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MARTINGALES OF VECTOR VALUED
SET FUNCTIONS

J. J. UHL, JR.

This paper is concerned with the norm convergence of
Banach space valued martingales in Orlicz spaces whose under-
lying measure is (possibly) only finitely additive. Because of
the possible incompleteness of these Orlicz spaces of measurable
point functions, this subject will be treated in the setting of
Orlicz spaces of set functions Vφ rather than the corresponding
spaces Lφ of measurable point functions. First, a conditional
expectation PB, operating on finitely additive set functions, is
introduced and related to the usual conditional expectation EB

operating on L1 by the equality

( * ) PB(F)(E) = ( E\f)dμ Ee Σ

where (Ω9 Σ, μ) is a measure space, B is a sub <r-field of Σ and

F(E) = [ fdμ for EeΣ.
JE

Then, with the use of PB martingales of set functions are
defined and their convergence in appropriate Vφ spaces is
investigated. In addition, in the countably additive case, the
results obtained for martingales of set functions are related
to martingales of measurable point functions and extensions
of certain results of Scalora, Chatterji, and Helms are obtained.

The study of finitely additive set functions appears to have begun
during the close of the last century with such notions as Jordan
Content. Through the first half of this century, with the introduction
of the Lebesgue theory, most effort was concentrated on countably
additive set functions. Recently, however, certain work, such as
representations of linear functionals of the space of bounded functions
has demanded the employment of finitely additive set functions. More
important is the fact that finitely additive set functions provide
considerable flexibility in applications and are sometimes no more
untractable than their countably additive counterparts.

In their new approach to probability theory, Dubins and Savage
[6] have noted that countable additivity is sometimes unnecessarily
restrictive and have dropped it. In the study of the classical function
spaces Lp, Bochner [1] and Leader [12] find it "natural to consider"
the Lp spaces of finitely additive set functions. More recently in [16,
17] Bochner and Leader's groundwork was placed in the Orlicz space
setting. In various ways, each of these papers present the argument
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that certain classical results can be handled more easily with the set
function approach and perhaps more importantly, that new results
may be obtained by employing this approach.

The purpose of the present paper is to treat the theory of norm
convergence of martingales in Orlicz spaces, not in the classical
manner, but rather to treat this theory in the setting of finitely
additive set functions in the context of [16] and [17]. Here again,
the goal will be to reduce to a minimum the limiting processes needed
in the study of mean martingale convergence.

In the first section, preliminaries including relevant facts about
the VΦ(X)[16,17] spaces are given and collected for ready reference.
The second section introduces a generalized conditional expectation
operator which operates on vector valued finitely additive set functions.
Properties of this generalized conditional expectation are exploited in
the third section where martingales of finitely additive set functions
are defined and studied. Here extensions of certain known results of
Scalora [15], Chatterji [4], Helms [9], and Krickeberg and Pauc [11]
are obtained.

1* Preliminaries* Throughout this paper Ω is a point set: Σ is
a field of subsets of 42, and μ is a finitely additive (extended) real
valued nonnegative set function defined on ^ . Σo a Σ is the ring of
sets of finite /^-measure. X is a Banach space. Φ is a Young's
function [18] with complementary function Ψ.

By VΦ(Σ, X) is meant the linear space of all finitely additive, μ-
continuous1, X-valued set functions F defined on Σo which satisfy

(1.1) IΦ(F/k) = sup Σ Φ(\\ F(En) \\/kμ(En))μ(En) ^ 1

for some k > 0, where the supremum is taken over all partitions π
consisting of a finite collection {En} of disjoint members Σo and the
convention 0/0 = 0 is observed. Upon the introduction of the norm
NΦ defined for Fe VΦ(Σ, X) by

(1.2) NΦ(F) = inf {k > 0: IΦ(F/k) ^ 1} ,

VΦ(Σ, X) becomes a Banach space [16, 17].

A partition π is a finite collection {En} of disjoint members of ΣQ.
The partitions are partially ordered by defining πλ ^ π2 if each members
of π, can be written as a union of members of π2. Corresponding to
each to each Fe VΦ(Σ, X) and each partition π = {En} is the function

* F is μ-continuous if for each ε > 0, there exists a o > 0 such that μ(E) < δ
implies ||-FCE7)|| < ε.
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(1.3) F. =

where μ En is the set function defined for E e Σo by μ- En(E) = μ(E Π En).
A set function of the form Eπ will be termed a step function. The
introduction of F- allows us to single out a (possibly proper) closed
subspace of VΦ(Σ, X). By SΦ(Σ, X) is meant the collection of all
Fe VΦ(Σ, X) such that \xmπNΦ{Fπ - F) = 0 where the limit is taken
in the Moore-Smith sense through all partitions π.

