEOREM. Let A be a local domain such that M(AE =FE
implies E is divisible. Then A has TTN.

Proof. Let ac A, a0, (a;);.; be a sequence of element of M(A).
If a, = 0 for some k aya, --- a, = 0 e (a) so suppose no a, = 0.

Consider the submodule E of the field of fractions of A consisting
of fractions which can be written as b/aa, - -+ a, for some be A, ne N.
M(A)E = E so E is divisible by hypothesis. Thus there is an element
b/a.a, ---a, such that a-b/aa,---a, = aj/a,, Then aua, ---a, =
abe(a). Thus A has TTN.
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Note that E is in this case equal to the field of fractions of A.

DEFINITION. An A-module E is called torsion free if whenever
acA,xe K and ax = 0, then a = 0 or 2 = 0.

DEFINITION. An A-module S is called simple if S 0 and 0 and
S are its only submodules.

It is easy to see that if S is simple, S is isomorphic to A/M for
some maximal ideal M of A. In the local case there is only one simple
module up to isomorphism, A/M(A). In this case it is clear that a
cyclic module is simple if and only if it has annihilator M(A4).

PROPOSITION. If A 4s a local domain with TTN and E an A-
module which is not torsion free, E contains a simple submodule.

Proof. Let xc E,x # 0 be such that there is an ac€ A,a # 0 and
ax = 0. Then ac M(A). If bx = 0 for all be M(A), (x) is simple. If
not let a, € M(A) be such that ax 0. If b.a,x =0 for all b e M(A)
we are finished. So suppose a,e M(A) is chosen such that a,a,x = 0.
Having chosen a,, a,, +--, a, such that a,a, --- a, € M(A) and

an...azal.xio,

if b is such that be M(4) and b-a,a,_, --- a,x # 0, let a,., =b. But
this process must end, for there is a p such that a,a,_, ---a,€(a) and
ax = 0,

PROPOSITION. Suppose A is a local domain such that every A-
module which is not torsion free contains a simple submodule. Then
A has TTN.

Proof. Let & be an ideal of A, .o = 0 and (a,);cy & Sequence
of elements of M(A4). Suppose a.a,---a,¢ . for any n. Let L
be the set of all ideals C of A such that a,a.a,--- a,&C for any n.
L is inductively ordered by inclusion for if S is a chain of elements
of L, then .. C is an element of L. Let <Z be a maximal element
in this set. Then M(A)/<# is not torsion free so let T be a submodule
of M(A) containing <# such that T/<# is a simple submodule of
M(A)|<# - a0, -+ a,¢T for any ne N for if so a@, :-- @, € FZ,
for T/<# is simple so M(A) annihilates it and a,,, € M(A). But then
T+ and TD><# and Te L which is a contradiction.

PROPOSITION. Let E and F be A-modules, A a local domain with
TTN. If EQF =0, then E or F is torsion and E or F is divisible.
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Proof. If neither of them is divisible, then E = M(A)E, F =+ M(A)F
and there is a surjective homomorphism EQQ F— E/M(A)ER F/M(A)F
so E/M(AJEQR F/M(A)F = 0. But these are A/M(A) modules and
E/M(A)E R , F/M(A)F is isomorphic to E/M(A) Q 4uwm F/M(A)F. (See
[2, p.123]). But A/M(A) is a field and the tensor product of two
modules over A/M(A) is not 0 unless one of them is 0. Thus either
E or F is divisible. We may as well suppose FE is divisible. If E is
not torsion, then E/t(E) is divisible and torsion free and not 0 (where
t(E) is the torsion submodule of E). So E/t(E) is isomorphic to a
direct sum of copies of K, the field of fractions of A (see [6, p.10]).
But if F' is not torsion, F/{(F') is torsion free and not 0. But we
have epimorphism EQ F— E/t(E)QQ F/t(F'). But E/t(E)QF/t(F)=+0
if E/t(F) is isomorphic to a nontrivial sum of copies of K and F/t(F')
is torsion free and not 0, for if KQ F/t(F) =0, KQ M = 0 for all
submodules M of F/i¢(F') as K is flat (see [2, p.115]). But F/t(F) is
torsion free and thus has a submodule isomorphic to 4 and K@ A = 0.
So either E or F' is torsion.

This unfortunately is not nearly as complete a proposition as
would be desired. The proper conjecture may be: EQ® F = 0 if and
only if one is divisible and the other torsion, or one is divisible and
torsion and (supposing E to be the torsion divisible one) F/t(F') is
divisible. One can easily [show that a local domain satisfying this
property has TTN.

REMARK. E. Matlis in [7] proves that if an integral domain A
has the property that its field of fractions K is a countably generated
A-module, then: every divisible A module is the image of a surjective
homomorphism from a direct sum of copies of K; projective dimension
of K = 1; and the torsion submodule of a divisible module is a direct
summand. If A is a local domain with Krull dim 1, its field of fractions
is countably generated by elements of the form (1/a"),., for any
ac M(A), a # 0, so these propositions apply.

