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CONDITIONS FOR A MAPPING TO HAVE
THE SLICING STRUCTURE PROPERTY

GERALD S. UNGAR

Let p: E-+B be a fibering in the sense of Serre. As is
well known the fibering need not be a fibering in any stronger
sense. However it is expected that if certain conditions are
placed on E, p or B then p might be a fibration in a stronger
sense. This paper gives such conditions.

The main result of this paper is:

THEOREM 1. Let p be an n-regular perfect map from a
complete metric space (E, d) onto a locally equiconnected space
B. If dim E x B Sn then p has the slicing structure property
(in particular p is a Hurewicz fibration).

The following definitions will be needed.

DEFINITION 1. A space X is locally equiconnected if for each
point x, there exists a neighborhood Ux of x and a map

N: Ux x Ux x I->X

satisfying N(a, 6, 0) = α, N(a, b, 1) = &, and N(a, a, t) = a.

DEFINITION 2. A map p from E to B is ^-regular if it is open
and satisfies the following property: given any x in E and any neigh-
borhood U of x there exists a neighborhood V of x such that if
/: Sm —> V Π V~\v) for some y e B (m ^ n) then there exists

F: Bm+1 ->UΠ v~l(y)

which is an extension of /.

DEFINITION 3. A family £f of sets of Y is equi-LCn if for every
y e S G Sf and every neighborhood U of y in F there exists a neigh-
borhood F of y such that for every S e ^ every continuous image
of an m-sphere (m ^ n) in S Π F is contractible in S Π U.

Note 1. lί p: E —> B is ^-regular then the collection {p"1^) \b e B}
is equi-LC\

DEFINITION 4. A family S^ of sets of a metric space (F, d) is
uniformly equi-LCn with respect to d if given ε > 0 there exists
δ > 0 such that if /: Sm -> S Π iV(x, 3) (m ^ w and S e y ) then there
exists F : BmΔrl —* S Π N ( E , ε) which is an extension of /.

DEFINITION 5. A map p:E—>B has the covering homotopy pro-
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perty for a class of spaces if given any space X in the class and
maps F: X x I-^B and g: X-+E such that F(x, 0) = pg(x) then there
exists a map: G: X x I—>E such that pG = F and G(x, 0) = g(x).

DEFINITION 6. A map p: E—>B is a Serve fibration if p has the
covering homotopy property for the class of polyhedra. It is a Hure-
wicz fibration if it has the covering homotopy property for all spaces.

DEFINITION 7. A map p:E—>B has the slicing structure pro-
perty (SSP) if for each point b e B there exists a neighborhood Ub of
b and a map ψb: p~\Uh) x Uh—*p~ι{Ub) such that (1) φb(e, p(e)) = e
and (2) pψ*6 = π2 (the projection onto J76).

DEFINITION 8. A function φ:X-+2r (Y metric) is continuous if
given ε > 0; every x0 e x has a neighborhood U such that for every
x G U, φ(x0) c Ne(φ(x)) and 9>(α) c Nε(φ(x0)).

DEFINITION 9. A selection for a function φ:X—>2Y is a map
g: X—> F such that f/(ίc) e

A mapping is a continuous function. All spaces will be Hausdorff.
The ^-dimensional sphere will be denoted by Sn and the ball which
it bounds Bn+1. If / is a mapping Gr(/) will denote the graph of /.

The following theorem of Michael will be needed:

THEOREM M. Let Z be paracompact, let X = Z x I and let Y
be a complete metric space with metric p. Let S^ c 2F be uniformly
eqni-LCn with respect to p and let φ\X—>S^ be continuous with
respect to p. Let dim Z <£ n and let A = (Z x 0) U (C x I) where C
is closed in Z. Then every selection for φ \ A can be extended to a
selection for φ.