THEOREM 1.1. If X is reflexive and Φ obeys the AΓcondition
(Φ(2x) g KΦ(x) for some K and all x), then SΦ(Σ, X) = VΦ(Σ, X).

The proof of this theorem may be found in [17, IV. 7], If, Φ(x) =
\x\, then the corresponding VΦ(Σ, X) and SΦ(Σ, X) will be denoted
by V\Σ, X) and Sι(Σ, X) respectively.

As usual, the Orlicz space LΦ(Σ, X) is the space of all totally μ-
measurable X-valued functions / which satisfy

(1.4) \ Φ(\\f\\lk)dμSl

for some k where the integral here and thoughout this paper is that
of [7, Chap. III]. With functions which differ only on a μ-null set
[7, Chap. Ill] identified, LΦ(Σ, X) becomes a normed linear space (com-
plete if μ is countably additive) under the norm Nφ defined for
feLφ(Σ,X) by

(1.5) NΦ(f) = inf {& > 0: ̂ Ω(\\f\\/k)dμ ^ l j .

The use of identical symbols for the VΦ(Σ, X) and the LΦ(Σ, X) norms
will be justified in the next result. No confusion should arise since
set functions will normally be denoted by upper case letters, while
point functions will be denoted by lower case letters.

A nonnegative set function G defined on Σ is said to have the
finite subset property if E e Σ, G(E) = oc implies the existence of
EoaE,EoeΣ such that 0 < G(E0) < oo.

THEOREM 1.2. Suppose μ has the finite subset property. The
mapping λ: LΦ(Σ, X) -* VΦ(Σ, X) defined for fe LΦ(Σ, X) by Xf(E) =

\ fdμ, E e Σo, is an isometric injection of LΦ(Σ,X) into VΦ(Σ, X).
JE

If μ is countably additive, Σ is a σ-field, X is reflexive, and Φ obeys
the Az-condition, then the range of λ is all of VΦ(Σ, X).

The proof of this theorem may be synthesized from [17,11.5],
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[17, IV. 8], and the fact that if μ is countably additive, LΦ{Σ, X) is
complete.

2* A generalized conditional expectation* The purpose of this
section is to define and explore the properties of a generalized con-
ditional expectation operator operating on finitely additive set functions.
An attempt will be made to relate this operator and its properties to
the usual conditional expectation [15] operating on point functions.

DEFINITION 2.1. A class of sets ΰ c i 1 is a subfield of Σ if and
only if B is a ring and Ω e B. A partition πB {En} is a jB-partition if

DEFINITION 2.2. Let B be a subfield of I7. A set function
Fe VΦ(Σ, X) is termed J3-measurable if for each EeΣ0,

(2.1) F(E) = lim Fπβ{E)

where the limit is taken in the Moore-Smith sense through all B-
partitions πB.

The following result establishes the existence of an operator
analogous to the usual conditional expectation [13,15].

THEOREM 2.3. Let Φ obey the A2-condition and B be a subfield of
Σ. Then for each Fe SΦ(Σ, X) there exists a B-measurable set
function FB e SΦ(Σ, X) such that

( i ) FB(E) = F(E) for all E e B Π Σo,
(ii) NΦ(FB) S NΦ(F),

and
(iii) lim^ NΦ(FB - (FB)πB) = 0,

where the limit is taken in the Moore-Smith sense through all B-
partitions πB.

Proof. Let Fe SΦ(Σ, X) be arbitrary and consider the mapping
Θ:S*(Σ, X ) - > VΦ(B, X) defined b y Θ(F) = F\B w h e r e FIB is t h e
restriction of F to B Π Σo. The linearity of θ is clear. Moreover for
any k > 0,

IΦ(ΘF/K) = sup Σ Φ(lI F(En) \\/kμ(EJ)μ(En)
(2.2)

^ sup Σ 0(11 F(En) \\/kμ(En))μ(En) ̂  I,(F/k) .
π π

From inequality (2.2) and the definition of the Nφ norm, it follows
immediately that NΦ(ΘF) ^ NΦ(F). Thus θ is a linear contraction.
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Next we shall show that the range of Φ is contained in SΦ(B, X)
(which is possibly strictly contained in VΦ(Σ, X)). Because ^ is a
contradiction, it suffices to show θ maps step functions (i.e., functions
of the form Fπ) into SΦ(B, X). From the linearity of θ, we can infer
that this reduces to showing that Θ(xμ-E) e SΦ(B, X) for each xeX
and all EeΣ0. Thus, let xeX,EeΣ0, and πB = {En} be a 5-partition.
A brief computation yields

