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MARTINGALES OF VECTOR VALUED
SET FUNCTIONS

J. J. UHL, Jr.

This paper is concerned with the norm convergence of
Banach space valued martingales in Orlicz spaces whose under-
lying measure is (possibly) only finitely additive. Because of
the possible incompleteness of these Orlicz spaces of measurable
point functions, this subject will be treated in the setting of
Orlicz spaces of set functions V' ? rather than the corresponding
spaces L? of measurable point functions. First, a conditional
expectation Pz, operating on finitely additive set functions, is
introduced and related to the usual conditional expectation £
operating on L' by the equality

() Pu(F)(E) = SEEB(f)dy Ees

where (2, 2, 1) is a measure space, B is a sub o-field of 3 and
F(E) = S fdu for Ee .
E

Then, with the use of Pz martingales of set functions are
defined and their convergence in appropriate V¢ spaces is
investigated. In addition, in the countably additive case, the
results obtained for martingales of set functions are related
to martingales of measurable point functions and extensions
of certain results of Scalora, Chatterji, and Helms are obtained.

The study of finitely additive set functions appears to have begun
during the close of the last century with such notions as Jordan
Content. Through the first half of this century, with the introduction
of the Lebesgue theory, most effort was concentrated on countably
additive set functions. Recently, however, certain work, such as
representations of linear functionals of the space of bounded functions
has demanded the employment of finitely additive set functions. More
important is the fact that finitely additive set functions provide
considerable flexibility in applications and are sometimes no more
untractable than their countably additive counterparts.

In their new approach to probability theory, Dubins and Savage
[6] have noted that countable additivity is sometimes unnecessarily
restrictive and have dropped it. In the study of the classical function
spaces L?, Bochner [1] and Leader [12] find it “natural to consider”
the L? spaces of finitely additive set functions. More recently in [16,
17] Bochner and Leader’s groundwork was placed in the Orlicz space
setting. In various ways, each of these papers present the argument
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that certain classical results can be handled more easily with the set
function approach and perhaps more importantly, that new results
may be obtained by employing this approach.

The purpose of the present paper is to treat the theory of norm
convergence of martingales in Orlicz spaces, not in the classical
manner, but rather to treat this theory in the setting of finitely
additive set functions in the context of [16] and [17]. Here again,
the goal will be to reduce to a minimum the limiting processes needed
in the study of mean martingale convergence.

In the first section, preliminaries including relevant facts about
the V?X)[16, 17] spaces are given and collected for ready reference.
The second section introduces a generalized conditional expectation
operator which operates on vector valued finitely additive set functions.
Properties of this generalized conditional expectation are exploited in
the third section where martingales of finitely additive set functions
are defined and studied. Here extensions of certain known results of
Scalora [15], Chatterji [4], Helms [9], and Krickeberg and Pauc [11]
are obtained.

1. Preliminaries. Throughout this paper 2 is a point set: Y is
a field of subsets of 2, and g is a finitely additive (extended) real
valued nonnegative set function defined on X. X, 2 is the ring of
sets of finite pg-measure. X is a Banach space. @ is a Young’s
function [18] with complementary function 7.

By V?*(, X) is meant the linear space of all finitely additive, -
continuous', X-valued set functions F' defined on Y, which satisfy

1.1 L1(F/k) = sup 3, O(| F(E,) [|/kp(E.)) (E,) = 1

for some &k > 0, where the supremum is taken over all partitions =
consisting of a finite collection {£,} of disjoint members %, and the
convention 0/0 = 0 is observed. Upon the introduction of the norm
N, defined for F'e V°2, X) by

1.2) Ny(F) = inf {k > 0: [,(F/k) < 1},

V2, X) becomes a Banach space [16,17].
A partition 7 is a finite collection {E,} of disjoint members of X.
The partitions are partially ordered by defining 7, < =, if each members

of 7, can be written as a union of members of 7,. Corresponding to
each to each Fe V?JZ, X) and each partition 7 = {E,} is the function

* F' is p-continuous if for each ¢ > 0, there exists a 6 > 0 such that pw(E)<d
implies || F(E)|| < e.
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F (En)

-9 ey

where ¢+ E, is the set function defined for F € 2, by - E,(E) = w(E N E,).
A set function of the form E, will be termed a step function. The
introduction of F'. allows us to single out a (possibly proper) closed
subspace of V°2, X). By S%2, X) is meant the collection of all
FeVe*2, X) such that lim, N,(F, — F') = 0 where the limit is taken
in the Moore-Smith sense through all partitions .

