A NOTE ON EXPONENTIAL SUMS

L. CARLITZ

Put $S(a) = \sum_{x,y\neq 0} e(x + y + ax^1y^1)$, where $xx^1 = yy^1 = 1$, $e(x) = x + x^2 + \cdots + x^{2^{n-1}}$ and the summation is over all non-zero x, y in the finite field $GF(q), q = 2^n$. Then it is shown that S(a) = 0(q) for all $a \in GF(a)$.

Let p be a prime and put

$$S_2(a) = \sum_{x,y=1}^{p-1} e(x + y + ax'y')$$
,

where $e(x) = e^{2\pi i x/p}$ and $xx' \equiv yy' \equiv 1 \pmod{p}$. For a = 0 it is evident that S(0) = 1. Mordell [3] has conjectured that

$$(1)$$
 $S_2(a) = 0(p)$

for all a. The writer [1] has proved that

$$S_2(a) = 0(p^{5/4})$$

for all a.

For the finite field GF(q), $q = p^n$, we may define

$$\mathrm{S}_{\scriptscriptstyle 2}(a) = \sum\limits_{x,y
eq 0} \mathit{e}(x+y+ax'y')$$
 ,

where $a \in GF(q)$,

(2)
$$e(x) = e^{2\pi i t(x)/p}, t(x) = x + x^p + \cdots + x^{p^{n-1}},$$

xx' = yy' = 1, and the summation is over all nonzero $x, y \in GF(q)$. We may conjecture that

$$(\,3\,) \hspace{3.1in} S_2(a) = 0(q)$$

for all $a \in GF(q)$.

In this note we show that (3) holds for $q = 2^n$. Indeed if

$$S_{\scriptscriptstyle 1}(a) = \sum\limits_{x
eq 0} e(x \, + \, ax')$$
 ,

we show that, for $a \neq 0$,

$$(\ 4\) \qquad \qquad S_1^2(a) = q + S_2(a) \qquad (q = 2^n) \; .$$

Since [2], [4]

(5)
$$|S_1(a)| \leq 2q^{1/2}$$
 ,

it is clear that (3) follows from (4) and (5). Indeed a little more can be said. Since, for $q = 2^n$, $e(a) = \pm 1$, it follows that both $S_1(a)$ and $S_2(a)$ are rational integers and in fact nonzero. Hence (4) and (5) give

$$(6)$$
 $-q < S_2(a) \leq 3q$.

2. To prove (4), we take

$$S_1^2(a) = \sum_{x,y
eq 0} e[x+y+a(x'+y')] \ = \sum_{x,y
eq 0} e[x+y+a(x+y)x'y'] \;.$$

If we put

$$(7) u = x + y, v = xy$$

then

(8)
$$S_1^2(a) = \sum_{\substack{u,v \ v \neq 0}} e(u + auv') N(u, v) ,$$

where N(u, v) denotes the number of solutions x, y of (7); since $v \neq 0$, x and y are automatically $\neq 0$.

For u = 0, (7) reduces to $x^2 = v$, so that N(0, v) = 1 for all v. For $u \neq 0$, (7) is equivalent to

$$(9) x^2 + ux = v.$$

The condition for solvability of (9) is $t(u^{-2}v) = 0$, where t(x) is defined by (2). Hence the number of solutions of (9) is equal to $1 + e(u^{-2}v)$, so that

(10)
$$N(u, v) = 1 + e(u'^2 v) \quad (uv \neq 0)$$
.

Substituting from (10) in (8), we get

$$egin{aligned} S_1^{(2)}(a) &= \sum\limits_{v
eq 0} N(0,1) + \sum\limits_{u,v
eq 0} e(u + auv') N(u,v) \ &= \sum\limits_{v
eq 0} 1 + \sum\limits_{u,v
eq 0} e(u + auv') \{1 + e({u'}^2 v)\} \ &= q - 1 + \sum\limits_{u,v
eq 0} e(u + auv') + \sum\limits_{u,v
eq 0} e(u + {u'}^2 v + auv') \ . \end{aligned}$$

Since

$$\sum_{u
eq 0} e(au) = -1$$
 $(a
eq 0)$,

it follows, for $a \neq 0$, that

$$S_1^2(a) = q + \sum_{u,v \neq 0} e(u + u'^2 v + auv')$$
.

Replacing v by u^2v , this becomes

36

$$egin{aligned} S_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}\!(a) &= q \,+\, \sum\limits_{u,\,v
eq 0} e(u \,+\, v \,+\, au'v') \ &= q \,+\, S_{\scriptscriptstyle 2}(a) \,\,, \end{aligned}$$

so that we have proved (4).

3. We may define

$$S_{3}(a) = \sum\limits_{x,y,z
eq 0} e(x+y+z+ax'y'z')$$
 .

The writer has been unable to find a relation like (4) involving $S_3(a)$.

References

L. Carlitz, A note on multiple exponential sums, Pacific J. Math. 15 (1965), 757-765.
 L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37-41.

 L.J. Mordell, On a special polynomial congruence and exponential sum, Calcutta Mathematical Society Golden Jubilee Commemoration Volume, 1958/59, part 1, 29-32.
 A. Weil, Some exponential sums, Proc. Nat. Acad. Sci. 34 (1949), 204-207.

Received June 17, 1968. Supported in part by NSF grant GP-5174.

DUKE UNIVERSITY DURHAM, NORTH CAROLINA