(2.3) NΦ(θ(xμ E) - (θ(xμ E))XB) = || x || NΦ(μ-E \B-(μ E\ B)XB)

where the last norm is taken in VΦ(B,R)(R = reals). Since μ-E\B
is μ I l?-continuous and satisfies Iφ(μ E\B) < <>o, and Φ obeys the z/2-
condition, Theorem 1,1 implies μ-E \ B e SΦ(B, R). Thus

\\mNΦ(μ-E\B - (μ*E\B)XB) = 0 .
πB

In view of this, the definition of SΦ(B, X) and (2.3), we have Θ(xμ-E) e
SΦ(B, X). This proves Θ(SΦ(Σ, X)) c SΦ(B, X).

Leaving, for the time being, the problem of projecting SΦ(Σ, X)
into SΦ(B, X), we shall now consider the opposite problem: the extension
of members of SΦ(B, X) to members of S*(Σ,X). Let GeSφ(B,X)
and πB be a ^-partition. Then for EeBf]Σ0,

Clearly GπB has a "natural" extension to all of JtVnamely

Σ G(En) E

*B μ(En)

which is defined for all E e Σo. Denote this extension by p(GπB). Then
evidently p(G?B) e SΦ(Σ, X), and clearly p is linear. Moreover, as a
brief computation shows, NΦ(GπB) = NΦ(ρ{GπB)).

Now, for GeSΦ(B,X), we have

^lim NΦ(GJβ - GXB) = 0 .

Hence

limNΦ(p(G,B) - P(GJ) = 0 .

This and the completeness of SΦ(Σ, X) assures the existence of ρ(G) e
SΦ(Σ, X) such that

(2.4) UmNΦ(p(G)-p(GπB)) = 0.

Moreover,
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NΦ(G) = lim N.(GπJ = lim NΦ(p(GπB)) = N,(p(G)) .

Also note that if E e B Π 2Ό, then G(E) = lim^ ( ^ ( J E ) = lim^ ρ(GπB)(E),
by the definition of p(GπB) = p(G)(E), since norm convergence in Vφ

implies setwise convergence for sets in 2Ό. Therefore we have

(2.5)

(2.6)

and

(2.7) lim NΦ(ρ(G) -

P(G) | B =

PiG).,, =

- PiGhJ =

G,

P(G«B)

0 ,

Now, to prove the theorem, let FeSφ(Σ, X) and consider FB =
ρ(θ(F)). By the definition of θ and (2.5) (with Θ(F) - G),FB(E) -
F(E), EeB f] Σo, and (i) is satisfied. Since θ is a contraction and p
is norm preserving, NΦ(FB) ^ NΦ(F), and (ii) is satisfied, (iii) follows
immediately from (2.7).

A corollary of the proof of Theorem 2.3 is given below for use
later.

COROLLARY 2.4. Let Φ obey the A2-condition and B be a subfield
of Σ. Then there exists a "natural" isometric embedding p of
SΦ(B, X) into SΦ(Σ, X). The image of SΦ(B, X) under p consists of
all B-measurable members of SΦ(Σ, X).

Proof. The assertions of this corollary are all clear form the
proof of Theorem 2.3 with the possible exception of the linearity
of p. It is clear from p's definition that p is linear on the step
functions. Since step functions are dense in SΦ(B, X), p is linear on
all of SΦ(B, Σ).

The above corollary allows us to think of SΦ(B, X) as a sub-
space of SΦ(Σ, X) in very much the same way that the J5-measurable
members of LΦ(B, X) constitute a subspace of LΦ(Σ, X). With the aid
of theorem 2.3, an operator PB which will be called a generalized
conditional expectation and which is a genuine generalization of
Kolmogrorov's classical concept of probability theory (cf. Theorem 2.7)
can be defined.

DEFINITION 2.5. Let Φ obey the ^-condition and B be a subfield
of Σ. For FeSφ(Σ, X), the operator PB is defined by

(2.8) PB(F) = FB
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where F-+FB in the sense of Theorem 2.3.

The following theorem is an immediate consequence of Theorem 2.3.

THEOREM 2.6. If Φ obeys the A2-condition and B is a sub field of
Σ, then

( i ) PB on SΦ(Σ, X) is linear and contractive,
(ii) PB(F)\B = F\B,

and
(iii) limπBNΦ(PB(F)-FZB) = 0.

