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THE PART METRIC IN CONVEX SETS

HeEinz BAUER AND H. S. BEAR

Any convex set C without lines in a linear space L can
be decomposed into disjoint convex subsets (called parts) in a
way which generalizes the idea of Gleason parts for a func-
tion space or function algebra. A metric d (called part metric)
can be defined on C in a purely geometric way such that the
parts of C are the components in the d-topology. This paper
treats the connection between the convex structure of C and
the metric d. The situation is particularly interesting when
C is closed with respect to a weak Hausdorff topology on L
(defined by a duality between L and another linear space).
Then C is characterized by the set C* of all continuous affine
functions F' on L satisfying F(x) = 0 for all x< C. This allows
us to define d in terms of the functions log F, F'c C*, Fur-
thermore, d-completeness of C can be derived from the com-
pleteness of C in L, The ‘‘convexity”’ of the metric d leads
to the existence of a continuous selection function for lower
semi-continuous mappings of a paracompact space into the
nonempty d-closed convex subsets of one part of such a com-
plete convex set C, We apply this result and the study of
the part metric of the convex cone of positive Radon measures
on a locally compact Hausdorff space to the problem of select-
ing in a continuous way mutually absolutely continuous re-
presenting measures for points in one part of a function
space or function algebra.

1. The part metric and convex structure. We consider a real
linear space L, and a convex set C in L which contains no whole line.
We do not necessarily assume that L has a topology.

The closed segment from z to y is denoted [x,y]. If z,yeC,
we say that [z, y] extends (in C) by »(>0) if  + r(x —y)eC and
y+riy—x)eC. We write x ~y if [, y] extends by some » > 0. It
is shown in [1] that~defines an equivalence relation in C.

The equivalence classes of ~, called the parts of C, are clearly
also convex. There is a metric d on each part of C defined by

Az, y) = inf {log<1 -+ —i—) [z, y] extends by 1”} .

If [z, y] extends by » (in C), then 2 + »'(x — y) and y -+ v'(y — @)
are in the part I of x and y for all »'<». It follows that one gets
the same part metric on /7 if one replaces C by /I in the definition
of d(x, v).

If » +y, we write d(z,y) = +. Then d satisfies all axioms of
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16 HEINZ BAUER AND H. S. BEAR

a metric on C, except that it is not always finite. In spite of this,
d will be called the part metric on C. We could introduce min (1,d)
or dfl + d to obtain a bona fide metric on C defining the same topology
as d.

For each part II of C and each xze Il we have
II ={yeC:d(xz, y) < «}.

Therefore, the parts are open, and hence also closed.
The theorems of this sections establish connections between the
part metric and the convex structure in C.

THEOREM 1. Letz, o, y, ¥y €Cand 0 =)< 1. If [w, o] and [y, ¥']
extend by r, then [vx + (1 — Ny, M’ + (1 — N)y'] extends by r.

Proof. We have the identity

D + (1= Ny] + (e + 1 =Nyl = e’ + @ = My']
=Me + r@— 2]+ 1@ =Ny + 7y -]

The term on the right is a convex combination of points which are
in C by hypothesis. The extension beyond 1z’ + (1 — My’ follows by
a symmetric argument. Notice that we do not assume that z ~ y or
x o~y

The corollaries below and Theorem 2 are basic to the proof of
the selection theorem of §6. They are immediate consequences of
Theorem 1.

COROLLARIES.
(i) dow + 1 — My, ' + (1= Ny) = max [d(z, 2), dy, ¥)]

for any points x, ', ¥,y €C and 0 =X\ = 1.
(ii) If S s a convex subset of C (mot necessarily in one part)
and d(x, S)<e, d(y, S)<e, then d(\x+(1—N)y, S) <e (even if xAFY).
(iii) {o: d(z, S) < €} is convex for any conver subset S of C. In
particular, d-balls are convew.

LEMMA 1. If u is a monnegative concave function on C (in par-
ticular an affine function) and Il is a part of C, then either u(x)>0
for all we Il or u =0 on II.

Proof. If »,yell and the segment [#, y] extends by 7, then
2, =ux+7r@x—yeC.

Hence
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T

is a convex combination of x, and y. Since w is concave and =0, this
implies

wy) .

1 r r
1 w(r) = %, =
(1) ()_1+Tu(%)+1+ru(y)_1+r

Therefore it follows from u(x) = 0 and u(y) = 0 that u(y) = O.

THEOREM 2. If u is a monnegative concave function on C, then
log u s uniformly d-continuous on those parts where u > 0. Con-
sequently, all lower bounded concave functions on C are d-continuous.

Proof. 1If [z, y] extends by », and # > 0 on the part containing
x and y, then (1) shows that

uly)fu) < 1 + % .

A symmetric argument shows that w(x)/u(y) <1 + (1/r), and hence

(1 + —1—>ﬁ1 < u(y)fux) < 1+ =,
T r

[log u(x) — log u(y) | < log <1 + %) .

