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HOMOMORPHISMS OF ANNIHILATOR
BANACH ALGEBRAS, II

GREGORY F. BACHELIS

Let A be a semi-simple annihilator Banach algebra, and
let v be a homomorphism of A into a Banach algebra. In this
paper it is shown that there exists a constant K and dense
two-sided ideals containing the socle, IL and IR, such that
11 v{xy) II ^ HΠI # 11 \\y\\ whenever x e IL or y e IR. If A has
a bounded left or right approximate identity, then v is continu-
ous on the socle. Thus if A — Li(G), where G is a compact
topological group, then any homomorphism of A into a Banach
algebra is continuous on the trigonometric polynomials.

In [1] we considered the problem of deducing continuity pro-
perties of a homomorphism v from a semi-simple annihilator Banach
algebra A into an arbitrary Banach algebra. The main theorem
there (Theorem 5.1) had a conclusion more restrictive than the one
stated above and required the additional hypothesis that / © 3ί(/) = A,
for all closed two-sided ideals /, where 9Ϊ(/) — {x\Ix — (0)}. The
main theorem of this paper applies when A = LP(G), 1 ^ p < oo or
C(G), where G is a compact topological group and multiplication is
convolution, and when A is topologically-simple, whereas the earlier
theorem did not.

Any terms not defined in this paper are those of Rickart's book
[10]. For facts about annihilator algebras, the reader is referred to
[4] or [10].

Given the left-right symmetry in the definition of annihilator
algebras, it follows that, given any theorem about left (right) ideals,
the corresponding theorem for right (left) ideals also holds. Specific-
ally, this is the case for the theorems in [4, §4] and [1, §4], We
will make tacit use of this fact throughout this paper.

2* Structural lemmas* In this section several lemmas are
established which will be used later in proving the main result.
Throughout this section, we assume that A is a semi-simple annihilator
Banach algebra.

LEMMA 2.1. // {xl9 •• , # J is contained in the socle of A, then

there exist idempotents e and f such that x{ e eAf, 1 ^ i <Ξ n.

Proof. By [1, Corollary 4.9], for each i there exist idempotents
e{ and fi such that x{ e e{A Π Afi c e^f. By [1, Th. 4.8], there
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exist idempotents e and / such that eλA + + enA = eA and
Af + + Afn = Af. Thus xi e e,Af = ee,AfJ(z eAf, 1 ^ i £ n.

LEMMA 2.2. Suppose A is topologically simple, and e is a
minimal idempotent in A. Then there exists a constant L such
that:

Given f ~ f2 e A and xeeA, there exists g = g2 e A such that:
(1) x{l
(2) fg =

( 3 ) ||flr||
The corresponding statement holds for x e Ae.

Proof. Let Fo denote the bounded operators on Ae of finite
rank. Then via the left regular representation, we may regard A
algebraically as a subalgebra of the uniform closure of Fo which
contains Fo (see [4], Ths. 9 and 10).

If a e eA, u e Ae, then au = eaue = Xe = φa(u)e, and a —* φa defines
an isomorphism and homeomorphism between eA and the bounded
linear functionals on Ae [4, Th. 13]. Hence there exists a constant
L such that | | α | | ^ (L/2) \\φa\\ for all aeeA.

Let x e eA and / = f2eA. Then x(l — f) e eA, and e is minimal,
so range(x(l — /)) is one-dimensional. Let M = (x(l — /))~1(0). Then
M is a closed subspace of co-dimension one in Ae, so there
exists a bounded linear functional β on Ae such that \\β\\ = 1 and
β - \ 0 ) = M. L e t we Ae s u c h t h a t \\w\\ ^ 2 a n d β(w) = \\β\\ = 1.
Now w = (1 - /)w + fw, and /w e (1 - f)-1^) c ikf, so β((l - f)w) =

Let G(%) = β(u)(l — f)w, ueAe. Then G is a bounded operator
on Ae with one-dimensional range and G = G2, so there exists an
idempotent geA such that gu = β(w)(l — /)w, we^4β. If ueAe,
then % - β(u)(l - f)w e β~\0) = M = (x(l - Z))"1^), so x(l - f)u =
x(l - f)β(u)(l - f)w = xβ(u)(l - /)w = α βru. Therefore x(l - f) =
##. Thus x(l — /)gr = χ#2 =z xg = χ(l — / ) . This establishes (1).