The relationship between the operator PB and the usual conditional
expectation operator £^[15, pp. 353-356] which operates on point
functions is clarified in the next result.

THEOREM 2.7. Suppose Σ is a σ-field, B is a sub-σ-field of Σ,
and μ is a countably additive finite measure on Σ. If EB is the
usual conditional expectation operator on 1/(42, Σ, μ, X) then XEB(f) —

for all f Lι(Ω, Σ, μ, X) or equivalently,

for all E e Σ where X is the isometric isomorphism of L1 into V1 of
Theorem 1.2.

Proof. Since simple functions are dense in L\Ω1 Σ, μ, X){U{Σ, X)),
it suffices to prove the statement for all simple functions /. The
linearity of EB, PB, and the integral allow us to reduce this problem
to the problem of showing EB(f) = PB(Xf) for all / of the form / =
xχE where xeX, EeΣ, and χE is the characteristic or indicator
function of E. The definition of EB on Lι(Σ, X) [15] and [7, IV. 8.17]
imply

f xEB(χE)dμ
EB(xχE) = xEB(χE) = li

strongly in Lι(B, X) and therefore in U(Σ, X). Hence by the conti-
nuity of λ,

xEB(χE)dμ
x(E«(xχE)) = l i m λ \ Σ J ^ , . , . X •B,

l imΣ ^E" *—/«•#•, since EneB,
*B *B μ(En)
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μ(En)

*B ti μ{En) '

strongly in V](Σ, X) by Theorem 2.6.

The crux of Theorem 2.7 is that the operator PB is a genuine
extension of the classical conditional expectation operator EB. Indeed,
the definition of PB does not depend directly on the Radon-Nikodym
theorem (which is not available in usable form), while the definition
of EB depends crucially on the Radon-Nikodym theorem. But, as
shown above, PB coincides with EB whenever the Radon-Nikodym
theorem is applicable. Another property common to Pβ and EB is
contained in the next result.

THEOREM 2.8. Let Φ obey the A2-condition. IfBι c B2 are sub fields
of Σ, then

PBl(PB2) = PB2(PBl) = PBl

on SΦ(Σ, X). Consequently PB is a contractive projection of SΦ(Σ, X)
into SΦ(Σ, X).

Proof. If G e SΦ(Σ, X) is arbitrary, then according to Theorem 2.6,

PBι{G) = lim GKBi strongly in V(Σ, X) .

Hence if Fe SΦ(Σ, X),

PBl(PB2(F)) = lim (PB2(F))πBi in NΦ norm .

Since PB2(F) agrees with F on B2-sets and BVCLB2, PB2(F) agrees with
F on ^-sets. Therefore

(PB2(F))πB = FπBi

for each ^-partition πBi, and

PBι{PB2(F)) = lim (PB2(F))πBi = l i m F ^ = PBl(F)

strongly in VΦ{Σ, X). Hence PBι{PB2) = PBχ.
To prove PBz(PBl) = PBl, the boundedness of PBl and PBz will be

used. If FeSφ(Σ,X), then Theorem 2.6 implies PB,(F) = lim_JPτ

ff_
1 1

strongly in UΦ(Σ, X). The boundedness of PB yields
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Έut each β rpartition πP>ι is a I?2-partition since BιaB2. Therefore
P,h{F^B) - FBϊ and

by Theorem 2.6.
That PB is a contractive projection follows from PI = PB and

Theorem 2.6.

According to [17, 1.13], VΦ(Σ, X) aVι(Σ, X) for all Young's
functions provided μ(Ω) < co, it is natural consider PB applied to
functions in VΦ(Σ, X) which belong to S\Σ, X). The (closed) subspace
of such functions will be denoted by RΦ(Σ, X). According to [17,1.13],
Nφ dominates Nlf the variation norm of V1, when μ(Ω) < oo; hence
SΦ(Σ, X) c RΦ(Σ, X) c VΦ(Σ, X) c Vι(Σ, X). In the case μ(Ω) = oo,
as the preceding definitions and theorems show, PB is directly defined
on Sφ only if Φ obeys the J2-condition. Because stronger hypotheses
on Φ are needed when μ{Ω) = co, some of the following theorems will
be stated in two parts- the first part dealing with the case μ(Ώ) < co
and the second part dealing with the case μ(Ω) = oo.