Since d(x, y) is the infimum of the right side,
|log u(x) — log u(y) | = d(z, ) .

This proves the uniform continuity of logu on that part. The re-
maining assertion is evident.

LEMMA 2. If z,yeC and é6(\) = e + (1 — Ny, then ¢ is d-con-
tinuous on 10,1[. If x ~ y, then ¢ is even d-continuous on [0, 1].

Proof. The first assertion follows from the second, since for any
two points « == y in C the open segment

e,y =P+ QL — Ny 0 <M< 1}

lies in one part and since for 0 < A, < 1 the point #(\,) is a convex
combination of points x, = ¢(\,) and ¥y, = ¢(\,) Where 0<<n, <A, <A, <1.

Assume therefore that x ~ y, and denote ¢(\) by z; for 0=<A<1.
We will show that d(z,,y) — 0 as x — 0. The left-side continuity of
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6 at a point 1, €]0, 1[ then follows from this by considering ¢(\,) an
end point, since
A2+ (1 =Ny =N + (1 — N)g(h)

for some A = A'(\) which tends to zero as A — )\, from the left. A
symmetric argument gives continuity from the right. The following
identities can easily be checked:

y+r(y—w)=y+—;—(y—z;)

~ =) .

T+ r@—y) =2+

Therefore, if [, y] extends by », then [z,, y] extends by the minimum
of the numbers »/x, (1 — N + 7)/N, so d(z;, y) — 0 as A — 0.

COROLLARY. The parts of C are connected, and are the com-
ponents of C.

We next study the continuity of convex combinations.

THEOREM 3. For x,ycC and 0 =\ =<1, denote by T(\, x,y) the
convex combination A& + (1 — N)y. Then for each part II of C, the
Mmapping

. [0,1] x II x I - 1T
18 continuous. Moreover, the mapping
7:10,1[ x Cx C—C

18 continuous.

Proof. Let z,y, %, y,€C, and N, N, €[0,1]. Then

d(Mc + (l - )")y’ 7\‘0950 + (1 - Ko)yo)
=dve + (1 — My, M, + (1 — Ny,
+ A, + (1 — N)¥Yoy Moo + (1 — N)¥o) «
The first term on the right is dominated by max [d(x, #,)d(¥, ¥,)] by

Corollary (i) of Theorem 1. The behavior of the second term was
studied in Lemma 2.

The next result concerns the description of the d-topology in a
special case.
Let C be an open convex set in a linear topological space and
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assume C contains no line. Assume for convenience that 0eC. Let
p be the Minkowski functional for C: p(z) = inf {r: x € »C, » > 0}. Then
p is finite, subadditive and positive-homogeneous, and C={z: p(x)<1}.
If we let g(x) = max [p(x), p(—=2)], then ¢ is absolutely homogeneous,
and subadditive, and hence a seminorm. Since C contains no line, ¢
is a norm. We will call ¢ the Minkowski norm for C.

THEOREM 4. If C is an open convex set in a linear topological
space, 0eC, and C contaitns no line, then C has one part, and the
part metric d and the Minkowskr norm define the same topology on C.

Proof. Since C is open, it is clear that C is one part. Let z,¢ C,
so that p(x) < 1. If ¢(z — 2) <1 — p(z,), then

p(®@) = p(x — &, + %) = p(x — x,) + p®) = (@ — @) + p(x) < 1.
That is, zeC if ¢q(x — 2,) <1 — p(x,). Since
Q[wo + r(w, — @) - 9(70] =rq(x, — ),

2, + r(@, — ) e C if rg(x, — ) <1 — p(x,), or » < (1 — p(x,))/q(z, — ).
Also,

qle + r@@ — @) — @] = 1 + r)g(@ — ) ,
so that © + r(x — x) e C if (1 + r)g(x — x,) <1 — p(x,), or
9@ — 2) < (1 — p()/X + 7).
Combining these facts, we get that [z, x,] extends by » if
L+ <@ —p@))gx — ) (@ # @) .

If q(x — ;) — 0, then [z, z,] extends by arbitrarily large », and hence
d(x, x,) — 0.

Now suppose that [z, x,] extends by r, so that p(z,+ r(x,—x))>1
and p(x + r(r — x,)) < 1. Since r(x, — &) = 2, + r(®,—x) — x,, we have

(2) TP, — @) < Py + (@ — @) + p(— )
<1+ p(—w) .
Similarly, interchanging x» and x, gives
rp(@ — %) <1+ p(—w).
Subadditivity of p also gives
(=) = p(—x) + p(&, — @) .

Combining this last inequality and (2) gives
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rp(@ — @) < 1+ p(—x) + p(@, — )

<1+ p(—) + (1 + p(—1)
(3) r

:@+%Qa+m—mw

The inequalities (2) and (3) show that p(x,—=2) and p(x —2x,) are both
less than

_117<1 n %)(1 + p(—a) .

Consequently, gz — x,) — 0 as d(x, ;) — 0 (i.e., r — o).

COROLLARY. A bounded open convex set C im a normed linear

space E has one part, and the part metric defines the same topology
on C as the given norm.

