CONCERNING THE INFINITE DIFFERENTIABILITY OF SEMIGROUP MOTIONS

J. W. Spellmann

Let S be a real Banach space. Let C denote the infinitesimal generator of a strongly continuous semigroup T of bounded linear transformations on S. This paper presents a construction which proves that for each $b>1$ there is a dense subset $D(b)$ of S so that if p is in $D(b)$, then
(A) p is in the domain of C^{n} for all positive integers n and
(B) $\lim _{n \rightarrow \infty}\left\|C^{n} p\right\|(n!)^{-b}=0$.

Condition (B) will be used in § 3 to obtain series solutions to the partial differential equations $U_{12}=C U$ and $U_{11}=C U$.

Suppose G is a strongly continuous one-parameter group of bounded linear transformations on S which has the property that there is a positive number K so that $|G(x)|<K$ for all numbers x. Let A denote the infinitesimal generator of G. In 1939, Gelfand [1] presented a construction which showed there is a dense subset R of S so that if p is in R, then
(C) p is in the domain of A^{n} for all positive integers n and
(D) $\lim _{n \rightarrow \infty}\left\|A^{n} p\right\|(n!)^{-1}=0$.

Hille and Phillips, in their work on Semigroups [2], used Gelfand's construction to prove there is a dense subset R of S which satisfies condition (A) with respect to the operator C. Hille and Phillips, however, do not present estimates on the size of $\left\|C^{n} p\right\|$. Also, this author has not been able to use their construction to obtain estimates on the size of $\left\|C^{n} p\right\|$.
2. Infinite differentiability of semigroup motions. Let $b>1$. Let a be a number so that $1<a<b$. Let M be a positive number so that $|T(X)|<M$ for all nonnegative numbers x less than or equal $\sum_{n=1}^{\infty} n^{-a}$. For each point p in the domain of C (denoted by D_{C}) and each positive integer n, let $p(n+1, n)=p$. For each point p in D_{C} and each pair (k, n) of positive integers so that $k \leqq n$, let

$$
p(k, n)=k^{a} \int_{0}^{k^{-a}} d u T(u) p(k+1, n) .
$$

Theorem 1. Suppose p is in D_{c} and each of k and n is a positive integer. Then

$$
\|p(k, k+n-1)\| \leqq M\|p\| .
$$

Proof. Let $w=\prod_{j=0}^{n=1}(k+j)^{a}$. For each nonnegative integer j,
let $r(j)=(k+j)^{-a}$. Then
$\|p(k, k+n-1)\|$

$$
\begin{aligned}
& =w\left\|\int_{0}^{r(0)} d u_{0} T\left(u_{0}\right) \int_{0}^{r(1)} d u_{1} T\left(u_{1}\right) \cdots \int_{0}^{r(n-1)} d u_{n-1} T\left(u_{n-1}\right) p\right\| \\
& =w\left\|\int_{0}^{r(0)} d u_{0} \int_{0}^{r(1)} d u_{1} \cdots \int_{0}^{r(n-1)} d u_{n-1} T\left(u_{0}+u_{1}+\cdots+u_{n-1}\right) p\right\|<M\|p\|
\end{aligned}
$$

Theorem 2. Suppose p is in D_{C} and k is a positive integer. Then

$$
\|p(k, k)-p\| \leqq M\|C p\| k^{-a}
$$

Proof. Theorem 2 follows from the definition of $p(k, k)$ and the fact that $T(x) p-p=\int_{0}^{x} d u T(u) C p$ for all $x>0$.

Theorem 3. Suppose p is in D_{c} and each of k and n is a positive integer. Then

$$
\|p(k, k+n)-p(k, k+n-1)\| \leqq M^{2}\|C p\|(k+n)^{-a}
$$

Proof. Let w and $r(j)$ be defined as in the proof of Theorem 1. Then

$$
\begin{aligned}
& \|p(k, k+n)-p(k, k+n-1)\| \\
& =(k+n)^{a} w\left\|\int_{0}^{r(0)} d u_{0} T\left(u_{0}\right) \cdots \int_{0}^{r(n-1)} d u_{n-1} T\left(u_{n-1}\right)\left[\int_{0}^{r(n)} d u_{n}\left(T\left(u_{n}\right) p-p\right)\right]\right\| \\
& =(k+n)^{a} w \| \int_{0}^{r(0)} d u_{0} \cdots \int_{0}^{r(n-1)} d u_{n-1} T\left(u_{0}+\cdots+u_{n-1}\right) \\
& \quad\left[\int_{0}^{r(n)} d u_{n}\left(T\left(u_{n}\right) p-p\right)\right]\left\|<M^{2}\right\| C p \|(k+n)^{-a} .
\end{aligned}
$$

Corollary. Suppose p is in D_{C} and k is a positive integer. Then the sequence

$$
S(p, k): p(k, k), p(k, k+1), p(k, k+2)
$$

converges in S.
Proof. Theorem 3 and the fact that $\sum_{n=0}^{\infty}(k+n)^{-a}$ converges imply $S(p, k)$ is a cauchy sequence in S. Since S is complete, $S(p, k)$ will converge.

