A NOTE ON EXPONENTIAL SUMS

L. Carlitz

Put $\quad S(a)=\sum_{x, y \neq 0} e\left(x+y+a x^{1} y^{1}\right)$, where $x x^{1}=y y^{1}=1$, $e(x)=x+x^{2}+\cdots+x^{2^{n-1}}$ and the summation is over all nonzero x, y in the finite field $G F(q), q=2^{n}$. Then it is shown that $S(\alpha)=0(q)$ for all $a \in G F(a)$.

Let p be a prime and put

$$
S_{2}(\alpha)=\sum_{x, y=1}^{p-1} e\left(x+y+a x^{\prime} y^{\prime}\right)
$$

where $e(x)=e^{2 \pi i x / p}$ and $x x^{\prime} \equiv y y^{\prime} \equiv 1(\bmod p)$. For $a=0$ it is evident that $S(0)=1$. Mordell [3] has conjectured that

$$
\begin{equation*}
S_{2}(\alpha)=0(p) \tag{1}
\end{equation*}
$$

for all a. The writer [1] has proved that

$$
S_{2}(a)=0\left(p^{5 / 4}\right)
$$

for all a.
For the finite field $G F(q), q=p^{n}$, we may define

$$
S_{2}(a)=\sum_{x, y \neq 0} e\left(x+y+a x^{\prime} y^{\prime}\right),
$$

where $a \in G F(q)$,

$$
\begin{equation*}
e(x)=e^{2 \pi i t(x) / p}, t(x)=x+x^{p}+\cdots+x^{p^{n-1}}, \tag{2}
\end{equation*}
$$

$x x^{\prime}=y y^{\prime}=1$, and the summation is over all nonzero $x, y \in G F(q)$. We may conjecture that

$$
\begin{equation*}
S_{2}(a)=0(q) \tag{3}
\end{equation*}
$$

for all $a \in G F(q)$.
In this note we show that (3) holds for $q=2^{n}$. Indeed if

$$
S_{1}(a)=\sum_{x \neq 0} e\left(x+a x^{\prime}\right),
$$

we show that, for $a \neq 0$,

$$
\begin{equation*}
S_{1}^{2}(a)=q+S_{2}(a) \quad\left(q=2^{n}\right) \tag{4}
\end{equation*}
$$

Since [2], [4]

$$
\begin{equation*}
S_{1}(a) \mid \leqq 2 q^{1 / 2}, \tag{5}
\end{equation*}
$$

it is clear that (3) follows from (4) and (5). Indeed a little more can be said. Since, for $q=2^{n}, e(a)= \pm 1$, it follows that both $S_{1}(a)$ and $S_{2}(a)$ are rational integers and in fact nonzero. Hence (4) and (5) give

$$
\begin{equation*}
-q<S_{2}(a) \leqq 3 q \tag{6}
\end{equation*}
$$

2. To prove (4), we take

$$
\begin{aligned}
S_{1}^{2}(a) & =\sum_{x, y \neq j} e\left[x+y+a\left(x^{\prime}+y^{\prime}\right)\right] \\
& =\sum_{x, y \neq 0} e\left[x+y+a(x+y) x^{\prime} y^{\prime}\right]
\end{aligned}
$$

If we put

$$
\begin{equation*}
u=x+y, v=x y \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
S_{1}^{2}(a)=\sum_{\substack{u, v \\ v \neq 0}} e\left(u+a u v^{\prime}\right) N(u, v) \tag{8}
\end{equation*}
$$

where $N(u, v)$ denotes the number of solutions x, y of (7); since $v \neq 0$, x and y are automatically $\neq 0$.

For $u=0$, (7) reduces to $x^{2}=v$, so that $N(0, v)=1$ for all v. For $u \neq 0$, (7) is equivalent to

$$
\begin{equation*}
x^{2}+u x=v \tag{9}
\end{equation*}
$$

The condition for solvability of (9) is $t\left(u^{-2} v\right)=0$, where $t(x)$ is defined by (2). Hence the number of solutions of (9) is equal to $1+e\left(u^{-2} v\right)$, so that

$$
\begin{equation*}
N(u, v)=1+e\left(u^{\prime 2} v\right) \quad(u v \neq 0) \tag{10}
\end{equation*}
$$

Substituting from (10) in (8), we get

$$
\begin{aligned}
S_{1}^{(2)}(a) & =\sum_{v \neq 0} N(0,1)+\sum_{u, v \neq 0} e\left(u+a u v^{\prime}\right) N(u, v) \\
& =\sum_{v \neq 0} 1+\sum_{u, v \neq 0} e\left(u+a u v^{\prime}\right)\left\{1+e\left(u^{\prime 2} v\right)\right\} \\
& =q-1+\sum_{u, v \neq 0} e\left(u+a u v^{\prime}\right)+\sum_{u, v \neq 0} e\left(u+u^{\prime 2} v+a u v^{\prime}\right)
\end{aligned}
$$

Since

$$
\sum_{u \neq 0} e(a u)=-1 \quad(a \neq 0)
$$

it follows, for $a \neq 0$, that

$$
S_{1}^{2}(a)=q+\sum_{u, v \neq 0} e\left(u+u^{\prime 2} v+a u v^{\prime}\right)
$$

Replacing v by $u^{2} v$, this becomes

$$
\begin{aligned}
S_{1}^{2}(a) & =q+\sum_{u, v \neq 0} e\left(u+v+a u^{\prime} v^{\prime}\right) \\
& =q+S_{2}(a)
\end{aligned}
$$

so that we have proved (4).

3. We may define

$$
S_{3}(\alpha)=\sum_{x, y, z \neq 0} e\left(x+y+z+a x^{\prime} y^{\prime} z^{\prime}\right) .
$$

The writer has been unable to find a relation like (4) involving $S_{3}(\alpha)$.

References

1. L. Carlitz, A note on multiple exponential sums, Pacific J. Math. 15 (1965), 757-765. 2. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37-41.
2. L. J. Mordell, On a special polynomial congruence and exponential sum, Calcutta Mathematical Society Golden Jubilee Commemoration Volume, 1958/59, part 1, 29-32. 4. A. Weil, Some exponential sums, Proc. Nat. Acad. Sci. 34 (1949), 204-207.

Received June 17, 1968. Supported in part by NSF grant GP-5174.
Duke University
Durham, North Carolina