Some properties of PB on R*(Σ, X) are collected below:

THEOREM 2.9. Let μ(Ω) be finite and B be a subfield of Σ: then
( i ) PB: R

Φ(Σ, X) —+RΦ(Σ, X) is a contractive projection.
(ii) PR{F){E) = limZB FπB(E) in X for each F in RΦ(Σ, X) and

EeΣ.
(iii) PB{F) \B = F\B for all FzRφ{Σ, X).

Proof. Let FeR'p(Σ, X). (iii) is simply Theorem 2.6 applied to
Sι(Σ, X). (ii) follows directly from Theorem 2.6 (iii) applied to S^Σ, X).
To prove (i), note that PB m a p s S 1 ^ , ^ ) into S^,X). Therefore,
to show PB is a contractive projection on RΦ(Σ', X), it suffices to show
Nφ(Pβ(F)) ^ NΦ(F) for F e RΦ{Σ, X). (This has already been established
in the case Φ obeys the J2-condition. A separate proof is furnished
for the general Φ). From (ii) and the "lower semi-continuity" of
/Φ[17, I. 7], it follows that for each k > 0,

IΦ(PH(F)lk) S Urn inf IJJFJk) ^ h(F/k) .

Hence NΦ(PB(F) ^ NΦ(F)

3. Martingales of additive set functions* The study of martin-
gales of point functions in the finitely additive context appears to be
somewhat intractable because of the possible incompleteness of the
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LΦ(Σ, X) spaces when the underlying measure μ is only finitely additive.
However, even when μ is only finitely additive, the corresponding
VΦ(Σ, X) spaces are complete. Primarily for this reason we shall deal
with martingales from a set function standpoint. In addition, as will
be seen later, the assumption of only finite additivity will not present
any special difficulties. Using a definition equivalent to that of
Krickeberg and Pauc [11] we now define a martingale of additive set
functions. This is a generalization of the classical concept of Doob
[5] to the setting of finitely additive set functions (cf. Theorem 3.2).

DEFINITION 3.1. Let {Bt,τe T} be an increasing net of subfields
of Σ (i.e., B, c B2 if τγ ^ r2). A VΦ(Σ, X)(SΦ(Σ, X), RΦ(Σ, X))-martin-
gale is a net of finitely additive set functions {Fτi Bτj τ e T) such that
Fτ e VΦ(Σ, X)(SΦ(Σ, X) RΦ(Σ, X)) for each τ e T and PBτ (FT2) = FTi for
τγ ^ τ2.

In some important cases, martingales of set functions and martin-
gales of measurable point functions [15, p. 358] can be indentified under
the isometric isomorphism λ: L*(Σ, X) —• VΦ(Σ, X) of Theorem 1.2.
This is made precise in the following result.

THEOREM 3.2. Let Σ be a σ-field and {Bτ1 τ e T) be an increasing
net of sub-σ-fields of Σ. If μ is a countably additive finite measure
on Σ, then {Fτ, Bτ,τ e T} is an RΦ(Σ, X)-mar ting ale if and only if
{X~1(FT)y Bτi T e T} is a martingale (of point functions) in LΦ(Σ,X).
This means if fτ = X~ι(Fτ)

( i ) Each fτ is B^measurable,
and

(ii) \ fτdμ = I fτdμ for all τ2 ^ τι and E e Bτχ
JE JE

Proof. (Necessity). Because of the definition of RΦ(Σ', X), it may
and will be assumed that RΦ(Σ, X) = S\Σ, X). The hypothesis guaran-
tees X(L\Σ, X)) = S'iΣ, X); so that \-ι(Fτ) = fr e L*(Σ, X) for each
τ e T. From Theorem 2.6 and the definition of an RΦ(Σ, X)-martingale,
it follows that

lim N^F: - (FT)τJ = 0 .

Hence

lim N^X-^Fr) - X-ι({Fz)πB )) = 0
B

Since the χ-\Fτ)πB_ are BΓ-simple functions, it follows that fτ = \~\Fτ)
is ^.-measurable for each τ. This establishes (i). (ii) follows directly
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from Definition 3.1; if λ " 1 ^ ) = fτ, then for each BZχ and τ2^τlf we
have

f fTldμ = Fri(E) = FT2(E) = \ fτβμ ,
J E j E

for EeBτ.

(Sufficiency). If {/r, Bτ, τe T} is a martingale in U(Σ,X) and

Fτ( ) = λ/r( ) = ί /rdμ for each r e Γ , (i) implies Fτχ(E) = FT2(E) for

each EeBTχ and all τ2 ^ r1# Hence

F r i = λ/ri = \E»*i(frz) = P i i

by Theorem 2.7. Hence {FTJBTJτe T} is a martingale in S'iΣ, X).