For each point p in D_{C} and each positive integer k, let the sequential limit point of $S(p, k)$ be denoted by p_{k}. Let
$D(b):\left\{p_{k} \mid p\right.$ is in D_{C} and k is a positive integer $\}$.
Theorem 4. Suppose p_{k} is in $D(b)$. Then $p_{k} \leqq M\|p\|$.

Proof. Theorem 4 follows from Theorem 1 and the fact that p_{k} is the sequential limit point of $S(p, k)$.

Theorem 5. $D(b)$ is a dense subset of S.
Proof. Suppose q is in S and q is not in $D(b)$. Let $\varepsilon>0$. Since D_{C} is a dense subset of S, there is a point p in D_{C} so that
(1) $\|p-q\|<\varepsilon / 3$.

Theorem 2 implies there is a positive integer k so that
(2) $\|p(k, k)-p\|<\varepsilon / 3$ and
(3) $(M+1)^{2}\|C p\| \sum_{n=0}^{\infty}(k+n)^{-a}<\varepsilon / 3$.

Theorem 2, Theorem 3 and statement (3) imply there is a p_{k} in $D(b)$ so that
(4) $\left\|p_{k}-p(k, k)\right\|<\varepsilon / 3$.

Statements (1), (2) and (4) imply $\left\|p_{k}-q\right\|<\varepsilon$. Thus, $D(b)$ is a dense subset of S.

Theorem 6. Suppose p_{k} is in $D(b)$. Then

$$
p_{k}=k^{a} \int_{0}^{k^{-a}} d u T(u) p_{k+1} .
$$

Proof. Let $\varepsilon>0$. Then there is a positive integer n so that
(1) $\left\|p(k, k+n)-p_{k}\right\|<\varepsilon / 2$ and
(2) $\left\|p(k+1, k+n)-p_{k+1}\right\|<\varepsilon / 2 M$.

Statement (2) implies
(3) $\left\|p(k, k+n)-k^{a} \int_{0}^{k^{-a}} d u T(u) p_{k+1}\right\|<\varepsilon / 2$.

Theorem 6 now follows from statements (1) and (3).
Theorem 7. The elements of $D(b)$ satisfy conditions (A) and (B).
Proof. Suppose p_{k} is an element of $D(b)$. Theorem 6 implies p_{k} is in the domain of C^{n} for all positive integers n and that
(1) $C^{n} p_{k}=\prod_{j=0}^{n-1}(k+j)^{a} \prod_{j=0}^{n-1}\left[T\left(1 /(k+j)^{a}\right)-I\right] p_{k+n}$.

Thus, the elements of $D(b)$ satisfy condition (A). Statement (1) and Theorem 2 imply
(2) $\left\|C^{n} p_{k}\right\| \leqq\left[\prod_{j=0}^{n-1}(k+j)^{a}\right](M+1)^{n+1}\|p\|$.

Statement (2) implies p_{k} satisfies condition (B). The proof of Theorem 7 is now complete.
3. Partial differential equations in a banach space. The results of $\S 2$ will be used in this section to obtain series solutions to the partial differential equations $U_{12}=C U$ and $U_{11}=C U$. Solutions to these equations may be easily obtained if C is a bounded linear
transformation. The transformation C, however, may be unbounded; that is, C may be discontinuous at each point where it is defined.

For each subset D of S, let $P(D)$ denote the set of all functions g for which there is a nonnegative integer n and a sequence p_{0}, p_{1}, \cdots, p_{n} each term of which is in D so that

$$
g(x)=\sum_{i=0}^{n} x^{i} p_{i}
$$

if $x \geqq 0$. If D is a dense subset of S, it may be shown that $P(D)$ is a dense subset of the set of continuous functions from $[0, d](d>0)$ to S.