To prove (2), we see that (1 - f)w ef~ιφ), so fg = 0, and
range(/) = (1 - f)~ι(0) c M = g~ι(0), so gf = 0.

To establish (3), let h e eA such that φh = /3. If π e i e , then

- (1 - f)wβ(u)e - j8(w)(l - /)wβ = β(u)(l - f)w = ^ .

Therefore (1 — f)wh — g, so

I k I I ^ I I λ 11(1 + I I / I D I I w | | ^ ( I r / 2 ) ( l + 11/11)2 ^ L ( l + l l / H ) .

3* The ideals IL and IR. In this section we discuss the ideals
which enter into the main theorem. Throughout this section, we



HOMOMORPHISMS OF ANNIHILATOR BANACH ALGEBRAS, II 285

assume that A is a Banach algebra and that v is a homomorphism
of A into a Banach algebra.

DEFINITION 3.1. Let IL = {xeA\y—+v(xy) is continuous on A}
and let IR = {x e A | y —> v(^) is continuous on A}.

These sets were introduced by Stein, who shows they are two-
sided ideals in A [11]. Another useful concept is that of the separat-
ing ideal, S, which is defined to be the set of seel (v(A)) such that
infxe^{||^|| + || s - v(x)\\} = 0. The separating ideal was introduced
in the form above by Yood [13]. It is a closed two-sided ideal in
cl (i>(A)).

In [12], Stein notes that IL c {x e A | v(x)S = (0)} and similarly
for IR. One actually has equality: For suppose v{x)S = (0). If
xn—>0 in A, then by [8, Lemma 2.1], v(xn) + S-* S in cl (v(A))/S.
Hence there exists {sn} c S such that v(xn) + sn —> 0. Thus v{xxn) =
v{x)v(xn) = v(x)(v(xn) + sn) -> 0, so x e IL.

4* Homomorphisms of annihilator algebras* In this section
we establish the main results of this paper. We will make frequent
use of the "Main Boundedness Theorem" of Bade and Curtis.

THEOREM 4.1. Suppose that A is a Banach algebra, and that v
is a homomorphism of A into a Banach algebra. Let {xn} and {yn}
be sequences in A such that xnym — 0, n Φ m. Then

» ll Hi/.II

Proof. This is Theorem 3.1 of [5]. The statement there in-
cludes the unnecessary hypothesis that ynym = 0, n Φ m.

Throughout the remainder of this section, A will denote a semi-
simple annihilator Banach algebra with socle F, and v will denote
a homomorphism of A into a Banach algebra. We first prove:

LEMMA 4.2. If A is topologically-simple, and e is a minimal
idempotent in A, then v \ eA and v \ Ae are continuous.

Proof. (For v \ eA). Let L be as in Lemma 2.2. Suppose the
conclusion fails. Choose xteeA such that || v(x^ \\ > L \\x1 \\. By
Lemma 2.2, with / = 0, there exists g1 = gleA such that \\g.\\ < L
and x1g1 = xγ. Thus || v{x,) \\ > \\ xι \\ \\ g, \\.