We shall now begin a study of the norm or mean convergence of
martingales of set functions. The main result dealing with this problem
is contained in the following theorem.

THEOREM 3.3. ( i ) Let μ(Ω) < oo and {FT1 Bτ, τ e T) be an R*(Σ,

X) martingale. If Σx ~ (JΓ Bτ and the function Fx defined by
\ιmτ Fτ{E) = Fλ(E) for EeΣ, belongs to SΦ(Σ19X), then the net {FT,
Bτyτe T} converges in the VΦ(Σ,X) norm.

(ii) If μ(Ω) = co 9 and Φ obeys the A2-condition, the same con-
clusion holds if {Fτ, Bτ, τ e T} is a martingale in SΦ(Σ, X) and the
function F, defined by limΓ Fτ(E) = Fλ{E) for E e Σλ n Σo belongs to
SΦ(ΣX1 X) where Σo is the ring of sets in Σ of finite μ-measure.

Proof, (i) Since {BT, τ e T} is an increasing net of subfields of Σ,
it is clear that Σ1 — \JTBr is a subfield of Σ. From Definition 3.1, it
follows immediately that Fγ{E) = limΓ Fτ(E) exists for e&chEeΣ^
Now consider the net {FT \Σ19τe T} in VΦ(Σ, X). By hypothesis F,
belongs to Sφ(Σι, X). Therefore if ε > 0 is given, there exists a Σr

partition π such that Nφ{Fι — Flπ) < ε/2. By virtue of the facts that
Σι = \JTBT and {BTJτe T} is an increasing net of fields, there exists
a BT( such that π c Br for all r ^ r0. Moreover Corollary 2.4 guarantees
the existence of a immeasurable function F defined on all of Σ such
that NΦ(F — FS) < ε/2. In addition, from the definition of PBτ, we
have PBτ(F) = F r for all τ e T and PBτ(FΓ) = Fπ for all τ ^ r0. There-
fore for τ ^ r0, the triangle inequality yields

NΦ(F - Fτ) ^ NΦ(F - Fπ) + NΦ(Fπ - FBτ)

NΦ(F - Fπ) + NΦ(PBτ(F ~ Fx)) ^ 2NΦ(F - Fπ) < ε ,

since PBτ is a contraction. Consequently limΓ NΦ(F — Fτ) = 0.
The proof of (ii) is the same with a few obvious modifications.
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Because of its generality, the hypothesis of Theorem 3.3 may be
somewhat difficult to verify. The utilization of Theorem 1.1 permits
us to state some corollaries which are more easily applied.

COROLLARY 3.4. Let X be reflexive and Φ obey the Δ2-condition*
If {Fτ, Bτ,τe T} is a VΦ(Σ, X)-martingale which satisfies

( i ) NΦ(FZ) ^ M < co for some M and all τ e T and
(ii) v(Fτ, •) are uniformly μ-continuous (but not necessarily

finite) where v(Fτ, E) is the variation of Fτ on E for EeΣ0, then
(a) the net {Fz,τeT} converges in VΦ(Σ,X) norm,

and
(b) If Ψ, the complementary function to Φ, is also continuous

(ii) of the hypothesis may be dropped.

Proof. (a) Since Φ obeys the J2-condition and X is reflexive,
Theorem 1.1 implies SΦ(Σ, X) = VΦ(Σ, X); therefore Theorem 3.3 is
applicable. According* to this theorem, it need only be shown that
the set function Fι defined on Σι Π Σo, where 2\ — Ur Bτ, by F,(E) =
limΓ Fτ{E) belongs to SΦ(Σ, X)(= VΦ(Σ, X)). The "lower semi-continuity'?

of Iφ(') [17, I. 7] yields for each k > M

IΦ(FJk) - lim inf Iφ(Fτ \ ΣJk) ^ sup {IΦ(Fτ/k)} ^ 1 ,

since Nφ(Fr) ^ M for each τeT. In addition, from the "lower semi-
continuity" of the variation v, one has v(FuE) ^ lim inf v(F~, E) for
all EeΣλ. Since the v(F, •) are uniformly /^-continuous, it follows
that v(Flf •) is μ \ J^continuous and hence that F1 is μ \ 2\-continuous,
Therefore Fx e VΦ(Σ19 X) = S(Σly X). This proves (a).