Proof. We may assume 0e C. Then the Minkowski norm ¢ and
the given norm are equivalent since C contains some norm ball around
0, and some norm ball contains C N (—C) which is the ball {z: ¢(x) <1}.
The result follows then from Theorem 4.

We remark that in the situation of the above corollary the part
metric d is in general not equivalent as a uniform structure to the
norm metric. It suffices to assume that E is the Euclidean space R".
Then C as an open set is not norm complete. But it will follow from
Theorem 9 that C as a part of the convex body C is d-complete.

Let us also point out that the above corollary together with
Theorem 2 yields the well-known fact that a lower bounded concave
function on a bounded open convex set in a normed linear space is
continuous.

2. The part metric in a cone. In this section we give some
additional properties of the equivalence relation ~ and the part metric
in the case that the convex set is a cone. We let p denote a convex
cone in the real linear space L with vertex 0ec P, and assume that
P contains no line. We then have in particular no line in P through
0,i.e., PN(—P) ={0}. Let < denote the partial order on L induc-
ed by P.x <y means y —xc P. Let us point out that {0} is one
part of P since the vertex 0 is an extreme point of P.

THEOREM 5. For any two points x,y € P the following statements
hold:

(1) [z, y] extends by r if and only of



THE PART METRIC IN CONVEX SETS 21
(4) (1+%>x§y and (1+%>y2x;

(ii) [z, y] extends by v if and only if [px, py] extends by r for
a given number p > 0;

(iii) of [z, y] extends by r and z<€p, then [x + 2,y + 2] extends
by r;
(iv) x ~ px for all p > 0;

(v) of © ~y, then ©x ~x + y.

Proof. Condition (4) of (i) is just a restatement of the definition
of extension in terms of the partial order. Note that transitivity of
~ is immediate from (4). Conditions (ii) and (iii) also follow easily
from (4). Condition (iv) is clear and (v) follows from (iii) and (iv) as
follows:

THY~Y+yYy=2y~y~u.

From (iv) and (v) we obtain
COROLLARY. Fach part of P is a convex subcone of P.

THEOREM 6. The part metric d of P has the following properties:
(i) 9f e~y and x # 0,d(x,y) = inf {loga: ax =y and ay = x};
(ii) d(pz, py) = d(z, y) for all p >0, all x,ye P;

(iii) d(x + 2,y +2) < d(z,y) for all z,y,z€ P;

(iv) d(re, sx) = |logr —logs| for xeP,x == 0,r > 0,s > 0.

Proof. Conditions (i), (ii), (iii) follows from (i), (ii) and (iii) of
Theorem 5; (iv) follows from (i) by observing that d(rz, sx) = d{(r/s)z, «}
because of (ii).

THEOREM 7. The mappings (A, %) — A& from [0, +oo[ X p into P
and (x,y)—x +y from P X P into P are continuous (with respect
to the part metric d on P). FExplicitly,

d(\w, Av,) < d(x, 2,) + [log M — log A, |

5
(5) (x, xo€ P,y = 0,8 > 0, N, > 0);

(6) dx+ 1y, + y,) = max [d(x, x,), d(y, ¥.)] (@, ¥, %, Y€ P) .

Proof. Using the triangle inequality and Theorem 6, (ii), (iv), we
have

AN, Noo) = A, ATo) + ATy, Noto)
= d(x, x)) + |log A — log X\ | .
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From Corollary (i) of Theorem 1 we have

1
d(%—x + 5 %xo + ; yo) = max [d(x, ), (Y, ¥o)] .
Multiplying both elements in the left term by 2 preserves distance
(Theorem 6, (ii)) and gives (6). The continuity of (\,2)— Az at a point
(Mo, 0), N > 0, is evident since {0} is a part, and hence open in P.

3. Completeness of part metric. In this section we give some
conditions which imply the completeness of the part metric. We begin
with a functional analytic description of this metric.

Following Choquet [7], and Bourbaki [4] we will say that a linear
space L is a weak space if it is endowed with a weak topology o(L, M)
derived from a duality between L and some linear space M. Hence
there is a bilinear form (x, y) —<x,y> on L X M, and o(L, M) is the
weakest topology on L making all linear functionals x — {x, >,y € M,
continuous. Remember that o(L, M) is then a locally convex topology
on L. We will always assume that the weak space L is Hausdorff.
This is equivalent to the fact that the linear forms z — {z, ¥> with
y ¢ M separate the points of L.

A set C in a weak space L will be called complete if it is com-
plete in the uniform structure induced in C by the underlying topology
o(L, M). Obviously, each complete set in a weak Hausdorff space L
is also closed.

Each closed convex subset C of a weak Hausdorff space L is an
intersection of closed half-spaces. Therefore, we have

(7) C = Nrect (v L: F(x) = 0}

where C* denotes the set of all continuous affine functions on L which
are nonnegative on C. That is C* characterizes C in the sense that
2 e C if and only if F(x) = 0 for all F e C*. Remember [4; p. 91] that
each continuous affine function F' on L is of the form F(x)=<&, ys)+
constant with ¥y, e M.

