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CONCERNING THE INFINITE DIFFERENTIABILITY
OF SEMIGROUP MOTIONS

J. W. SPELLMANN

Let S be a real Banach space. Let C denote the infini-
tesimal generator of a strongly continuous semigroup T of
bounded linear transformations on S. This paper presents a
construction which proves that for each b > 1 there is a dense
subset D(Jb) of S so that if p is in D(b), then

(A) p is in the domain of O for all positive integers n and
(B) ϋmn-~ \\C*p\\ (nl)-b = 0.

Condition (B) will be used in § 3 to obtain series solutions to
the partial differential equations £7i2 = CU and Uu = CU.

Suppose G is a strongly continuous one-parameter group of bounded
linear transformations on S which has the property that there is a
positive number K so that | G(x) \ < K for all numbers x. Let A
denote the infinitesimal generator of G. In 1939, Gelfand [1] presented
a construction which showed there is a dense subset R of S so that if
p is in R, then

(C) p is in the domain of An for all positive integers n and
(D) limn_»\\A*p\\(nl)-l = 0.

Hille and Phillips, in their work on Semigroups [2], used Gelfand's
construction to prove there is a dense subset R of S which satisfies
condition (A) with respect to the operator C. Hille and Phillips, how-
ever, do not present estimates on the size of \\Cnp\\. Also, this author
has not been able to use their construction to obtain estimates on the
size of || Cnp\\.

2. Infinite differentiability of semigroup motions* Let b > 1.
Let a be a number so that 1 < a < b. Let M be a positive number
so that I T(X) I < M for all nonnegative numbers x less than or equal
Σw=i ^~α For each point p in the domain of C (denoted by Dc) and
each positive integer n, \etp(n + 1, n) = p. For each point p in Dc

and each pair (k, n) of positive integers so that k <̂  n, let

p(k, n) = ka\k duT(u)p(k + 1, n) .
Jo

THEOREM 1. Suppose p is in Dc and each of k and n is a positive
integer. Then

Proof. Let w = Πi=o(& + j)a. For each nonnegative integer j,
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THEOREM 2. Suppose p is in Dc and k is a positive integer.
Then

\\p(k,k)-p\\ ^

Proof. Theorem 2 follows from the definition of p(k, k) and the

fact that T (x)p - p = [XduT(u)Cp for all x > 0.
Jo

THEOREM 3. Suppose p is in Dc and each of k and n is a positive
integer. Then

k + n) - p(k, k + n-l)\\^M2\\Cp || (k + n)~a .

Proof. Let w and r(i) be defined as in the proof of Theorem 1.
Then

|| p(k, k + n) - p(k, k + n - 1) ||
fr(0)

= (Λ + ^)αW

= (k

0

r(0)

dUn •Γ
M2\\Cp\\(k

COROLLARY. Suppose p is in Dc and k is a positive integer.
Then the sequence

S(p, k): p(ky k), p(k, k + 1), p(k, k + 2) ,

converges in S.

Proof. Theorem 3 and the fact that X~=o (k + n)~a converges
imply S(p, k) is a cauchy sequence in S. Since S is complete, S(p, k)
will converge.

For each point p in Dc and each positive integer k, let the
sequential limit point of S(p, k) be denoted by pk. Let

D(b): {pk I p is in Dc and A: is a positive integer} .

THEOREM 4. Suppose pk is in D(b). Then pk ^ M\\p\\.
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Proof. Theorem 4 follows from Theorem 1 and the fact that pk

is the sequential limit point of S(p, k).

THEOREM 5. D{b) is a dense subset of S.

Proof. Suppose q is in S and q is not in D(b). Let ε > 0. Since
Dc is a dense subset of S, there is a point p in Dc so that

(1) | | p _ g | | < ε / 3 .
Theorem 2 implies there is a positive integer k so that

(2) | |p(fc,fc)-3>||<e/3 and
(3) (M+iy\\Cp\\Σ:=o(k + n)-«<ε/3.

Theorem 2, Theorem 3 and statement (3) imply there is a pk m D(b)
so that

(4) \\pk-p(k,k)\\<φ.
Statements (1), (2) and (4) imply || pk — q\\ < ε. Thus, D(b) is a dense

subset of S.

THEOREM 6. Suppose pk is in D(b). Then

pk = ka\k duT(u)pk+1 .
J

Proof. Let ε > 0. Then there is a positive integer n so that
(1) || p(k, k + n) - pk\\ < ε/2 and
( 2 ) \\p(k + l,k + n)-pk+1\\<e/2M.

Statement (2) implies

( 3 ) p(k, k + n) - ka\ duT(u)pk+1 < ε/2 .