4, The Noetherian case. If A is a local domain and M(A) is
is finitely generated, the situation is simplified.

PROPOSITION. Let A be a local domain with Krull dimension 1.
Let M(A) be finitely generated. Then:

(@) A has TTN and in fact, if &7 # 0 is an ideal of A, there
is an integer m such that M(A)" C 7.

(b) A is Noetherian.

Proof. (a) Let M(A) be generated by x,, %, -++,%;,. Let &7 %0
be an ideal of A. Let p be such that #?e.o»,i=1, ..., k. Then
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M(A)* < o7, for since any element of M(A) can be written as
QT + 0+ A,

for some a,,a,, --+,a,, a product of kp elements of M(A) must contain
(x,)* for some q. Hence any product of kp elements of M(A) is in .o,
and hence any sum of elements of this type, so M(A4)** C .«7. Clearly
this implies A has TTN.

(b) Let . #= 0 be an ideal of A. Then M(A)" <. for some
neN. A/M(A) is a Noetherian A-module, M(A)/M(A)* is a Noetherian
A-module since it is finitely generated and an A/M(A)-module, hence
a direct sum of simple modules which must be finite since M(A) is
finitely generated. So A/M(A)* is Noetherian as 0— M(A)/M(A)> —
A/M(A)* — A/M(A) — 0 is exact and an extension of a Noetherian
module by a Noetherian module is Noetherian. Continuing by induction,
we see that A/M(A)" is a Noetherian A-module for all ». But since
M(A) c .oz for some k,0— M(A¥ — .o — o7 |M(A)*— 0 is exact.
&7 |M(A)* is finitely generated as it is a submodule of the Noetherian
module A/M(A):, M(A)* is finitely generated, so . is finitely
generated. Therefore every ideal of A is finitely generated so A is
Noetherian.

5. Integral extensions.

DEFINITION. If B is a ring, A a subring of B,xe B is called
integral over A if x satisfies a unitary polynomial with coefficients
in A. B is said to be an integral extension of A if every element
of B is integral over A.

THEOREM. Let A be a local domain with TTN. Let ACKCF
where K 1is the field of fractions of A and F a field containing K.
Suppose x € F 1s integral over A. Let x satisfy the unitary polynomial

f=X"4+a, X"+ <+ + a,
with coefficients in A. Then if a;€ M(A),1 =0, -+ n, Alz] is a local
domain with TTN.
Proof. Alx] is a local domain, for it is an integral domain and
M={ycAlxlly=¢ +cx + -+ +¢c,2" and ¢, M(A)}

is the maximal ideal. To see this, we can suppose f is the unitary
polynomial of least degree with all but the leading coefficient in M(A)
that « satisfies. Then M =+ Alz], for if le M,1=c¢,+ ¢ + -+ + ¢, a"
with ¢,e M(A). 1 — ¢, is invertible in 4 so « is invertible in A[x] and
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57 = (e, + e + ++ + e,0" (L — ¢)~ Then
x—l(ao +ax + .- + anxn 4 x,H_l) -0

S0 ay(e, +ex + o0 +e @ N —¢)t+a + oo + 2" =0. But this
produces a unitary polynomial of degree n with all but the leading
coefficient in M(A) which x satisfies, a contradiction. So M = Alx].
then let M be a maximal ideal of A[z]. Then M N A is a maximal
ideal of A (see [4, p.36]). Therefore M N A = M(A). So

ay + ax + -+ +ax"e M

so a"*e M. As M is maximal, it is prime, so xe M, so M c M. But
M is clearly maximal and hence the only maximal ideal of A[x].

Now let (f:);.x be a sequence of elements of M(A[x]) and <& an
ideal of A[x],.<Z + 0. Then < N A + 0 as A[x] is an integral extension
of A, (see [4, p.14]). Let # NA= .. Then [r]c.<Z so it
would suffice to prove that for some # f,f, - -+ f, € &7 [x]. First notice
that there is an m such that a™ e o7 [«], for if p is such that ¢7e. o7
for e =0---m, let m = p(n + 1)(w + 1). Then

2 = (= (A + @@ + e+ @)

When this is expanded, each term will be a product of p(n + 1) factors,
so one of @, --+,a, must be repeated at least p times so z™e .7 [«].
Then if f,f, --- f. & &7[x] for any n, when each f; is written as a sum

Ji = Ci + Ca® + + o0 + 0"

and the products f,f, --- f, are expanded, there must be an infinite
number of terms cy,a* ¢, 2" «-- ¢, x*» which are not in .o7[x].
But, as before, we can find a sequence of (c;;,);cy such that

k k
cokox 0 oo crer r

is not an element of .o7[¢] for any r. But then, as only a finite
number of the k; could be nonzero (z™e .7 [x]), there is a ¢ N such
that &, =0 if » = q. Then (¢ p)icy 1S a sequence of elements of
M(A) such that cgiq *«- i€ 7 for any 4, a contradiction.