THEOREM 1.1. If X is reflexive and @ obeys the d,-condition
(9(22) £ KO(x) for some K and all x), then S°(Y, X) = V°(2, X).

The proof of this theorem may be found in [17, IV. 7]. If, @(x) =
2|, then the corresponding V¥, X) and S°, X) will be denoted
by V2, X) and S'(Y, X) respectively.

As usual, the Orlicz space L°(2, X) is the space of all totally p-
measurable X-valued functions f which satisfy

(1.4 |, £ limdn < 1

for some k& where the integral here and thoughout this paper is that
of [7, Chap. III]. With functions which differ only on a pg-null set
[7, Chap. III] identified, L®(2, X) becomes a normed linear space (com-
plete if g is countably additive) under the norm N, defined for
felL’Z2,X) by

(1.5) No(f) = inf {k > 0; SQQ(ufH/k)d# < 1} .

The use of identical symbols for the V°(Y, X) and the L% 2%, X) norms
will be justified in the next result. No confusion should arise since
set functions will normally be denoted by upper case letters, while
point functions will be denoted by lower case letters.

A nonnegative set function G defined on Y is said to have the
finite subset property if EFel, G(E) = o~ implies the existence of
E,c E,E,c such that 0 < G(E,) < o=.

THEOREM 1.2. Suppose /1t has the finite subset property. The
mapping \: L°(2, X)— V22, X) defined for fe L°(Y, X) by \f(E) =
S fdp, Ee X, is an isometric injection of L°(Y, X) into V2, X).
E

If 1t is countably additive, X is a o-field, X is reflexive, and @ obeys
the Ad,-condition, then the range of N is all of V2, X).

The proof of this theorem may be synthesized from [17,1l.5],
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[17, IV.8], and the fact that if p is countably additive, L°(3, X) is
complete.

2. A generalized conditional expectation. The purpose of this
section is to define and explore the properties of a generalized con-
ditional expectation operator operating on finitely additive set functions.
An attempt will be made to relate this operator and its properties to
the usual conditional expectation [15] operating on point functions.

DEFINITION 2.1. A class of sets BC Y is a subfield of ¥ if and
only if B is a ring and Q¢ B. A partition 7, {E,} is a B-partition if
{#,} C B.

DEFINITION 2.2. Let B be a subfield of Y. A set function
FeVeZ2, X) is termed B-measurable if for each FecJX,,

2.1) F(E) = lim F.(E)

where the limit is taken in the Moore-Smith sense through all B-
partitions 7z

The following result establishes the existence of an operator
analogous to the usual conditional expectation [13, 15].

THEOREM 2.3. Let @ obey the A,-condition and B be a subfield of
Y. Then for each FeS°%Y,X) there exists a B-measurable set
Sunction Fye S°(2, X) such that

(i) FyE)= F(F) for all Ec BN %,,

(i) No(Fp) = Ny(F),
and

(111) lim,,B N¢(FB - (FB)::B) =0,
where the limit is taken im the Moore-Smith sense through all B-
partitions my.

Proof. Let FeS?2Y,X) be arbitrary and consider the mapping
0: 8°2, X)— VB, X) defined by 6(F)= F|B where FIB is the
restriction of F' to BN 2Y,. The linearity of @ is clear. Moreover for
any k> 07

L(0F/K) = sup 3, (|| F(E.) [|/k(E,)) (1(E.,)

2.2
- < sup 3 0| F(E.) |k B))(E.) < T(FR) .