THEOREM 8. If C is a closed convex set contaiming no line in a
weak Hausdorff space, then

(8) d(z, y) = sup {| log F(x) — log F(y) |: F e C*, F(y) > 0}
for all points x,yeC.

Proof. Assume first that « ~ y. The condition F(y) > 0 is then
equivalent to assuming that F > 0 on the part containing y by Lemma 1.

1 We make use of the convention: log0 = — o,
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Since C* characterizes C, we have ¢ + r(x —y) = 1 + r)x — ryeC if
and only if

(1+ 2 )F@ = Fw)
7
for all F'e C*. Similarly, y + »(y — x) € C if and only if {1+ (1/7)}F(y) =
F(x) for all FFeC*. Hence [z, y] extends by » if and only if
1

r

(1+) sFeF@m =1+
for all F e C* with F(y) > 0. Hence [z, y] extends by » if and only if
|log F(@) — log F(y) | < log (1 + —)

for all F'e C* with F(y) > 0. Therefore d(z, ), which is the infimum
of the right side, also is the supremum of the left side.

In the case z + y we have to show that the supremum in (7) is
infinite. We can assume specifically that the segment [, y] does not
extend beyond y. Hence y + ¢(y — x) ¢ C for each € > 0. Therefore,
for fixed ¢ > 0, there exists a function F'e C* such that

A4+ e)F(y) —eF(x) = Fly + ey — ) <0.

From this follows that F'(x) > 0 and

|log F(x) — log F(y) | = log F(x) — log F(y) > log (1 + { ) .
But log {1 + (1/¢)} — + < as e — 0. If F(y) = 0, we can replace F' by
F + «a, where a is a small positive number and draw the same con-
clusion.

COROLLARY (i). If C s a closed conmvex set containing no line
in a weak Hausdorff space, then a fundamental system of d-neighbor-
hoods of a point x,€ C ts given by the sets

{xeC:|F(x) — F(z,) | <e, all FeC* F(z,) = 1}

(9) ={xeC:|F(x) — F(z,) | <e, all Fel+0< F(z,) <1},

where & ranges over the posttive numbers.
Proof. We first prove that the sets in (8) are the same for given

€ > 0. Clearly, the second set is contained in the first one. Converse-
ly, if 0 < F(z,) = a <1 for FFeC+, then
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1 B 1 1
—F(x,) =1 and [F(x) — F(@)| = |—F(») — —F(x,)| .
[44 (44 [44

By Theorem 8 we know that a sequence {x,} in C is d-convergent
to 2,€C if and only if log F(x,) — log F(x) uniformly for all F e C*
satisfying F(x,) > 0. Since

log F(»,) — log F(x,) = log [F(x,)/F(x,)]

does not change if F' is multiplied by a positive constant, d(x,, 2,)—0
is equivalent to F(x,) — F(x,) uniformly for all FFe C* with F(x,)=1.

COROLLARY (ii). (cf. [10, Lemma 1.2]) If C 1is a closed convex
set containing no line in a weak Hausdorff space, then the d-topology
18 the weakest topology such that for each x,€ C the set {F' e C*: F(x,) =1}
18 eqUICONLINUOUS.

In what follows we will assume that C is a complete convex set
without lines in a weak Hausdorff space L. Then a result of Choquet
[7, Corollary 1, p. 1908] states that each continuous affine function
on L is the difference of two functions in C*. This result will be
fundamental for our proofs.

COROLLARY (iii). Let C be a complete convex set containing no
line in a weak Hausdorff space L. Then the part metric topology
18 stronger than the topology of C.

Proof. By the result of Choquet mentioned above the topology
of L is induced by the set C*. Therefore, for any point z,e C exist
arbitrary small L-neighborhoods W of z, of the form

WZ{wGC:|Fi(x)—F,;(x0)1<€,F,;€C+,?:=1,"',’i’b},

where we may assume F'(x,) >0 for all +=1, ..., n. We find a smaller
d-neighborhood of #, as follows: Let F, = F/F(x,) so that F/(z,) =1
and | Fl(x) — F{(x,) | < ¢ with ¢ = min [¢/F(z,), - -, ¢/F,(2,)]. Then

W,={xeC:|F(x) — F(z,) | < €&, FeC", F(z,) = 1}

is a d-neighborhood of z,, and clearly W,c W.

THEOREM 9. If C is a complete convex set containing no line in
a weak Hausdorff space L, then C is d-complete and each part of C
1s d-complete.

Proof. Again by the result of Choquet we can use the fact that
the topology on L is that induced by the set C*+ of all continuous
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affine functions on L which are nonnegative on C. Let {x,} be a d-
Cauchy sequence in C. Then all z, are in one part. Let C{ be the
functions C* which are strictly positive on this part. By Theorem 8,
{log F(x,)} is a Cauchy sequence uniformly for F'e Cf. For each fixed
FeC+, {F(x,)} is therefore a Cauchy sequence. Since C is complete
there is #,€ C such that F(x,) — F(z,) for each Fe C*. Since {z,} is
d-Cauchy, this convergence is uniform in those F' such that F(z,)=1.
Therefore d(x,, ) — 0, and C is d-complete. Then also each part is
d-complete as a d-closed subset of C.

