A NOTE ON CERTAIN DUAL SERIES EQUATIONS INVOLVING LAGUERRE POLYNOMIALS

H. M. Srivastava

In this paper an exact solution is obtained for the dual series equations

$$
\begin{array}{lll}
\text { (1) } & \sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+n+1)} L_{n}^{(\alpha)}(x)=f(x), & 0 \leqq x<y, \\
\text { (2) } & \sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+\beta+n)} L_{n}^{(\sigma)}(x)=g(x), & y<x<\infty, \tag{2}
\end{array}
$$

where $\alpha+\beta+1>\beta>1-m, \sigma+1>\alpha+\beta>0, m$ is a positive integer,

$$
L_{n}^{(\alpha)}(x)=\binom{\alpha+n}{n}_{1} F_{1}[-n ; \alpha+1 ; x],
$$

is the Laguerre polynomial and $f(x)$ and $g(x)$ are prescribed functions.

The method used is a generalization of the multiplying factor technique employed by Lowndes [4] to solve a special case of the above equations when

$$
\sigma=\alpha, A_{n}=\Gamma(\alpha+n+1) \Gamma(\alpha+\beta+n) C_{n}, \alpha+\beta>0 \quad \text { and } \quad 1>\beta>0
$$

In another paper by the present author [5] equations (1) and (2) have been solved by considering separately the equations when (i) $g(x) \equiv 0$, (ii) $f(x) \equiv 0$, and reducing the problem in each case to that of solving an Abel integral equation. Indeed it is easy to verify that the solution obtained earlier [5] is in complete agreement with the one given in this paper.
2. The following results will be required in the analysis.
(i) The orthogonality relation for Laguerre polynomials given by [3, p. 292 (2)] and [3, p. 293 (3)]:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} x^{\alpha} L_{m}^{(\alpha)}(x) L_{n}^{(\alpha)}(x) d x=\frac{\Gamma(\alpha+n+1)}{n!} \delta_{m n}, \alpha>-1, \tag{3}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta.
(ii) The formula (27), p. 190 of [2] in the form:

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}}\left\{x^{\alpha+m} L_{n}^{(\alpha+m)}(x)\right\}=\frac{\Gamma(\alpha+m+n+1)}{\Gamma(\alpha+n+1)} x^{\alpha} L_{n}^{(\alpha)}(x) . \tag{4}
\end{equation*}
$$

(iii) The following forms of the known integrals [2, p. 191 (30)] and [3, p. 405 (20)]:
(5) $\int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta-1} L_{n}^{(\alpha)}(x) d x=\frac{\Gamma(\alpha+n+1) \Gamma(\beta)}{\Gamma(\alpha+\beta+n+1)} \xi^{\alpha+\beta} L_{n}^{(\alpha+\beta)}(\xi)$, where $\alpha>-1, \beta>0$, and

$$
\begin{equation*}
\int_{\xi}^{\infty} e^{-\alpha}(x-\xi)^{\beta-1} L_{n}^{(\alpha)}(x) d x=\Gamma(\beta) e^{-\varepsilon} L_{n}^{(\alpha-\beta)}(\xi), \tag{6}
\end{equation*}
$$

where $\alpha+1>\beta>0$.
3. Solution of the equations. Multiplying equation (1) by $x^{\alpha}(\xi-x)^{\beta+m-2}$, where m is a positive integer, equation (2) by $e^{-x}(x-\xi)^{o-\alpha-\beta}$, and integrating with respect to x over $(0, \xi),(\xi, \infty)$ respectively we find, on using (5) and (6), that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+\beta+m+n)} L_{n}^{(\alpha+\beta+m-1)}(\xi) \\
& \quad=\frac{\xi^{-\alpha-\beta-m+1}}{\Gamma(\beta+m-1)} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta+m-2} f(x) d x, \tag{7}
\end{align*}
$$

where $0<\xi<y, \alpha>-1, \beta+m>1$, and

$$
\sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+\beta+n)} L_{n}^{(\alpha+\beta-1)}(\xi)
$$

$$
\begin{equation*}
=\frac{e^{\xi}}{\Gamma(\sigma-\alpha-\beta+1)} \int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\alpha-3} g(x) d x, \tag{8}
\end{equation*}
$$

where $y<\xi<\infty, \sigma+1>\alpha+\beta>0$.
If we now multiply equation (7) by $\xi^{\alpha+\beta+m-1}$, differentiate both sides m times with respect to ξ and use the formula (4) we see that it becomes

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+\beta+n)} L_{n}^{(\alpha+\beta-1)}(\xi) \\
& \quad=\frac{\xi^{-\alpha-\beta+1}}{\Gamma(\beta+m-1)} \frac{d^{m}}{d \xi^{m}} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta+m-2} f(x) d x \tag{9}
\end{align*}
$$

where $0<\xi<y, \alpha>-1$, and $\beta+m>1$.
The left-hand sides of equations (8) and (9) are now identical and an application of the orthogonality relation (3) yields the solution of equations (1) and (2) in the form

$$
A_{n}=\frac{n!}{\Gamma(\beta+m-1)} \int_{0}^{y} e^{-\xi} L_{n}^{(\alpha+\beta-1)}(\xi) F(\xi) d \xi
$$

$$
\begin{align*}
& +\frac{n!}{\Gamma(\sigma-\alpha-\beta+1)} \int_{y}^{\infty} \xi^{\alpha+\beta-1} L_{n}^{(\alpha+\beta-1)}(\xi) G(\xi) d \xi \tag{10}\\
& \quad n=0,1,2,3, \cdots
\end{align*}
$$

where

$$
\begin{equation*}
F(\xi)=\frac{d^{m}}{d \xi^{m}} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta+m-2} f(x) d x \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
G(\xi)=\int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\alpha-\beta} g(x) d x \tag{12}
\end{equation*}
$$

provided that $\alpha+\beta+1>1-m$ and $\sigma+1>\alpha+\beta>0, m$ being a positive integer.

When $\sigma=\alpha, A_{n}=\Gamma(\alpha+n+1) \Gamma(\alpha+\beta+n) C_{n}$, the above equations provide the solution to Lowndes' equations for

$$
\alpha+\beta>0,1>\beta>1-m
$$

and when $m=1$ the results are in complete agreement (see [4], p. 124). Note also that the dual equations considered recently by Askey [1, p. 683, Th. 3] are essentially the same as Lowndes' equations.

The author should like to express his thanks to the referee for suggesting a number of improvements in the original version of the paper.

References

1. Richard Askey, Dual equations and classical orthogonal polynomials, J. Math. Anal. Appl. 24 (1968), 677-685.
2. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental functions, Vol. II, McGraw-Hill, New York, 1953.
3. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of integral transforms, Vol. II, McGraw-Hill, New York, 1954.
4. John S. Lowndes, Some dual series equations involving Laguerre polynomials, Pacific J. Math. 25 (1968), 123-127.
5. H. M. Srivastava, Dual series relations involving generalized Laguerre polynomials, Notices Amer. Math. Soc. 16 (1969), 568. (See also p. 517.)

Received January 20, 1969.
West Virginia University
Morgantown, West Virginia