From inequality (2.2) and the definition of the N, norm, it follows
immediately that N,(6F) < N,(F). Thus 6 is a linear contraction.
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Next we shall show that the range of @ is contained in S%B, X)
(which is possibly strictly contained in V%%, X)). Because 6 is a
contradiction, it suffices to show 6 maps step functions (i.e., functions
of the form F) into S% B, X). From the linearity of 6, we can infer
that this reduces to showing that f(xy-E)e S*B, X) for each x € X
and all E€X,. Thus,letxe X, Eecl, and 7, = {E,} be a B-partition.
A brief computation yields

(2.3)  No(O(xp-E) — (O(xp-K))zy) = || @] No(p- B | B — (p2-E'| B)sp)

where the last norm is taken in V?(B, R)(R = reals). Since p¢-E|B
is x| B-continuous and satisfies I,(¢#-E | B) < o, and @ obeys the 4,-
condition, Theorem 1.1 implies p-E|Be S*B, R). Thus

lim Ny(¢t-E | B — (¢t-E | B),,) = 0 .

In view of this, the definition of S’ B, X) and (2.3), we have (zp-E) e
S?B, X). This proves 6(S?(2, X)) c S%B, X).

Leaving, for the time being, the problem of projecting S?(2, X)
into S?(B, X), we shall now consider the opposite problem: the extension
of members of S’(B, X) to members of S?2%, X). Let GeS%B, X)
and 7, be a B-partition. Then for Ec BN 2%,

_ G(E,)
G (E) =3 25 (4. F,|B(E).
(&) % /x]B(E’n)(# | B)(E)

Clearly G., has a “natural” extension to all of 3, -namely

GE) , p
%@y

which is defined for all E e Y,. Denote this extension by 0(G.,). Then
evidently 0(G,,) € S’(Z, X), and clearly o is linear. Moreover, as a
brief computation shows, N,(G.,) = N,(0(G-;)).

Now, for Ge S,(B, X), we have

lim Ny(G,, — G.) = 0.

4p,zp
Hence
lim Ny(0(G,,) — 0(G,) = 0.
AB“TB

This and the completeness of S* Y, X) assures the existence of o(G) €
S?%, X) such that

(2.4) 1111;1 No(0(G) — 0(G=) = 0.

Moreover,
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No(G) = 111;1 No(Gep) = 111;1 No(0(G-p)) = No(0(G)) .
Also note that if Ee€ BN X, then G(E) = lim., G.,(E) = lim,, o(G. )(E),

by the definition of 0(G.,) = o(G)(E), since norm convergence in V*
implies setwise convergence for sets in X,. Therefore we have

(2.5) p(@|B=@G,
(2.6) 0(G)z, = 0(G=p)
and

(2.7 lygl No(0(G) — 0(G).,) = 0,

Now, to prove the theorem, let F ¢ S?2, X) and consider F; =
©0(0(F)). By the definition of # and (2.5) (with 6(F) = G), Fx(E) =
F(E),EcBNZY, and (i) is satisfied. Since # is a contraction and p
is norm preserving, N,(F;) < N,(F'), and (ii) is satisfied. (iii) follows
immediately from (2.7).

A corollary of the proof of Theorem 2.3 is given below for use
later.

COROLLARY 2.4. Let @ obey the A,-condition and B be a subfield
of 2. Then there exists a “natural” tisometric embedding o0 of
S?%B, X) into S*(2, X). The image of S* B, X) under o consists of
all B-measurable members of S, X).

Proof. The assertions of this corollary are all clear form the
proof of Theorem 2.3 with the possible exception of the linearity
of p. It is clear from p’s definition that o is linear on the step
functions. Since step functions are dense in S°(B, X), o is linear on
all of S%(B, 2).

The above corollary allows us to think of S?B, X) as a sub-
space of S?2, X) in very much the same way that the B-measurable
members of L?(B, X) constitute a subspace of L?(Y, X). With the aid
of theorem 2.3, an operator P, which will be called a generalized
conditional expectation and which is a genuine generalization of
Kolmogrorov’s classical concept of probability theory (cf. Theorem 2.7)
can be defined.

DEFINITION 2.5. Let @ obey the 4,-condition and B be a subfield
of 3. For FeS?2%, X), the operator P, is defined by

(2.8) Py(F) = Fy
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where F'— F'; in the sense of Theorem 2.3.
The following theorem is an immediate consequence of Theorem 2.3.