(b) If Ψ is continuous, then the fact that Iφ(FJk) < co for some
k guarantees Fι is μ \ I'rcontinuous by [17, 1.17]. Hence (ii) may be
dropped.

A specialization of Corollary 3.4 to martingales of point functions
yields the following result.

COROLLARY 3.5. Let Σ be a σ-field and μ be countably additive
and finite on Σ. If X is reflexive, Φ satisfies the J2-condition and
{/Γ, J5r, r G T) is a martingale in LΦ(Σ, X) such that

( i ) Nφ(fT) ^ M < co for some M and all τeT,
and

(ii) the functions ||/Γ | |Λ- are uniformly integrable,
then

(a) the net {/ :,re T] converges in the Lφ norm.
(b) If Ψ, the complementary function to Φ, is continuous, then
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(ii) of the hypothesis may be dropped.

Proof, (a) Let Fτ = λ/Γ. According to Theorem 3.2, {Fτ1 Br,
Γ G Γ } is a martingale of set functions. Since λ is an isometry,

NΦ(Fτ) = NΦ(fr) ^ M for all τeT. From (ii) v(Fr, •) = [ | | / r \\x dμ
J(;)

are uniformly //-continuous because the | |/ r | | x are uniformly integrable.
An application of Corollary 3.4 shows {Fr, τeT} converges in VΦ(Σ, X)
norm. Since the current hypothesis guarantees that LΦ(Σ, X) is com-
plete, and λ is an isometry, it follows that {fτ,τ e T} converges in
LΦ(Σ, X).

(b) This follows directly from the above and Corollary 3.4.

Corollary 3.5 extends one of the main results of Chatterji [4, Th. 3]
in two ways: The index set T is possibly uncountable, and the
convergence is in LΦ(Σ, X) while in [4], the convergence is in LP(Σ, X),
1 <Ξ p < oo. Furthermore the methods of proof in [4] do not seem to
apply to the more general setting of Corollary 3.5.

A set function martingale version of a theorem of Krickeberg and
Pauc [11, Th. 6, p. 500] is contained in

THEOREM 3.6. (a) Suppose μ{Ω) < co and {FT, Bτ,τ e T} is a
martingale in RΦ(Σ, X). Then the following are equivalent:

( i ) {Fτ, τeT} converges in the strong topology of VΦ(Σ, X).
(ii) {Fτ,τe T} converges in the weak topology of VΦ(Σ, X).
(iii) limΓ x*(FT(E)) = x*(zE) for each E some xEeX, and all

α;*eX*, the conjugate space to X. The function F^E) = xE for
EeΣ, is a member of VΦ(Σ, X) and for each ε > 0, there exists a
parameter τεe T and a Bτ-measurable function Gτ eRφ(Σ, X) such
that NΦ(GTε - Fco) < ε.

(b) If μ(Ω) = oo, thetheorem remains true provided Φ obeys
the Δ2-condition, Rp is replaced by Sφ and the limit in (iii) is taken
only for E e Σo.

Proof, (ί) —> (Ii) is obvious. (ii)->(iii): Let x*eX* and EeΣ.
It is easily seen that the functional I defined for Fe VΦ(Σ, X) by
l(F) - x*(F(E)) is a bounded linear functional on VΦ(Σ, X). By (ii),
the net {Fτ9 τeT} converges in the weak topology to some He VΦ(Σ, X}.
Therefore x*(H(E)) = limr x*{Fτ{E)) for each Ee Σo and X * G Γ . This
is the first part of (iii) with H = F^. Now let M be the collection
of all VΦ(Σ, X) functions which are Immeasurable for some τeT.
From the fact that {BT, τeT} is an increasing net of subfields of Σ,
it follows that M is a linear submanifold of VΦ{Σ, X). But {FTy τeT}
converges weakly to F^ and each Fτ e M. Hence F^ belongs to the
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strong closure of M since the weak and strong closure of a linear
manifold are identical. Consequently for each ε > 0, there exists a
parameter τ e T and a Immeasurable function GTε such that Nφ(GTε —
î lo) < ε. This proves (ii) —> (iii).

(iii) —* (i). Let ε > 0 be given. From (iii), there exists a τ2 e Γand
a J5Γε-measurable function Gτε such that Nφ(GTε — JFU) < ε/2. Since ε
is arbitrary and GTε belongs to the closed subspace RΦ(Σ, X) of VΦ(Σ, X),
we have F^eR^Σ, X). Hence PBr(F«.) is defined for each τeT. In
addition, PBτ(FJ) and jPr are both jE?Γ-measurable and agree on I?r-sets.
It follows that PBr(FJ) = Fτ. Moreover since GTε is I?Γε-measurable
and belongs to R (Σ, X), PBτ(GTε) = Gu for all τ ^ ττ. Thus for τ ^ τe,

= NΦ(

,(F.