We next treat the special case where our convex set C is a convex
cone P with vertex 0 P. In this case Theorem 8 can be restated in
a somewhat different form.

THEOREM 8. Let P be a closed convex cone with vertex 0¢e P con-
taining no line in a weak Hausdorff space L, and denote by P, the
set of all continuous linear forms f which are =0 on P. Then

(8) d(z,y) = sup {|log f(x) — log f(y) |: fe Py, f(x) > 0 f(y) > 0}

for all points x,ye P.

Proof. P, characterizes P in the sense
P=sep {xel: flx) = 0}.

This is well-known and can be deduced from (7) by remarking that
each continuous affine function F' on L satisfying FF>= 0 on P is of
the form F'= f+ «a where fe P, and a = 0. But with this the proof
of Theorem 8 can be repeated by replacing C by P and C* by P,.
Only the last sentence of the proof has to be dropped.

REMARK. If 2 and y are in the same part /I of P the condition
f(x) >0 or f(y) > 0 is equivalent to f(y) > 0 and even to f> 0 on II.
Therefore the sets

{well:| flx) — flw) | <&, all feP, 0= flx) <1}

for € > 0 form a fundamental system of d-neighborhoods of x,¢ Il in
IT (cf. Theorem 8, Corollary (i)).

Let us point out that for a closed convex cone it is easy to check
whether it contains a line:

LEMMA 3. Let P be a closed convexr cone with vertex 0e P in a
weak Hausdor[ff space. P contains no line if and only 1f PN (—P)={0}.



26 HEINZ BAUER AND H. S. BEAR

Proof. The condition PN (—P) = {0} is necessary since it says
that P does not contain a line through the origin. To prove its suf-
ficiency, assume that z + #(y — «) € P for all real numbers ¢. Since
P, characterizes P this is equivalent to f(x) + tf(y — x) = 0 for all ¢
and all fe P,. Therefore, f(y—x)=0 for all fe P,;i.e., y—xc PN(—P)
and hence xz = y.

The next theorem gives a completeness criterion for the part
metric in a cone. Remember that a convex subset K of a convex cone
P with vertex 0¢ P is called a section or base for P if each ray

{re:r > 0},xe P,x+ 0,

intersects K exactly once. Hence P = {re:xcK,r =0} if K is a
section of P.

THEOREM 10. Let P be a convex cone satisfying PN (—P) = {0}
wn o weak Hausdorff space L. If P has a compact section K then
P and hence also P\{0} are d-complete.

Proof. It is well-known [4, p. 113] that P is complete in L.
Therefore, by the above lemma P does not contain any line. The
result follows then from Theorem 9, since P\{0} is a part of P.

Let us remark that for a convex cone P with a section K and
without lines the parts of K are the intersections of the parts of P
with K. This results from the observation that by the definition of
a section a segment [z, ¥] € K extends by r in K if and only if it ex-
tends by  in P. Hence also the part metric of K is the restriction
of the part metric in P.

Theorem 10 will be applied in particular to the following situation:

COROLLARY. Let B be a linear space of real continuous functions
on a compact Hausdorff space containing the constant funmctions. Let
L = B’ be the topological dual of B wviewed as a mormed space with
the morm of uniform convergence. Then P={FeB:F =0} and K=
{FeP:. FQ) = 1} are d-complete.

It suffices to remark that K is compact in the weak topology
o(L’, L) and that K is a section of the cone P.

4. The space of Radon measures. Let .# =_#(X) be the space
of all real Radon measures on a locally compact Hausdorff space X with
the vague topology.? This is the weak (Hausdorff) topology o(_#, 5¢7)

2 We follow Bourbaki [5], [6] in terminology and notation for integration theory.
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induced by the linear space .2 =.2%"(X) of all continuous real-valued
functions on X with compact support. The convex cone _7,=_~#(X)
of all measures ¢ =0 in _# 1is then complete; it also satisfies
A N (—_#.) = {0}, and hence does contain any line by Lemma 3.
Therefore by Theorem 9, _#, is complete with respect to the part
metric d on _#.. In this section we will describe the parts of _~Z,
and the metric d.

By Theorem 5 the equivalence relation ~ in _#. is defined as
follows: p¢t ~ v if and only if ap >v and av = ¢ for some number
a > 0 (necessarily ¢ =1 if ¢ 0 or v = 0). In particular the zero
measure is a part by itself. Consequently [6; p. 51] two measures
!, vEe _«, are equivalent if and only if they are mutually absolutely
continuous, with (locally integrable) Radon-Nikodym derivatives which
locally almost everywhere are bounded and bounded below by some
number « > 0. Hence the parts of _#, can be described as follows:
for any fixed e ., consider the set P, of all “functions” ge L(y)
which are positive and bounded away from zero. Then the part /7,
of _#. containing g is the set

II,={gpr:9eP,.