THEOREM 2.6. If @ obeys the 4d,-condition and B is a subfield of
2, then

(i) Py on S°2,X) ts linear and contractive,

(ii) Py(F)|B = F|B,
and

(iii) lim,, Ny(P(F) — F.,) = 0.

The relationship between the operator P, and the usual conditional
expectation operator E?[15, pp.353-356] which operates on point
functions is clarified in the next result.

THEOREM 2.7. Suppose 3 is a o-field, B is a sub-o-field of 2,
and p is a countably additive finite measure on 2. If E* is the
usual conditional expectation operator on L'(2, Y, p, X) then NE®(f) =
Py(\f) for all f L2, 2, ¢, X) or equivalently,

| B2(H1ap = Pi(|_ran)E)

for all EcX where N\ is the isometric isomorphism of L' into V' of
Theorem 1.2.

Proof. Since simple functions are dense in L2, ¥, p, X (L'(2, X)),
it suffices to prove the statement for all simple functions f. The
linearity of E?, Py, and the integral allow us to reduce this problem
to the problem of showing EZ(f) = Py(\f) for all f of the form f =
xyy where ve X, EecX, and ¥, is the characteristic or indicator
function of E. The definition of £# on L'(Z, X) [15] and [7, IV. 8. 17]
imply

|, #E L

Z058)

strongly in LYB, X) and therefore in L'(X, X). Hence by the conti-
nuity of X\,

Ef(zyy) = xE°(Yp) = 11131 % Xz,

X(EB( )) I )\(Z S xEB(XE)d# )
rYz)) = lim 2B ¥z ],
x B =B #(E’n) Xy

lim >, 2%« pn.FE,, since E,eB,
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K Mare)(E) Jy gy
DT uE) "

: N(E) L, om
11_1;1% ) p-E, = Py(\f),

strongly in V'(2, X) by Theorem 2.6.

The crux of Theorem 2.7 is that the operator P, is a genuine
extension of the classical conditional expectation operator E2. Indeed,
the definition of P, does not depend directly on the Radon-Nikodym
theorem (which is not available in usable form), while the definition
of E* depends crucially on the Radon-Nikodym theorem. But, as
shown above, P, coincides with EZ? whenever the Radon-Nikodym
theorem is applicable. Another property common to P, and E°* is
contained in the next result.

THEOREM 2.8. Let @ obey the d,-condition. ILf B, C B, aresubfields
of X, then
PBI(PBz) = PBz(PBl) = PB1
on S?%2, X). Consequently Py is a contractive projection of S°(2, X)
wnto S°(Y, X).
Proof. If Ge S°(2, X) is arbitrary, then according to Theorem 2.6,
P, (G) = lim G:B1 strongly in V%2, X).

:Bl
Hence if FeS?2, X),
Py (Pp(F)) = lim (PBz(F)),,B1 in N, norm .
7By

Since Pp,(F) agrees with F' on B.-sets and B, C B,, P,,(F') agrees with
F on B,-sets. Therefore

(PBz(F))ﬂBlz F‘r

%5y
for each B, -partition x,, and

Py (Pp(F)) = lim (Py(F))., =lim F. = Py(F)
) 1 “5) 1

strongly in V*(2, X). Hence P;(Py) = Py,

To prove P (Ps) = Pj, the boundedness of P, and P, will be
used. If FeS’2%, X), then Theorem 2.6 implies P, (F') = lim:BlF,rB]
strongly in U’(2, X). The boundedness of P, yields
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P, (P, (F)) = lim P,(F,,) .
:Bl

But each B-partition 7, is a B,-partition since B,C B.. Therefore
PB2(F:/fl) - FBI and

P[fz(PI;,(F)) = 1_1m E».Bl = PBl(F)

by Theorem 2.6.
That P, is a contractive projection follows from P; = P, and

Theorem 2.6.