This proof could easily be modified to show that the theorem is still
true if “TTN” is replaced by “Krull dimension 17, in its statement.

The stringent requirements on the polynomial that x must satisfy
in the above theorem are not superfluous, at least to obtain a local
domain; for Z[,/— 5] is not local, as 2+1/—5 and 1 +1/—5 are
neither invertible and cannot be in the same maximal ideal. It is
true however that M(A) generates a topologically T-nilpotent ideal in
Alx] if « is integral over A, the proof being similar to the above.

If A is a discrete valuation ring, A[«] is not necessarily a discrete
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valuation ring, even if 2 satisfies the type polynomial above, as
7|31/ 3] shows.

It is not hard to show that an integral extension of a local domain
A with Krull dimension 1, such that each element of the extension
satisfies a unitary polynomial with all but the leading coefficient in
M(A), is a local domain with Krull dim 1. This is not true if “Krull
dimension 1”7 is replaced by “TTN” for if S = Rt —[0,1], K a field,
R+ the additive nonnegative real numbers, then K2+ is an extension
of the proper type of K%, but K&+ does not have TTN and K*® does.

Since the integral closure of a local domain is the intersection of
all the valuation rings dominating it and contained in its field of
fractions, (see [4, p.93]), one might guess that an integrally closed
local domain with TTN is a valuation ring, but this is not true.

ExAMPLE. Let Z x Z be given the product group structure and
be ordered lexicographically. Then Z x Z is an ordered group. Let
ScZxZ,S={xp|x=0,y=0o0r x>0}. Then A= K° is a local
subring of F' = K%*%4 A 1is integrally closed in F' which is the field of
fractions of A4, A has TTN, but is not a valuation ring for F.

Proof. Let w:F —(Z X Z), be the obvious valuation. Let wv:
F—(Z x Z)., be the valuation v(0) = o, v(z) = (a, — b) where w(z) =
(a,b). Then A= W N V where W is the valuation ring of w, V that
of v. Hence A is integrally closed and it is easily seen that A is not
a valuation ring.

6. Some of the above theorems can be used to obtain character-
izations of those integral domains whose localizations with respect to
maximal ideals have TTN. First an easy internal characterization of
these rings.

PROPOSITION. Let A be an integral domain, M a mazximal ideal
of A. Then A, has TTN if and only if for all sequences (a;);cy Of
elements of M and all subideals &7 of M, o7 +# 0, there is a té M
such that toqua,o-+-oa, € ..

Proof. Suppose A, has TTN, .o is a subideal of M, .o = 0 and
(a;);ex is a sequence of elements of M. Then (a;/1);.y is a sequence
of elements of M(A4,), .5 A, is a nonzero ideal of A,, so

a, a a
Y e L eee ”eMoA
1 1 1 "

for some n. So a,/1-a/1---a,/1 =a/t for some ac. 7, t¢ M. So
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aa, +--a,t =a, as required. Conversely, suppose the condition is
satisfied and that .o is an ideal of A,,.%” # 0 and (a,/b;);.y 2 sequence
of elements of M(A,). Then (a;);.y IS a sequence of elements of M,
7' = .7 N Ais a subideal of M and .7’ %0, so thereisatec 4,te M
such that e, ---a,t =ac.>r’. Then ay/b,-a,/b, +-- a,/b,c 7.

ExAMPLE. Z, the integers is an example of an integral domain
with the property that all its localizations have TTN.

THEOREM. The following are equivalent for an integral domain
A.

(1) A, has TTN jfor every maximal ideal M of A.

(2) Every A-module which 1is not torsion free has a simple
submodule.

(3) An A-module is divisible if an only if ME = E for each
maximal ideal M of A.

Proof. (1)=(2) Let E be an A-module which is not torsion free,
xeHE acAd,ax =0,a 0,2 +0. Let M be a maximal ideal of A
which contains a. Then the map z—x/1: E— E,, is an injection, for
Ann(x) c M. Then there is a simple A,-module Sc A, -z/1 by a
previous theorem. S is then a simple A-module contained in Ax,
for if s/ae S, s/a = rs/1 where ra + b = 1 for some be M. (2)=(1).
Let E be an A,-module for some maximal ideal M of A, E not a
torsion free A,-module. Then E is not a torsion free A-module, so
E contains a simple A-module which must be isomorphic to A,./M(A,),
hence a simple A,-module. Hence A, has TTN by a previous theorem.
(1) = (3) E is divisible if and only if E, is for each maximal ideal
M of A by [2,p.111]. If ME = E, M(A,)E,, = E,, so if A, has
TTN E, is divisible. (3)= (1) Let M be a maximal ideal of A4, F
an A;-module such that M(A,)E = E. Then E is an A-module. If
M’ is a maximal ideal of A distinet from

M,MocE=FasMncM=Q.

Thus ME = E for all maximal ideals M of A. So E is a divisible
A-module and hence a divisible A,-module. Thus by a previous
theorem A, has TTN.
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