Therefore, we can transfer the L=(y)-metric to /I, via the bijection
g—gp of P, onto I,.

The following result describes the topology derived from d in a
part, thus generalizing and improving Theorem 38 of [2].

THEOREM 11. The part metric d in each part I, of _7.(X) is
topologically equivalent to the L=(y)-metric on the corresponding
functions of P, (pe _#.(X)).

Proof. Let gy, 9., 9., -+ be a sequence in P,. We have to prove
lim||g, — ¢ll- =0 if and only if limd(g.t, gtt) = 0.

By a well-known result on L”-spaces (cf. Bourbaki [5, pp. 211-213]),
one has

190 — %olle = sup'gv(gn — gy

where the supremum is taken over all functions ve .2 satisfying
lv|dpe £1. On the other hand, from Theorem 8 and the remark
following this theorem, we have lim,_. d(g.%, g,¢2) = 0 if and only if
lim Su(gn —g)dpr =0

n—0c0
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holds uniformly for all functions u ¢ .97, satisfying Sugodp < 1. From
this fact and the following two simple observations the theorem follows:
(i) for each function we .97; satisfying gugodp < 1, one has

gaud,u = Sug(,dp <1

where a > 0 is locally almost everywhere a lower bound for g,. (ii)
For each function ve 9 satisfying S|v| dy <1 one has

S|vlgod/~'§||go||mg|v}dy§ g lle and |w|e .57 .

5. A selection theorem for the part metric. In this section we
prove a generalization of the following theorem of E. Michael [11,
Th. 1], [12, Th. 3.2”]:

THEOREM M. If T is a paracompact space and ¢ 1s a lower semi-
continuous function from T to the nonempty closed convex subsets of
a Banach space Y then there exists a continuous selection fumnction
f:T— Y such that f(t) e ¢(t) for all teT.

In our version of Theorem M we replace the Banach space Y by
a convex set with a complete metric which is convex in the sense of
the following definition.

DEFINITION. Let Y be a convex set in a linear space. A metric
d on Y will be called convex if

(i) the mapping (N, z,y)—rxx + (1L — Ny of [0,1] X Y X Y into
Y s continuous, and if

(ii) the set {ye Y:d(y, S) <&} is convex for each € >0 and each
convex subset S of Y.

Theorem M follows from our result by the remark that the norm
metric on a Banach space Y is convex and complete. From Theorem
1, Corollary (iii) and Theorem 3 it is clear that the part metric of a
convex set C without any line is convex on each part /I of C.

We recall that a mapping ¢ from a topological space T to the
subsets of a topological space Y is called lower semi-continuous (l.s.c.)
if for any open set UC Y, the set of all ¢e T such that ¢()NU = @
is open. If ¢ is the inverse of a mapping R from Y onto T, then it
is easy to see that ¢ is l.s.c. if and only if R is an open mapping.
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For the proof of our selection theorem the same kind of arguments
can be used as in [11].

LeEMMA 4. Let T be a paracompact space, Y a convexr set with
a convex metric d, and let ¢ be a lower semi-continuous function
from T to the nonempty convex subsets of Y. Then for any r > 0,
there is a d-continuous function f: T — Y such that

d(f(t), ¢(t)) <r for all teT.

Proof. For yeY, let U, = {te T:d(y, 6(t)) < r}; that is, U, is
the open set of points te T such that ¢(¢) intersects the open r-ball
around y. The family (U,),., covers T since te U, if yecg(t) = @.
The space T being paracompact, there exists an open locally finite re-
finement (V,),., of the covering (U,). Thus each V, is contained in
some U,, and each te T has a neighborhood which intersects only a
finite number of V,. Let (P,),.. be a partition of unity subordinate
to (Va)aea; i.€., P, 18 a nonnegative continuous function on 7T, p, = 0
off V,, and Xp.(t) =1 for all teT. For each e A, pick y,e Y so
that V,c U,,. Let the function f:T— Y be defined by f(t)=
Siacs Pu(t)yay t € T. For each t,e T, there is a neighborhood N, which
intersects only a finite number of V,, so that p, = 0 on N, for all
but a finite number of «. Thus in N, the sum f(t) is a convex com-
bination of a finite number of y,e Y:

f(t) = pal(t)yal + oo+ pan(t)yan (t € Nto) .

Thus because of the convexity of the metric f is d-continuous on each
N,,, hence on T. Furthermore, f(t)c Y is a convex combination of
points y, such that p,(¢) # 0, hence such that te V,c U,,. That is
all these y, are within a distance » of #(f). Hence d(f(¢), é(¢)) < r
since each of the sets {ye Y: d(y, #(t) < »} is convex.

THEOREM 12. Let T be a paracompact space and Y a convex set
with a complete convex metric d. If ¢ 1s a lower semi-continuous
mapping from T to the nonempty closed convex subsets of Y, then
there exists a continuous function f: T— Y such that f(t)e ¢(t) for
all teT.