According to [17, 1.138], V%2, X)c V42, X) for all Young’s
functions provided p(2Q) < c, it is natural consider P, applied to
functions in VY, X) which belong to S'(¥, X). The (closed) subspace
of such functions will be denoted by R’(Y, X). According to [17, 1. 13],
N, dominates N,, the variation norm of V', when p(2) < o; hence
S, X)cRZ, X)c V2, X)c VY2, X). In the case p(f2) = o,
as the preceding definitions and theorems show, P, is directly defined
on S? only if @ obeys the 4,-condition. Because stronger hypotheses
on @ are needed when p(2) = o, some of the following theorems will
be stated in two parts- the first part dealing with the case ¢(Q) <
and the second part dealing with the case ¢(2) = oo.

Some properties of P, on R?’(Y, X) are collected below:

THEOREM 2.9. Let () be finite and B be a subfield of X: then

(i) Pg: R, X)— RY, X) is a contractive projection.

(ii) PyF)E)=lim_, F. (F) in X for each F in R’(Y, X) and
EcX.

(iil) Px(F)|B = F| B for all Fe R(Z, X).

Proof. Let FeR"Y,X). (ili) is simply Theorem 2.6 applied to
S, X). (ii) follows directly from Theorem 2.6 (iii) applied to S*(Z, X).
To prove (i), note that P, maps S'(2, X) into S*2, X). Therefore,
to show P, is a contractive projection on R’(Y, X), it suffices to show
Ny(Py(F)) < N,(F) for Fe R°(Y, X). (This has already been established
in the case @ obeys the 4,-condition. A separate proof is furnished
for the general @). From (i) and the “lower semi-continuity” of
L[17, 1.7], it follows that for each k£ > 0,

I(Py(F)[k) = lim inf I,(F (k) = I(Fk) .
Hence N,(P,(F') = Ny(F')

3. Martingales of additive set functions. The study of martin-
gales of point functions in the finitely additive context appears to be
somewhat intractable because of the possible incompleteness of the
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L*(Y, X) spaces when the underlying measure y is only finitely additive.
However, even when g is only finitely additive, the corresponding
V?2, X) spaces are complete. Primarily for this reason we shall deal
with martingales from a set function standpoint. In addition, as will
be seen later, the assumption of only finite additivity will not present
any special difficulties. Using a definition equivalent to that of
Krickeberg and Pauc [11] we now define a martingale of additive set
functions. This is a generalization of the classical concept of Doob
[5] to the setting of finitely additive set functions (cf. Theorem 3.2).

DEerFINITION 3.1. Let {B.,7¢€ T} be an increasing net of subfields
of ¥ (i.e., BCB,ifr, < 7,). A V°2Z, X)S*2, X), R’(2, X))-martin-
gale is a net of finitely additive set functions {F., B., 7 € T} such that

F.e VY3, X)(S*(2, X) R(2, X)) for each 7€ T and P,_(F.,)) = F. for
T, = T,

In some important cases, martingales of set functions and martin-
gales of measurable point functions [15, p. 358] can be indentified under
the isometric isomorphism »: L°(Y, X)— V%2, X) of Theorem 1.2.
This is made precise in the following result.

THEOREM 3.2. Let 3 be a o-field and {B., 7 T} be an increasing
net of sub-o-fields of 3. If p is a countably additive finite measure
on 2, then {F,,B.,7eT} is an R*(Y, X)-martingale if and only if
NU(EFL), B.,,te T} ts a martingale (of point functions) in L°(%, X).
This means if f. = N"(F.)

(i) Fach f. is B.-measurable,
and

(i) S fodp = S fodp for all 7, = 7, and EeB.,
E E

Proof. (Necessity). Because of the definition of R?(%, X), it may
and will be assumed that R?(Y, X) = S'(2, X). The hypothesis guaran-
tees ML'YZ, X)) = S, X); so that N 'F,) = f.e L'(&, X) for each
zeT. From Theorem 2.6 and the definition of an R?(Y, X)-martingale,
it follows that

lim Nl(F: - (F‘Z')TBT) =0 .

7B

Hence
lim N (AWH(F) — M ((Fo)ep)) = 0.