Assume that elements xteeA9 giβA have been chosen such that
xigi = xif
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9iff, = 0 , i Φ j ,

and || v(xt) || > i\\ x, \\ \\ ffi ||, 1 ^ i, j ^ n.
Let / = gx + + gn. Then / = f\ gj = Λ = /&, and x, e eAf,

1 <Li <^n. Since / can be expressed as the sum of minimal idempotents
[1, Th. 4.5], eAf is finite-dimensional, so let K be the norm of v \ eAf.
Now choose ueeA such that || v(u) || > ( l + ||/||)2L(w + l ) | | u || + #11/11 \\u\\.
Then

\\v(u)\\<^\\v(uf)\\

^K\\u\\\\f\\ + \\v(u(l-f))\\ ,

so

\\v(u(l-f))\\ > ( 1

Let xn+1 = ^ ( 1 — / ) e eA. By Lemma 2.2, t h e r e exists # M + 1 = g\+ι e A
such t h a t xnΛιgn+1 = a?Λ+1, flrΛ+1/ - / ^ + 1 = 0, and || gn+11| ^ L ( l + | | / | | ) .
Thus

gn+1g{ = 0 = flrt flrΛ+1 , 1 ^ i g ^

and

Thus by induction t h e r e exist sequences {xn}, {gn} such t h a t xngm =
^nQndm = 0, π Φ m a n d II v(xngn) \\ > n\\xn\\\\gn\\1 w h i c h c o n t r a d i c t s
Theorem 4.1.

We now show that IL and IR are dense in A:

LEMMA 4.3. FaILn IR .

Proof. If e is a minimal idempotent, then e is contained in a
minimal-closed two-sided ideal ilf, M is a topologically-simple semi-
simple annihilator Banach algebra, and eM = eA. The preceding
lemma gives that i; | eA is continuous. Thus x —+ v(ex) is continuous
on A, so β e IL. Hence IL contains all the minimal idempotents of A.
Since IL is an ideal, this implies that IL ZD F. Similarly, IR Z) F.

L E M M A 4.4. // || v(xy) \\ > r\\x\\ || y\\, and if xeIL or yeIB,
then there exist xlf yLeF such that ||v(i»i2/i)|| > τ | | ^ i | | | |2/i | | .

Proof. Suppose xeIL. Since w —> v(xw) is continuous on A and
F is dense in A, t h e r e exists y^eF such t h a t ||y(a?2/i)|| > ^ | |a? | | Ill/ill
Now I / I G / R , SO t h e r e exists ^ G F such t h a t l l y ^ ^ O I I > r | | ̂  || [|2/i||.
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We can now prove the main theorem:

THEOREM 4.5. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that

\\v(xy)\\^K\\x\\\\y\\

for all x and y in A such that x e IL or ye IR.

Proof. In view of the preceding lemma (or by symmetry con-
siderations), it is enough to show that there exists a K such that
|| v{xy) || <̂  JBΓ || a? || \\y\\ whenever x e IL. Suppose this is not the case.
By the preceding lemma, there exist xγ and yι in F such that
II VJ/Λ- nj \ | | \ \\ T 11 11 1/ IIII v \ ^ \ U ι ) II s> II ̂ i II II Uι ll

Assume that elements xif y{ e F have been chosen such that

XiVj = 0 , iΦj

and

\ \ v ( % i V i ) \ \ > i \ \ X i \ \ \ \ V i \ \ , 1 ^ ij ^ n .

By Lemma 2.1, there exist idempotents e and / such that
{xly -•-,xn,y1, --,yn}c: eAf. By [1, Th. 4.5], β and / are in F, and
by Lemma 4.2, F cz IL Π IR. Now an idempotent is in IL{IR) if and
only if the restriction of v to the right (left) ideal it generates is
continuous, so let L be the maximum of the norms of the continuous
mappings v \ Ae, v \ eA, v \ Af, v \ fA, and let

If x, y e A, then

|| v{(x - xe)(y - fy)) \\ = \\ v{xy) - v(xeey) - v(xffy) + v(xefy) \\

^ \\v(xy)\\ - \\v(xe)\\\\v(ey)\\

- | |*(s/) IMI v(fy) || - (l^β)IMI v(fy) \\

By the preceding lemma, there exist u, v eF such that

\\v(uv)\\ > {(n + 1 ) ( 1 + | | β | | ) ( l + | | / | | ) + K ' } \ \ u \ \ \\v\\ .