Theorem 8. Let $d>0$. Let b be a number so that $1<b<2$. Suppose each of g and h is a function in $P(D(b))$ so that $g(0)=h(0)$. Then there is a function U from $[0, d] \times[0, d]$ to S so that
(i) $U_{12}(x, y)=C U(x, y)$ for all (x, y) in $[0, d] \times[0, d]$,
(ii) $U(x, 0)=g(x)$ for all x in $[0, d]$ and
(iii) $U(0, y)=h(y)$ for all y in $[0, d]$.

Proof. Suppose n is a nonnegative integer and $p_{0}, p_{1}, \cdots, p_{n}$ is a sequence each term of which is in $D(b)$ so that

$$
g(x)=\sum_{i=0}^{n} x^{i} p_{i}
$$

if $x \geqq 0$. Suppose m is a nonnegative integer and $q_{0}, q_{1}, \cdots, q_{m}$ is a sequence each term of which is in $D(b)$ so that

$$
h(y)=\sum_{i=0}^{n} y^{i} q_{i}
$$

if $y \geqq 0$. Let U be the function from $[0, d] \times[0, d]$ to S so that if (x, y) is in $[0, d] \times[0, d]$, then
(1) $U(x, y)=\sum_{i=1}^{n} x^{i} p_{i}+\sum_{i=0}^{m} y^{i} q_{i}$

$$
\begin{aligned}
& +\sum_{i=1}^{n} \sum_{k=1}^{\infty}(x y)^{k} x^{i} C^{k} p_{i} /(k!)(i+1) \cdots(i+k) \\
& +\sum_{i=0}^{m} \sum_{k=1}^{\infty}(x y)^{k} y^{i} C^{k} q_{i} /(k!)(i+1) \cdots(i+k) .
\end{aligned}
$$

Theorem 7 implies U is well defined on $[0, d] \times[0, d]$. Theorem 7 and the fact that C is a closed transformation imply $U_{12}(x, y)=C U(x, y)$ for all (x, y) in $[0, d] \times[0, d]$. Statement (1) implies $U(x, 0)=g(x)$ and $U(0, y)=h(y)$ for all (x, y) in $[0, d] \times[0, d]$.

Theorem 9. Let $d>0$. Let b be a number so that $1<b<2$. Suppose each of g and h is a function in $P(D(b))$. Then there is a function U from $[0, d] \times[0, d]$ to S so that
(i) $U_{11}(x, y)=C U(x, y)$ for all (x, y) in $[0, d] \times[0, d]$,
(ii) $U(0, y)=g(y)$ if y is in $[0, d]$ and
(iii) $\quad U_{1}(0, y)=h(y)$ if y is in $[0, d]$.

Proof. Let each of g and h be defined as in the proof of Theorem 8. Then let U be the function from $[0, d] \times[0, d]$ to S so that for each (x, y) in $[0, d] \times[0, d]$,
(1) $U(x, y)=\sum_{i=0}^{n} y^{i} p_{i}+x \sum_{i=0}^{m} y^{i} q_{i}$

$$
\begin{aligned}
& +\sum_{i=0}^{n} \sum_{k=1}^{\infty} x^{2 k} y^{i} C^{k} p_{i} /((2 k)!)(i+1) \cdots(i+k) \\
& +\sum_{i=0}^{m} \sum_{k=1}^{\infty} x^{2 k+1} y^{i} C^{k} q_{i} /((2 k+1)!)(i+1) \cdots(i+k)
\end{aligned}
$$

An argument analogous to that used in Theorem 8 may be used to show U is well defined on $[0, d] \times[0, d]$ and that U satisfies conditions (i), (ii) and (iii) in the hypothesis of this theorem.

Remarks. (1) The solution U to the Theorem 8 has the property that for each (x, y) in $[0, d] \times[0, d]$, is in the domain of C^{n} for all positive integers n. The same remark is true for the solution to the equation in Theorem 9.
(2) Theorem 5 implies there are solutions to $U_{12}=C U$ and $U_{11}=$ $C U$ for a set of boundary functions which is dense in the set of continuous functions from $[0, d]$ to S.
(3) Theorem 9 and Theorem 5 imply there are solutions to the ordinary differential equation $y^{\prime \prime}=C y$ for a dense set of initial values for $y(0)$ and $y^{\prime}(0)$.

References

1. I. Gelfand, On one-parametrical groups of operators in a normed space, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 25 (1939), 713-718.
2. E. Hille and R. S. Phillips, Functional analysis and semigroups, rev. ed., Amer. Math. Soc. Colloq. Pub. 31, 1957.

Received August 1, 1968. This paper is part of the author's doctoral dissertation which was directed by Professor John W. Neuberger.

Emory University and
University of Florida