Theorem 6 now follows from statements (1) and (3).

THEOREM 7. The elements of D(b) satisfy conditions (A) and (B).

Proof. Suppose pk is an element of D(b). Theorem 6 implies pk

is in the domain of Cn for all positive integers n and that
(1) C*pk = ΠPo1 (k + j)a Πi=o [T(l/(k + JY) - I]Pk+n.

Thus, the elements of D(b) satisfy condition (A). Statement (1) and
Theorem 2 imply

( 2 ) || C*pk || ^ [ Π S (k + JY](M + i r + 1 1 | p | |.
Statement (2) implies pk satisfies condition (B). The proof of Theorem 7
is now complete.

3* Partial differential equations in a banach space* The
results of § 2 will be used in this section to obtain series solutions to
the partial differential equations U12 = CU and Un = CU. Solutions
to these equations may be easily obtained if C is a bounded linear



522 J. W. SPELLMANN

transformation. The transformation C, however, may be unbounded;
that is, C may be discontinuous at each point where it is defined.

For each subset D of S, let P(D) denote the set of all functions
g for which there is a nonnegative integer n and a sequence po,p19 ,
pn each term of which is in D so that

g(χ) = Σ
i=0

if x >̂ 0. If D is a dense subset of S, it may be shown that P(D)
is a dense subset of the set of continuous functions from [0, d](d > 0)
to S.

THEOREM 8. Let d > 0. Let b be a number so that 1 < b < 2.
Suppose each of g and h is a function in P(D(b)) so that g(0) = h(0).
Then there is a function U from [0, d] x [0, d] to S so that

( i ) Ua(x, V) = CU(x, y) for all (x, y) in [0, d] x [0, d],
(ii) U(x, 0) = g(x) for all x in [0, d] and
(iii) [7(0, y) = h(y) for all y in [0, d).

Proof. Suppose n is a nonnegative integer and po,p19 , pn is a
sequence each term of which is in D(b) so that

Q(x) = Σ

if sc ̂  0. Suppose m is a nonnegative integer and q0, qιy , gw is a
sequence each term of which is in D(b) so that

= Σ v%
i=0

iί y^0. Let U be the function from [0, d] x [0, d] to S so that if
(x, y) is in [0, d] x [0, d], then

(1) U(χ, y) - Σi=i ^ + Σ £ o y%
+ Σ?= ι Σ"=i (xvΫx'&PiWXi + 1) (i + &)
+ Σ£oΣΓ=i (χy)kyiCkqi/(k\)(i + 1) (ΐ + fe).

Theorem 7 implies ί7 is well defined on [0, d] x [0, d]. Theorem 7 and
the fact that C is a closed transformation imply ί712(#, y) = CU(x, y)
for all (x, y) in [0, d] x [0, d]. Statement (1) implies U(x, 0) = g(x)
and [7(0,2/) = h(y) for all (a?, ?/) in [0, d] x [0, d].

THEOREM 9. Let d > 0. Lβί ί) 6e α number so that 1 < b < 2.
Suppose each of g and h is a function in P(D(b)). Then there is a
function U from [0, d] x [0, d] to S so that

( i ) Un(x, y) = CU(x, y) for all (x, y) in [0, d] x [0, d] ,
(ii) [7(0, #) = £(#) if y is in [0, d] and
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(iii) £^(0, y) = h(y) if y is in [0, d\.

Proof. Let each of g and h be defined as in the proof of Theorem
8. Then let U be the function from [0, d] x [0, d] to S so that for
each (x, y) in [0, d] x [0, d],

( l ) U(χ, y) = Σ?=o y% + x ΣΓ=o v%
+ Σ?=o ΣϊU tfWpMWMi + l) (i + fc)
+ ΣΓ=o Σ?=i ^+VC^/((2/b + l)!)(i + 1) . (i + k).

An argument analogous to that used in Theorem 8 may be used to
show U is well defined on [0, d] x [0, d] and that U satisfies conditions
(i), (ii) and (iii) in the hypothesis of this theorem.

REMARKS. (1) The solution U to the Theorem 8 has the proper-
ty that for each (x,y) in [0, d] x [0, d], is in the domain of Cn for
all positive integers n. The same remark is true for the solution to
the equation in Theorem 9.

(2 ) Theorem 5 implies there are solutions to Uί2 = CU and Un —
CU for a set of boundary functions which is dense in the set of
continuous functions from [0, d] to S.

(3) Theorem 9 and Theorem 5 imply there are solutions to the
ordinary differential equation y" = Cy for a dense set of initial values
for 2/(0) and y'(0).
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