Let xn+1 = u — ue, yn+1 = v — fv. By the above, we have that

II v(χn+iyn+i) II > ( n + 1 ) 0 - + I I e II)II ^ 1 1 ( 1 + 11/11)11 ^ II
^ ( n + l ) | | a w + 1 | | \ \ y n + 1 \ \ .
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Also, XiVn+1 = xj(v - fv) = 0, xn^Vi = (u - ue)eyi = 0, 1 ^ i ^ n, and

Thus by induction there exist sequences {xn}, {yn} such that
XnVm = 0, n Φ m, and || v(xnyn) \\ > n \\ xn \\ \\ yn ||, which contradicts.
Theorem 4.1.

REMARK 4.6. If x e IL, let K(x) be the norm of the mapping
y->v(xy). Then || v(xy) || ^ (K(x)/\\ x | | ) | | a? || || y ||, 2/eA. The above
theorem shows that {(!£"(#)/1| x \\) \ x e /L} is bounded.

The following corollary is an analog for annihilator algebras of
a theorem by Bade and Curtis on homomorphisms of commutative,
regular semi-simple Banach algebras [2, Th. 3.7]; it gives Theorem
5.1 of [1] as a special case.

COROLLARY 4.7. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that.

\\v(x)\\^K\\x\\\\y\\

for all x and y in A such that yx — x or xy — x.

Proof. If yx = x or xy = x, then by [1, Corollary 4.12],

xeFdILnIR.

DEFINITION 4.8. A Banach algebra A is said to have a bounded
left (right) approximate identity if there exists a norm-bounded net
{ea} c A such that eax —> x (xea —> x) for all xeA.

COROLLARY 4.9. Let A be a semi-simple annihilator Banach
algebra with a bounded left or right approximate identity, and let
v be a homomorphism of A into a Banach algebra. Then v is
continuous on the socle of A.

Proof. Suppose that A has a bounded left approximate identity.
Let zeF. By Cohen's factorization theorem [6], there exists a
constant L (independent of z) and elements x and y such that
z = xy, \\z — y\\ ̂  \\z\\, | | α ; | | ^ L , and y is in the closed left ideal
generated by z. By [1, Corollary 4.9], there exists an idempotent-
generated left ideal, J, containing z. Since J is closed, we have
y e Ja Fez IB. Thus if K is as in the above theorem, then

= \\v{xy)\\^K\\x\\\\y\\^KL(\\z\\ + \\z - y | | ) ^ 2KL\\z \\ .
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We conclude this paper with several remarks:

REMARK 4.10. Let G be a compact topological group and let A =
LP(G), 1 ^ p < °o, or C(G), with convolution for multiplication. Then
Theorem 4.5 applies to A and the above corollary applies to L^G).
Here F is the set of trigonometric polynomials, that is, the set of
linear combinations of component functions of strongly continuous
irreducible unitary representations of G (see [10, p. 330]).

REMARK 4.11. If X is a reflexive Banach space, if F denotes
the bounded operators on X of finite rank, and if A c 33(X) is a
Banach algebra containing F as a dense subset, then Theorem 4.5
applies to A [10, pp. 102-104]. Here the socle of A is F.

If A is the uniform closure of F in 33(X), if A has a bounded left
or right approximate identity, and if X has a continued bisection, then
Johnson has shown that every homomorphism of A into a Banach
algebra is actually continuous [8, Th. 3.5]. His theorem is stated
for the algebra of compact operators on X (which may indeed always
coincide with A), but his method of proof works equally well for A.1

REMARK 4.12. Although examples do exist of discontinuous
homomorphisms of annihilator algebras (see [2, p. 597, p. 606] [3,
p. 853], and [9]), it is still the case for these examples that IL = A.
One might conjecture that this is always true. As a small move in
this direction, we show below that, in two special cases, IL properly
contains F the socle of A.