Proof. Michael’s proof [11, p. 235] for a Banach space works
without change in view of the preceding lemma. We repeat the argu-
ment here for the reader’s convenience.

We construct inductively a sequence f,: T— Y of continuous map-
pings such that uniformly for all te T
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(10) d(fn(t)y fn-H(t)) < 1/2n—1
(n: 1,2, "') .

1) a(fu(t), 3(2)) < 1/2" .

Then by condition (10) (f,.) is uniformly Cauchy, and hence by the
completeness of Y converges to a continuous mapping f: T'— Y. The
condition (11) insures f(¢) € ¢(t) since each ¢(t) is closed.

The preceding lemma proves the existence of a mapping f;: T—Y
such that d(f.(t), ¢(t)) < 1/2 for all teT. Suppose f,, -+, f, have
been defined satisfying (10) and (11). Define for each te T

Pura(t) = (1) N {y € Y2 d(y, fu(t) < 1/2%}.

Then ¢,.,(t) = @ by (10). Since the metric d is convex, &,.,(f) is the
intersection of two convex sets and therefore convex. We show that
é.+. 18 L.s.c., and then appeal to the lemma for the existence of f,.,
such that d(f,..(t), ¢...(t)) < 1/2"*(te T'). This implies then

ASu(t), fara(t)) < 1/2" + 1200 < 120

as required in (10).

To show that ¢,,, is l.s.c., suppose ¢,..(t,) N U #= & for some open
set UC Y and some f,e T. For each positive ¢ < 1/2", there is a point
Y, € #(t,) N U such that d(y,, f.(t)) < 1/2" — ¢;ie., dt)NUNS #= O
where S is the open (1/2" — ¢)-ball around f,(¢,). Since ¢ is l.s.c.,
)N UNS == @ for all ¢ of some neighborhood N, of ¢, Since f, is
continuous, we also have d(f,(t), f.(t,)) < ¢ for all ¢ in some neighbor-
hood N, of t,. If te NN N,, then ¢(t) N UN S # @ and every point
yeg(t) N UN S has the property that

Ay, fu(®) = d(y, fu(ts)) + d(Fa(D), fults)) < 1/2".

Hence ¢,..(t) N U = @ for all te N,N N,, and ¢,,, is l.s.c.

COROLLARY (i). Let C be a complete convex set without lines in
a weak Hausdorfl space, and let d be the part metric on C. If ¢ 1is
a lower semi-continuous function on T to the monempty closed convex
subsets of one part I1 of C, then there exists a continuous selection
function f:T—II for ¢.

Proof. We mentioned already that d is a convex metric on /7.
By Theorem 9 /I is d-complete.

COROLLARY (ii). Let ¢ be a lower semi-continuous mapping from
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a paracompact space T to the monempty closed convex subsets of one
part 11 of the cone _7.(X) of nonnegative Radon measures on a
locally compact space X. Then there exists a continuous selection
SJumnction for ¢. Let f be any such function and pell. Then f has
the form f(t) = g/, where t — g, 1s a continuous mapping from T
wnto L=(p).

This follows immediately from Corollary (i) and Theorem 11.

6. Representing measures. Let X be a compact Hausdorff space,
and CL(X) be the space of all continuous real functions on X. A
function space B is a separating subspace of C(X), containing the con-
stant functions, We summarize here some facts from [1].

Let T, ={FeB:F=0,F1) =1}, Then T;is convex and compact
in the weak topology ¢(B’, B) on B’. The space X can be embedded
in T, and B can be represented as the restrictions to T, of all weak-
ly continuous affine functions on B’. Gleason parts can be defined in
X in terms of the Harnack-type of inequality: x ~ vy if and only if
there is a > 1 such that a' < u(x)/u(y) < « for all v > 0 in B. The
parts of this relation are the intersections of X, considered as a subset
of T, with the geometrically defined parts of T,. The distance in
parts in X defined by d(z, y) = sup {|log u(x) — log u(y) |: w > 0} is the
same as the part metric in T%.

For simplicity, by the boundary I" of B we will mean the Choquet
boundary if X is metrizable (so that /" is a G;), or otherwise the
Silov boundary (so I" is closed). A representing measure p¢ for xe X

is a positive Radon measure supported by I" such that u(x) = S ud
r

for all ue B. Let _7Z;} = _#X) be all positive probability measures
on X and let _#, be the representing measures for x. Clearly
4, #} for each z, since 1¢ B.

If A is a complex function algebra on X, and B = Re 4, then
the spectrum S, can be considered a subset of T;. The Gleason parts
of S, are the intersections of S, with the parts of T,. The metric
on S, from the norm of A’ gives the same topology as the part metric
[1, 3]. The Silov and Choquet boundaries for A are the same as for
B, and a measure represents a point for A if and only if it represents
the point for B. Therefore we will confine our discussion to the case
of a real function space B, but our results will also apply to complex
function algebras.