Since the h"l(Ff)xBT are B.-simple functions, it follows that f. = A '(F%)
is B.-measurable for each z. This establishes (i). (i) follows directly
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from Definition 3.1; if M7'(F,) = f, then for each B. and 7, = 7,, we
have

| fodet = F(B) = Fo(B) = | f.du,
for F e B..
(Sufficiency). If {f., B.,ze T} is a martingale in L2, X) and
F(-) = Mo(+) = S Fdu for each T T, (i) implies F. (E) = F.(E) for
(-
each FeB. and all 7, = z,. Hence

F"l = A’frl = XEBfl(frz) = PBT‘(kffz) = PBrl(Ffz)

by Theorem 2.7. Hence {F., B.,z e T} is a martingale in S(2, X).

We shall now begin a study of the norm or mean convergence of
martingales of set functions. The main result dealing with this problem
is contained in the following theorem.

THEOREM 3.3. (i) Let u(2) < « and {F.,B,,te T} be an R’(Z,
X) martingale. If 3 = U.B. and the function F, defined by
lim. F(E) = F\(E) for EeZX, belongs to S°(2,, X), then the net {F.,
B.,7e T} converges in the V22, X) norm.

(ii) If p(2) = oo, and ® obeys the Ad,-condition, the same con-
clusion holds if {F., B.,t€ T} is a martingale in S?(2, X) and the
function F, defined by lim. F.(E) = F(E) for Ee3, N X, belongs to
S*%,, X) where 2, is the ring of sets in X of finite p-measure.

Proof. (i) Since {B.,7 € T} is an increasing net of subfields of Y,
it is clear that 2, = |J. B. is a subfield of 3. From Definition 3.1, it
follows immediately that F(E) = lim. F.(E) exists for each Ee X,
Now consider the net {F.|X¥,7e T} in V%2, X). By hypothesis F,
belongs to S%2Y,, X). Therefore if ¢ > 0 is given, there exists a Y-
partition 7w such that N,(F, — F,) < ¢/2. By virtue of the facts that
Y, = U-.B. and {B.,te€ T} is an increasing net of fields, there exists
a B. such that = © B, for all = 7, Moreover Corollary 2.4 guarantees
the existence of a X -measurable function F defined on all of Y such
that N,(F — F.) < ¢/2. In addition, from the definition of P,, we
have P, (F') = F. for all e T and P, (F.) = F. for all = = 7, There-
fore for v = 7,, the triangle inequality yields

Ny(F — F.) = No(F' — F,) + No(F, — F})
No(F — F) + No(Pp(F — F)) < 2No(F — F) < ¢,

since P,_is a contraction. Consequently lim. N,(F — F.) = 0.
The proof of (ii) is the same with a few obvious modifications.
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Because of its generality, the hypothesis of Theorem 3.3 may be
somewhat difficult to verify. The utilization of Theorem 1.1 permits
us to state some corollaries which are more easily applied.

COROLLARY 3.4. Let X be reflexive and @ obey the 4d,-condition.
If {F.,B.,te T} is a V%2, X)-martingale which satisfies

(1) Ny(F.) =M< o for some M and all 7€ T and

(i) »(F., ) are uniformly p-continuwous (but mot mnecessarily
finite) where v(F., K) is the variation of F. on E for Ee€ X, then

(a) the net {F.,te T} converges in V2, X) norm,
and

(b) If ¥, the complementary function to @, is also continuous
(ii) of the hypothesis may be dropped.

Proof. (a) Since @ obeys the 4,-condition and X is reflexive,
Theorem 1.1 implies S*(Y, X) = V22, X); therefore Theorem 3.3 is
applicable. According to this theorem, it need only be shown that
the set function F', defined on ¥, N ¥,, where ¥, = J. B., by F.(&) =
lim. F.(E) belongs to S?(¥, X)(=V? Y, X)). The“lower semi-continuity”
of I,(-) [17, 1. 7] yields for each k > M

Io(F\[k) = lim inf I(F. | 3./k) = sup {Io(F./k)} = 1,

since N,(F.) < M for each e T. In addition, from the “lower semi-
continuity” of the variation v, one has v(F,, E) < lim inf u(F'., E) for
all Fe Y. Since the y(F, ) are uniformly fe-continuous, it follows
that v(F, -) is p¢| X -continuous and hence that F is p¢ | 3,-continuous.
Therefore F e V?2, X) = S(2,, X). This proves (a).