(1) Let Wl = {Mλ \Xe A) denote the minimal-closed two-sided
ideals of A and suppose that 3ft forms an unconditional decomposition
for A. Then x e A implies x = Σλxλ, where xλ e Mλi and an equivalent
Banach algebra norm for A is given by \x\ = sup {|| Σ ^ ^ #;. ||: A is
a finite subset of A). [1, pp. 231-232]. Thus \x\ = sup^C/11 ^λeAl xλ |.
For yiczWl, let A(%1) denote those x in A whose summands are all in
31. If % and % are disjoint subsets of 2tt, then A(%) . A($l2) = (0).
If xeAffi) and x£lL, then given K there exists ye A such that
|| v(xy) || > K\ x I | y |. Since removing the summands of y that are
not in members of 9ΐ does not increase its norm and does not affect
xy, we may assume that y e A(%ΐ) as well. Thus if {9ΐJ~=1 is any
sequence of disjoint subsets of Wl, then Theorem 4.1 implies t h a t
A(3ln) c IL for all but finitely many n.

If A is strongly semi-simple, we can say a bit more. In this
case, each Meϊffl is finite-dimensional [1, Proposition 4.7]. Let ^(W)
denote the set of subsets of 9JI, let ^~ denote the set of finite sub-
sets of 9K, and let [9Ϊ] denote an element of the Boolean algebra

1 See "Added in proof."
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If A(W) c IL, and 31, e [SR], then % n 91 e ̂  so A(^) c 7L.
Thus Σ t l 6 [ ^ ^ T O c / L . (Here "2"' denotes the algebraic sum. Note
that F = Σ^e^A(9ϊ).) Let j? = {[9ϊ] e ̂ (SK)/j^~ | A(SR) c IL}. Then
^ is an ideal in ^(3K)/^7 If [9ί] Φ J^7 then there exists ^ " >
[ î] ^ [9̂ ] such that [ S ΐ j e ^ : Otherwise, we could find a pairwise
disjoint family {3ln}, with A(SRn) <£ 7L for any n, which would contradict
Theorem 4.1. But this says that the annihilator of ^ is J^, and
thus J? corresponds to a dense open set in the dual space of
^(2W)/J^7 β(Wl) - 2K, where 2K has the discrete topology2 (see [7],
pp. 76, 84, and 88). Since dividing by ^~ in effect "mods out the
socle", we see in this case that IL is significantly larger than F.

(2) Suppose that A has proper involution x —> x* and that
7 0 3ΐ(/)* = A for all closed left ideals /. Let {eλ \ X e Λ) be a maximal
family of orthogonal hermitian idempotents. Then xe A implies
x = Σ λ e λ x — Σ λ x e λ , a n d w e m a y a s s u m e \\x\\ — s u p ^ l C / 1 1 | ^ΣjλeΛl e λ x \ \ .
[1, pp. 231-233]. For Λ.czΛ, let A{Λλ) = {x e A | xeλ = 0, λ g AJ. If
» e A ( ^ ) and || v(xy) \\ > K\\ x \\ \\ y | | , let yι = Σ,λ^Λleλy. Then x ^ =

xy, Hi/ill ^ II2/II, and x'y1 = Q if x' e A(A2) and Aλf] A2 = 0 . Thus,

given any sequence {An} of disjoint subsets of A, Theorem 4.1
implies that A(An) c IL for all but finitely many n. (Of course there
may exist xe F such that xeλ Φ 0 for infinitely many λ, but clearly
A(Λ^) gL F if A1 is infinite.) Since v \ Aeλ is continuous, remarks
similar to those in the above paragraph can be made in this situa-
tion, with 9K replaced by {Aeλ\XeA}.

Added in Proof, (continuation of Remark 4.11) If X is a Hubert
space and A — gi, the algebra of trace class operators, or g2, the
algebra of Hilbert-Schmidt operators, then the methods of [8, Th. 3.3]
can be adapted to show that A2 c IL. The statement in [8] that these
methods imply continuity is in error. The following example (com-
municated to the author by Professor Johnson) illustrates this: If v
is a discontinuous linear functional on %2 which vanishes on %\ ( = ̂ 0,
then by defining zero multiplication in the complex numbers, one ob-
tains a discontinuous homomorphism of %2.
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