ON GENERAL z.P.I.-RINGS

Craig A. Wood

A commutative ring in which each ideal can be expressed as a finite product of prime ideals is called a general Z.P.I.ring (for Zerlegungsatz in Primideale). A general Z.P.I.-ring in which each proper ideal can be uniquely expressed as a finite product of prime ideals is called a Z.P.I.-ring. Such rings occupy a central position in multiplicative ideal theory. In case R is a domain with identity, it is clear that R is a Dedekind domain ${ }^{1}$ and the ideal theory of R is well known. If R is a domain without identity, the following result of Gilmer gives a somewhat less known characterization of R : If D is an integral domain without identity in which each ideal is a finite product of prime ideals, then each nonzero ideal of D is principal and is a power of D; the converse also holds. Also somewhat less known is the characterization of a general Z.P.I.-ring with identity as a finite direct sum of Dedekind domains and special primary rings. ${ }^{2}$

This paper considers the one remaining case: R is a general Z.P.I.-ring with zero divisors and without identity. A characterization of such rings is given in Theorem 2. This result is already contained ih a more obscure form in a paper by S. Mori. The main contribution here is in the directness of the approach as contrasted to that of Mori.

In order to prove Theorem 2 we need to establish two basic properties of a general Z.P.I.-ring $R: R$ is Noetherian and primary ideals of R are prime powers. Having established these two properties of R, the following result of Butts and Gilmer in [3], which we label as (BG), is applicable and easily yields our characterization of general Z.P.I.-rings without identity.
(BG), [3; Ths. 13 and 14]: If R is a commutative ring such that $R \neq R^{2}$ and such that every ideal in R is an intersection of a finite number of prime power ideals, then $R=F_{1} \oplus \cdots \oplus F_{k} \oplus T$ where each F_{i} is a field and T is a nonzero ring without identity in which every nonzero ideal is a power of T.

It is important to note that we do not use Butts and Gilmer's

[^0]paper [3] to prove that a general Z.P.I.-ring is Noetherian, while Butts and Gilmer do use this result from Mori's paper [11; Th. 7]. Theorem 2 gives a finite direct sum characterization of a general Z.P.I.-ring whereas Theorems 3 and 4 and Corollary 2 give characterizations of a general Z.P.I.-ring in terms of ideal-theoretic conditions.

Since we are only concerned with commutative rings, "ring" will always mean "commutative ring". The notation and terminology is that of [16] with two exceptions: \subseteq denotes containment and \subset denotes proper containment, and we do not assume that a Noetherian ring contains an identity. If A is an ideal of a ring R, we say that A is a prper ideal of R if $(0) \subset A \subset R$ and that A is a genuine ideal of R if $A \subset R$.
2. Structure theorem of a general Z.P.I.-ring. In this section section we prove directly that a general Z.P.I.-ring is Noetherian by proving that each of its prime ideals is finitely generated. We then use result (BG) to prove the structure theorem of a general Z.P.I.ring.

Definition. Let R be a ring. If there exists a chain $P_{0} \subset P_{1} \subset \cdots \subset P_{n}$ of $n+1$ prime ideals of R where $P_{n} \subset R$, but no such chain of $n+2$ prime ideals, then we say that R has dimension n and we write $\operatorname{dim} R=n$.

Lemma 1. If R is a general Z.P.I.-ring, R contains only finitely many minimal prime ideals and $\operatorname{dim} R \leqq 1$.

Proof. If R contains no proper prime ideal, then the lemma is clearly true. Therefore, we assume R contains a proper prime ideal P and we show that R contains a minimal prime ideal. If P is not a minimal prime of R, there exists a prime ideal P_{1} such that $P_{1} \subset P \subset R$. It follows that R / P_{1} is a domain containing a proper prime ideal in which each ideal can be represented as the product of finitely many prime ideals. This implies that R / P_{1} is a Dedekind domain [6]. Therefore, P_{1} is a minimal prime of R. This also shows that $\operatorname{dim} R \leqq 1$.