-Gτ

-Gτ

— ί

.H
ε)-

< s

A*. ~

since PBτ is a contraction. This proves (a).
(b) With a few evident modifications, the proof is the same.

As a corollary to Theorem 3.6, the following extension of [11,
Th. 6, p. 500] for vector-valued functions can be given.

COROLLARY 3.7. Let Σ be a σ-field and μ be a countably additive
finite measure on Σ. If {fτ,Bτ,τe T) is a martingale in LΦ(Σ,X),
the following conditions are equivalent:

( i ) {/Γ, r e T) converges in the strong topology of LΦ(Σ, X).
(ii) {/,, τe T} converges in the weak topology of LΦ(Σ, X).
(iii) There exists a function /«, e LΦ(Σ, X) such that

for each EeΣ and all x * e l * , and for each ε > 0 there exists a
parameter τεe T and a Bτ -measurable function gTε in LΦ(Σ, X) such
that Nφ(gTε —/«>)< ε.

Proof. If λ: LΦ(Σ, X) -> Fφ(i;, X) is the isometric isomorphism of
Theorem 1.2, since LΦ(Σ, X) c L\Σ, X), we have X(LΦ(Σ, X)) c ^ ( I 7 , X).
The proof now follows directly from Theorem 3.6 after an application
of Theorem 3.2 and the isometric isomorphism λ.

The next theorem and its corollary are the final results of this
section.

THEOREM 3.8. Let X be reflexive, Φ and its complementary
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function Ψ be continuous and Φ obey the A2-condition. If {Fτ, Bz,
τ e T) is a VΦ(Σ, X)-martingale, then the following statements are
equivalent.

( i ) {FT, Bτ, τeT} converges weakly in VΦ(Σ, X).
(ii) {Fτ, Bτ,τ e T} converges strongly in VΦ(Σ,X).
(iii) There exists F^ in VΦ{Σ, X) such that Fτ = PB^F^) for all

τeT.
(iv) The set {Fτ1τe T) is {strongly) bounded.

Proof, (i) —> (ii) is Theorem 3.6. (ii) -+ (iii): Let F» be the strong
limit of {Fτ, τ e T). Then F» e VΦ(Σ, X) and clearly Fτ = PBτ(F<») for
all τeT. (iii) —> (iv): Since PBτ is a contraction,

NΦ(Fτ) = NΦ(Pβτ(FJ) £ N,(FJ .

(iv) —• ( i ) follows from Corollary 3.4.

A formulation of Theorem 3.8 for martingales of point functions is

COROLLARY 3.9. Let X be reflexive, Φ and its complementary
function Ψ be continuous and Φ obey the A2-condition. If Σ is a a-
field and μ is a countably additive finite measure on Σ and {/r, Bτ1

τ e T) is a martingale in LΦ(Σ, X), then the following statements are
equivalent.

( i ) {/_, τeT} converges in the weak topology of LΦ(Σ, X).
(ii) {fT,τe T) converges in the strong topology of LΦ(Σ,X).
(iii) There exists /TO e LΦ(Σ, X) such that f7 = EB*{fJ) for all τeT.
(iv) The set {fr,τe T) is (strongly) bounded.

Proof. The proof follows from an application of the isometric iso-
morphism λ of LΦ(Σ, X) onto (in this case) V*(Σ, X) and theorems 2.7, 3.2
and 3.8.

It should be noted that Corollary 3.9 subsumes some of the main
results of [9]. In addition, it extends these results to the vector-
valued case and to the Orlicz space setting.

Furthermore, it should be noted that some of the preceding
results for finitely additive set functions can be deduced from known
results by use of the isomorphism theorems of [7, IV. 9]. On the other
hand, the method of approach of this paper seems more direct and
seems to yield more insight than the indirect method using known
results and the isomorphism theorems of [7, IV. 9],

Finally, we note that the above results do not, in general, admit
extensions to proving pointwise convergence theorems for martingales
of point function. Indeed, the properties of the integrals of the
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functions involved enables these methods to work by avoiding the
need for consideration of the (non-) measurability of the limits of nets
of (point) functions. Thus, little information about point wise con-
vergence can be deduced from this approach. However, it is too much
to expect to be able to deduce such results from the properties of
finitely additive set functions, and a different approach is needed in
such a study.
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