2. Proof of Theorem 1 and its consequences*

Proof. Let boeB. Since B is locally equiconnected at b0 there
exists a neighborhood U of b0 and a map ΛΓ6: U x U x /—• B such
that Nv(x, y, 0) = x, Nv(x, y, 1) = y, and Nv(x, x9 t) = x. Let Pσ =
p\p~ι(U) and define g: Gr(pυ) —*p~\U) by g(e, p(e)) = e. Also define
F: p-\U) x £ — B by F(e, b) = b and

H:p~\U) x U x I-*p~ι{U) x B

by H(e, 6, ί) = (e, Nv(p{e), 6, t)). Note H(e, 6, 0) - (e, Nv(p(e), 6, 0)) =
(e, p(e)) and H(e, 6,1) = (β, NLr{p(e), 6,1)) = (e, 6). Further define
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g': ( j r W ) X U x 0) U (Gr(Pσ) x I) — #

by g'(e, b,t) = e and K: p~ι(U) x Ϊ7 x I-+B by

ΛΓ(β, 6, ί) = F(H(e, b, t))

and note that pg' = K\ (p~\U) x ?7 x 0) U Gr(PF) x I.
Therefore we have the following commutative diagram.

K

(p~ι(U) x U x 0) U Gτ(pσ) x I(z<p-\U) x U x I >B

Now Theorem M will be applied. Let Z= p-\U) x U, Y = E,
and ^ : ^ x / - > y c 2 F be defined by <̂ (s, ί) = p - 1 ^ , t) and let C =
Gr(pLτ). Note Z is paracompact and φ is continuous since p is per-
fect. Since p is ^-regular {^(δ)} in equi-LC™ and by Proposition
2.1 [3] there exists a metric σ on E agreeing with the topology such
that σ ^ d and {^(δ)} is uniformly equi-LCπ. Since σ ^ d, (E, σ) is
a complete metric space. It should also be noted that dim Z ^ n
and that g' is a selection for <p | (Z x 0) U (C x I). Hence by Theorem
M, gf could be extended to a selection G for φ (i.e.,

G:p-\U) x U x I-+E

in such a way that the above diagram will still be commutative with
the addition of G).

Define φσ: p~ι(U) x U-+p~\U) by φσ(e9b) = G(ey δ, 1). Note if
(β, b)ep^(U) x U then

G(β, 6, 1) e p-'mβ, 6, 1) = jr ' lΉίβ, 6, 1) - p - 1 ^ , iSΓ^pίβ), 6,1))

Hence the range of ψjj is as stated. It is now easy to see that ψjj
satisfies the conditions to be a slicing function. This completes the
proof.

Note 2. The hypothesis that p be perfect was used only to show
that {p^φ) I b G B) is a continuous collection and that B is paracom-
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pact. Hence if this could be shown some other way a stronger theorem
will be obtained.

COROLLARY 1. // p\E—*B is a Serre fibration and E and B
are finite dimensional compact ANR's then p has the SSP.

Proof. It is well known that ANR's are locally equiconnected.
It also follows from [2] that p is ^-regular for all n. Hence the

proof follows from Theorem 1.

Theorem 1 and Corollary 1 allow us to get the following gener-
alizations of Raymond's results in [5].

COROLLARY 2. Let p:E—>B be a Serre fibration of a connected
compact metric finite dimensional ANR onto a compact metric finite
dimensional ANR. Suppose that E is an n-gm over L (a field or the
integers). Then:

(a) each fiber Fb is a k-gm over L
(b) B is an (n-k) — gm over L.

COROLLARY 3. Let p:E—+B is a Serre fibration of a connected
compact metric finite dimensional ANR onto a compact metric finite
dimensional ANR base B. Suppose that E is a {generalized) manifold
{over a principal ideal domain) and some fiber has a component of
dimension ^ 2 . Then p is locally trivial.

Another theorem which follows from MichaeΓs Theorem 1.2 [3]
is the following:

THEOREM 2. Let p: E-+B be an n-regular map from a complete
metric space E onto a paracompact space B. Assume that

dim E x B <n + 1

and p~\b) is Cn for every beB. Then p has the SSP and the slic-
ing structure could be chosen with only one slicing function.

Proof. Define g:Gr{p)-*E by g{e, p{e)) = e and F: E x B -> B
by F{e, b) = e. The <p(e, b) = p~ιF{e, b) is a carrier and g is a selec-
tion for φ I Gr(p). Hence by Theorem 1.2 [3] g could be extended to
a selection G for φ. It is easily seen that G is the desired slicing
function.

Note 3. Theorem 2 has corollaries similar to those of Theorem
1 and the author leaves them to the reader to develop.
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