Since R is a general Z.P.I.-ring, there exist prime ideals Q_{1}, \cdots, Q_{n} in R and positive integers e_{1}, \cdots, e_{n} such that $(0)=$ $Q_{1}^{e_{1}} \cdots Q_{n}^{e_{n}}$. If M is a minimal prime ideal of R, $(0)=Q_{1}^{e_{1}} \cdots Q_{n}^{e_{n}} \subseteq M$ which implies that $Q_{i} \subseteq M$ for some i. Hence, $M=Q_{i}$ and it follows that the collection $\left\{Q_{1}, \cdots, Q_{n}\right\}$ contains all the minimal prime ideals of R. Therefore, R contains only finitely many minimal prime ideals.

Lemma 2. If R is a general Z.P.I.-ring containing a genuine
prime ideal, then each minimal prime ideal of R is finitely generated.
Proof. ${ }^{3}$ Let P be a minimal prime ideal of R and let $\left\{P_{1}, \cdots, P_{n}\right\}$ be the collection of minimal primes of R distinct from P. If $P=(0)$, the proof is clear. If $(0) \subset P$, we show that P is finitely generated by an inductive argument; that is, we show how to select a finite number of elements in P which generate P. We divide the proof into three cases.

Case 1. $P=P^{2}$. Since $P=P^{2} \sqsubseteq R P \subseteq P, P=R P$. Now,

$$
P \nsubseteq \bigcup_{i=1}^{n} P_{i}
$$

since $P \nsubseteq P_{i}$ for $1 \leqq i \leqq n$ so let $\mathrm{x}_{1} \in P \backslash\left(\bigcup_{i=1}^{n} P_{i}\right)$. Thus, there exist prime ideals M_{1}, \cdots, M_{s}, positive integers $e_{0}, e_{1}, \cdots, e_{s}$, and a nonnegative integer e_{s+1} such that

$$
\left(x_{1}\right)=P^{e_{0}} M_{1}^{e_{1}} \cdots M_{s}^{e_{s}} R^{e_{s+1}}=P M_{1}^{e_{1}} \cdots M_{s}^{e_{s}} R^{e_{s}+1}=P M_{1}^{e_{1}} \cdots M_{s}^{e_{s}}
$$

since $P=R P$. Let $\delta=\sum_{i=1}^{s} e_{i}$. If $P=\left(x_{1}\right)$, we are done. If $\left(x_{1}\right) \subset P$, then by choice of x_{1} each M_{i} is a maximal prime ideal of R. Then [2; Proposition 2, p. 70] implies that $P \nsubseteq\left\{\left(x_{1}\right) \cup\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}$. If $x_{2} \in P \backslash\left\{\left(x_{1}\right) \cup\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}$, then

$$
\left(x_{2}\right)=P M_{1}^{f_{1}} \cdots M_{s}^{f_{s}} R^{f_{s+1}} Q_{1}^{g_{1}} \cdots Q_{t}^{g_{t}}=P M_{1}^{f_{1}} \cdots M_{s}^{f_{s}} Q_{1}^{g_{1}} \cdots Q_{t}^{g_{t}}
$$

where Q_{i} is a maximal prime ideal of R for $1 \leqq j \leqq t, f_{i} \in \omega_{0}$ for $1 \leqq i \leqq s+1$, and $g_{j} \in w$ for $1 \leqq j \leqq t$. Since $\left(x_{2}\right) \nsubseteq\left(x_{1}\right)$, we have that $e_{i_{0}}>f_{i_{0}}$ for some $i_{0}, 1 \leqq i_{0} \leqq s$. Therefore,

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & =P M_{1}^{e_{1}} \cdots M_{s}^{e_{s}}+P M_{1}^{f_{1}} \cdots M_{s}^{f_{s}} Q_{1}^{g_{1}} \cdots Q_{t}^{q_{t}} \\
& =P M_{1}^{m_{1}} \cdots M_{s}^{m_{s}}\left(M_{1}^{e_{1}-m_{1}} \cdots M_{s}^{e_{s}-m_{s}}+M_{1}^{f_{1}-m_{1}} \cdots M_{s}^{f_{s}-m_{s}} Q_{1}^{g_{1}} \cdots Q_{t}^{g_{t}}\right)
\end{aligned}
$$