(b) If ¥ is continuous, then the fact that I,(F/k) < o for some
k guarantees F, is yt| Y -continuous by [17, I.17]. Hence (ii) may be
dropped.

A specialization of Corollary 3.4 to martingales of point functions
yields the following result.

COROLLARY 3.5. Let 3 be a o-field and ft be countably additive
and finite on Y. If X is reflexive, D satisfies the A,-condition and
{f., B.,7e T} is a martingale in L*(X, X) such that

(1) NJUSf)EM< = for some M and all te T,
and

(ii) the functions || f.||x are uniformly integrable,
then

(a) the net {f.,7e€ T} converges in the L’ norm.

(b) If ¥, the complementary function to @, is continuous, then
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(ii) of the hypothesis may be dropped.

Proof. (a) Let F.= \f.. According to Theorem 3.2, {F., B.,
e T} is a martingale of set functions. Since A is an isometry,
Nu(F.) = No(£) £ M for all ce T. From (i) »(Fey ) = | [IF:Ilxdp
are uniformly p-continuous because the || f. ||y are uniformly integrable.
An application of Corollary 3.4 shows {F'., z € T'} converges in V°(2%, X)
norm. Since the current hypothesis guarantees that L?(Y, X) is com-
plete, and A is an isometry, it follows that {f.,ze T} converges in
Lz, X).

(b) This follows directly from the above and Corollary 3.4.

Corollary 3.5 extends one of the main results of Chatterji [4, Th. 3]
in two ways: The index set 7T is possibly uncountable, and the
convergence is in L?(Y, X) while in [4], the convergence is in L?(Y, X),
1 < p < . Furthermore the methods of proof in [4] do not seem to
apply to the more general setting of Corollary 3.5.

A set function martingale version of a theorem of Krickeberg and
Pauc [11, Th. 6, p. 500] is contained in

THEOREM 3.6. (a) Suppose pu(2) < o and {F.,B.,7€T} s a
martingale in R*(Y, X). Then the following are equivalent:

(i) {F.,7ve T} converges in the strong topology of V2, X).

(ii) {F.,7ve T} converges in the weak topology of V%, X).

(iii) lim. 2*(F.(E)) = x*(z;) for each E some x,€ X, and all
x*e X*, the conjugate space to X. The function F. (E) = x, for
EcX, is a member of V22, X) and for each ¢ > 0, there exists a
parameter t.€ T and a B.-measurable function G. € R*(X, X) such
that N,(G., — F..) <.

(b) If () = o, thetheorem remains true provided @ obeys
the d,-condition, R’ is replaced by S and the limit in (iii) s taken
only for EelX,.

Proof. (i) — (ii) is obvious. (ii)— (ili); Let x*e X* and EeJX.
It is easily seen that the functional [ defined for F'e V*(Y, X) by
W(F) = 2*(F(F)) is a bounded linear functional on VY, X). By (i),
the net {F'., 7 € T'} converges in the weak topology to some He V2, X}.
Therefore x*(H (E)) = lim. x*(F.(F)) for each Ec Y, and z* ¢ X*. This
is the first part of (iii) with H = F... Now let M be the collection
of all V?(2, X) functions which are B.-measurable for some e T.
From the fact that {B., 7 e T} is an increasing net of subfields of ¥,
it follows that M is a linear submanifold of V2, X). But {F.,ce T}
converges weakly to F., and each F.e M. Hence F., belongs to the
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strong closure of M since the weak and strong closure of a linear
manifold are identical. Consequently for each & > 0, there exists a
parameter 7 € T and a B.-measurable function G., such that N,(G., —
F.) < e. This proves (ii) — (iii).

(iii) — (i). Let € > 0 be given. From (iii), there exists a 7, ¢ T and
a B, -measurable function G., such that N,(G., — F.) < ¢/2. Since ¢
is arbitrary and G., belongs to the closed subspace R*°(Y, X) of V*(2, X),
we have F.e R”(Y, X). Hence P, (F.) is defined for each ¢ 7. In
addition, P, (F.) and F'. are both B.-measurable and agree on B.-sets.
It follows that P, (F.) = F.. Moreover since G., is B.-measurable
and belongs to R (2, X), P,(G.,) = G, forall = .. Thus forz = 7.,

No(F. — F.) =< Ny(F. — G.,) + No(C., — F)
== Nq)(Fw - GTE) + NW(PBT(GT£ - Fw))
S 2Ny(F. — F.)<e,

since P, is a contraction. This proves (a).
(b) With a few evident modifications, the proof is the same.