Harkova [9] has given an example of a function algebra (hence
also a function space) where the complement of the Silov = Choquet
boundary is one part 4, and it is not possible to pick representing
measures g, for all x € 4 so that all y, are in one part of _#Z.!. It is
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shown in [9], however, that if the space of orthogonal real measures
is finite dimensional, then it is possible to pick representing measures
so that points in one part of X will have measures in one part of
#¢. We give here a condition based on our selection theorem which
insures that if measures p, for points in one part can be chosen in
one part of _ 7}, then we can pick them so that x— £, is a continu-
ous mapping with respect to the two part metrics.

LEMMA 5. The set _7, of positive Radon measures on X sup-
ported by the Choquet or Silov boundary I' which represent x 1is
convex and closed in the part metric of _7ZNX).

Proof. The convexity is obvious. If p,e_, and d(x,, tt,) — 0,
then u,, ¢, all are in one part of _~#} (or _#,(X)). Hence by Theorem
11 pt,=g.tt, to=0olt for some t, where g,, g, € L=(t), and || g, — g, ||—0.
It is clear that f, is supported by I'. Since

.gu(gn - go)d#‘é )l || gw — Gulle —0,

§ugndﬂ = u(x) = Sugod;e for all ue B. Hence € _#,.

THEOREM 13. Let B be a function space on X with boundary I.
Let 4 be a part of X and suppose there is a part II,C 7} such
that 7z, NI, + @ for all xed. If the mapping v — 7, N I, is
l.s.c. with respect to the two part metrics then there is a continuous
mapping x — (t, = g, it on 4 into I, such that p,e _, for each x.
Consequently, the mapping x— g, s d-continuwous from 4 into L=(y).

Proof. Since each _, is closed in _.7}, and each part I/, is d-
closed, the sets 7. < P, are d-closed, and clearly also convex. The
metric space (4, d) is paracompact. The part metric in _#} is com-
plete, since .~} is compact in the vague topology. The theorem is
now immediate from Theorem 12, Corollary (i).

We remark that the part metric in a part 4 of X gives the re-
lativization to 4 of the given compact topology of X if the set

B*(z) = {u| d:ueB,u > 0,uz,) =1} (2, € 4)

is equicontinuous [2, Th. 3], [10, Lemma 1]. This is the case for ex-
ample for spaces B of functions continuous on the closure of a bound-
ed domain in R" and harmonic on the interior. In such a case the
continuity of the mapping z— p, = gt with respect to the part me-
tric is the same as continuity with respect to the given Euclidean
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topology in X and the part metric topology in _.Z! (or the L>(y)
topology.)

Added in proof. The part metric is similar to the metric of
Cayley—Klein (¢f. W. BLASCHKE, Projektive Geometrie, Basel (1954),
p. 80). A. C. Thompson has recently used the part metric in the
form given here to simplify some proofs of Birkhoff and Samelson
(On certain contraction mappings in a partially ordered vector space,
P.A.M.S. vol. 14 (1963), 438-443).

REFERENCES

1. H. S. Bear, A geometric characterization of Gleason parts, Proc. Amer. Math. Soc.
16 (1965), 407-412.

2. H. 8. Bear and Bertram Walsh, Integral kernel for one-part fumction spaces, Pa-
cific J. Math. 23 (1967), 209-215.

3. H. S. Bear and M. L. Weiss, An intrinsic metric for parts, Proc. Amer. Math.
Soc. 18 (1967), 812-817.

4. N. Bourbaki, FEspaces wvectoriels topologiques, Chap. 1-2 (2nd edition), Act. Sci. et
Ind. 1189, Paris, 1966.

5. ————, Intégration, Chap. 1-4, Act. Sci. et Ind. 1175, Paris, 1952.

6. ————, Intégration, Chap. 5, Act. Sci et Ind. 1244, Paris, 1956.

7. G. Choquet, Ensembles et cémes convexes faiblement complets, C. R. Académie Sci-
ences 254 (1962), 1908-1910; 2123-2125.

8. A. M. Gleason, Function algebras, Seminar on analytic functions, vol. 2, Institute
for Advanced Study, Princeton, N. J., 1957.

9. N. V. Harkova, Generalized Poisson formula (Russian), Vestnik Moskov. Univ.,
Ser. I Mat. Meh. 22 (1967), 25-30.

10. J. Ko6hn, Die Harnacksche Metrik in der Theorie der harmonischen Funktionen,
Math. Zeit. 91 (1966), 50-64.

11. E. Michael, Selected selection theorems, Amer. Math. Monthly 43 (1956), 233-238.
12. ——, Continuous selections I, Ann. of Math. 63 (1956), 361-381.

Received November 13, 1968. This is a revised form of a paper submitted by
H. S. Bear on March 19, 1968, This author was supported in part by Grant GP76381
of the National Science Foundation.

UNIVERSITAT ERLANGEN-NURNBERG
NEW MEXICO STATE UNIVERSITY
AND

UNIVERSITY OF HAWAII