As a corollary to Theorem 3.6, the following extension of [11,
Th. 6, p. 500] for vector-valued functions can be given.

COROLLARY 3.7. Let X be a o-field and p be a countably additive
finite measure on 2. If {f., B.,7e€ T} is a martingale in L°(2, X),
the following conditions are equivalent:

(i) {f., ce T} converges in the strong topology of L°(Y, X).

(ii) {f., 7€ T} converges in the weak topology of L°(2, X).

(iiil) There exists a function f,.e€ L°(3, X) such that

(] ) = (| i

for each Ee 2 and all x* € X*, and for each € > 0 there exists a
parameter T.€ T and a B.-measurable function g., in L°(2, X) such
that Ny(g., — f) < €.

Proof. If M:L°(Y, X)— V2, X) is the isometric isomorphism of
Theorem 1.2, since L°(&, X) c L'(2, X), we have ML*(2, X)) C R*(2, X).
The proof now follows directly from Theorem 3.6 after an application
of Theorem 3.2 and the isometric isomorphism X\.

The next theorem and its corollary are the final results of this
section.

THEOREM 3.8. Let X be reflexive, ® and 1its complementary
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function ¥ be continuous and @ obey the dyr-condition. If {F., B,
e T} s a V%2, X)-martingale, then the following statements are
equivalent.

(i) {F.,B.,t€ T} converges weakly in V°(2, X).

(ii) {F., B.,7e T} converges strongly in V°2, X).

(ili) There exists F., in V°2, X) such that F. = Py (F.) for all
zeT.

(iv) The set {F.,te T} is (strongly) bounded.

Proof. (i) — (ii) is Theorem 3.6. (ii) — (iii): Let F.. be the strong
limit of {F.,ze T}. Then F.e V*ZY, X) and clearly F. = P, (F.) for
all e T. (iii)) — (iv): Since P,_is a contraction,

No(F.) = No(P; (F)) = No(Fl) .

(iv) — (1) follows from Corollary 3.4.

A formulation of Theorem 3.8 for martingales of point functions is

COROLLARY 3.9. Let X be reflexive, @ and 1its complementary
Junction ¥ be continuous and @ obey the d,-condition. If X is a o-
field and p 1s a countably additive finite measure on X and {f., B.,
7€ T} is a martingale in L°(Y, X), then the following statements are
equivalent.

(1) {f.,ce T} converges tn the weak topology of L*(Y, X).

(ii) {f.,z€ T} converges in the strong topology of L%, X).

(iil) There exists f.. € L(Y, X) such that f. = E%(f.,) forall e T.

(iv) The set {f.,te T} 1s (strongly) bounded.

Proof. The proof follows from an application of the isometric iso-
morphism \ of L?(Y, X) onto (in this case) V?(2, X) and theorems 2.7, 3.2
and 3.8.

It should be noted that Corollary 3.9 subsumes some of the main
results of [9]. In addition, it extends these results to the vector-
valued case and to the Orlicz space setting.

Furthermore, it should be noted that some of the preceding
results for finitely additive set functions can be deduced from known
results by use of the isomorphism theorems of [7,IV.9]. On the other
hand, the method of approach of this paper seems more direct and
seems to yield more insight than the indirect method using known
results and the isomorphism theorems of [7, IV.9].

Finally, we note that the above results do not, in general, admit
extensions to proving pointwise convergence theorems for martingales
of point function. Indeed, the properties of the integrals of the
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functions involved enables these methods to work by avoiding the
need for consideration of the (non-) measurability of the limits of nets
of (point) functions. Thus, little information about pointwise con-
vergence can be deduced from this approach. However, it is too much
to expect to be able to deduce such results from the properties of
finitely additive set functions, and a different approach is needed in
such a study.
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