where $m_{i}=\min \left\{e_{i}, f_{i}\right\}$ for $1 \leqq i \leqq s$. By the definition of m_{i}, if $e_{i}-m_{i} \neq 0$, then $f_{i}-m_{i}=0$, and if $f_{i}-m_{i} \neq 0$, then $e_{i}-m_{i}=0$. Let $A=M_{1}^{e_{1}-m_{1}} \cdots M_{s}^{e_{s}-m_{s}}$ and let $B=M_{1}^{f_{1}-m_{1}} \cdots M_{s}^{f_{s}-m_{s}} Q_{1}^{g_{1}} \cdots Q_{t}^{g_{t}}$, we show that $A+B$ is contained in no maximal prime ideal of R. Note that $e_{i_{0}}-m_{i_{0}} \neq 0$ since $e_{i_{0}}>f_{i_{0}}$. If M is a maximal prime ideal of R containing A, then there exists a $k, 1 \leqq k \leqq s$, such that $e_{k}-m_{k} \neq 0$ and $M_{k} \subseteq M$. Since M_{k} is a maximal prime ideal of R, it follows that $M=M_{k}$. Now, $e_{k}-m_{k} \neq 0$ implies that $f_{k}-m_{k}=0$ which shows that $B \nsubseteq M_{c}=M$. Thus, if M is a maximal prime ideal of R containing A, M does not contain B. It follows that $A+B$ is contained in no maximal prime ideal of R. Therefore, there exists a positive integer λ such that $A+B=R^{\lambda}$ and $\left(x_{1}, x_{2}\right)=$ $P M_{1}^{m_{1}} \cdots M_{s}^{m_{s}}(A+B)=P M_{1}^{m_{1}} \cdots M_{s}^{m_{s}} R^{\lambda}=P M_{1}^{m_{1}} \cdots M_{s}^{m_{s}}$. By our choice of m_{i}, we have $e_{i} \geqq m_{i}$ for $1 \leqq i \leqq s$. But $e_{i_{0}}<f_{i_{0}}=m_{i_{0}}$ implies that

[^1]$\delta-1 \geqq \sum_{i=1}^{s} m_{i} \geqq 0$.
Assume that we have chosen, as described above, $x_{1}, x_{2}, \cdots, x_{u}$ in P such that $\left(x_{1}, \cdots, x_{u}\right)=P M_{1}^{v_{1}} \cdots M_{s}^{v_{s}}$ and $\delta-(u-1) \geqq \sum_{i=1}^{s} v_{i} \geqq 0$. Then by the above method, either $P=\left(x_{1}, \cdots, x_{u}\right)$ or there exists an $x_{u+1} \in P \backslash\left\{\left(x_{1}, \cdots, x_{u}\right) \cup\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}$ such that
$$
\left(x_{1}, \cdots, x_{u}, x_{u+1}\right)=P M_{1}^{v_{1}^{\prime}} \cdots M_{s}^{v_{s}^{\prime}}
$$
where $v_{i}^{\prime} \in \omega_{0}$ and $\delta-(u+1-1) \geqq \sum_{i=1}^{s} v_{i}^{\prime} \geqq 0$. Since $\sum_{i=1}^{s} e_{i}$ is a finite positive number, there exists a positive integer q and $x_{1}, \cdots, x_{q} \in P$ such that $P=\left(x_{1}, \cdots, x_{q}\right)$; that is, P is a finitely generated ideal of R.

Case 2. $P^{2} \subset P$ and $P=R P$. Now, $P \nsubseteq\left\{P^{2} \cup\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}$ by [2; Proposition 2, p. 70] so let $x_{1} \in P \backslash\left\{P^{2} \cup\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}$. Then there exist prime ideals M_{1}, \cdots, M_{s} of $R, e_{1}, \cdots, e_{s} \in \omega$, and $e_{s+1} \in \omega_{0}$ such that $\left(x_{1}\right)=P M_{1}^{e_{1}} \cdots M_{s}^{e_{s}} R^{e_{s}+1}=P M_{1}^{e_{1}} \cdots M_{s}^{e_{s}}$ since $P=R P$. If $P=\left(x_{1}\right)$ we are done. If $\left(x_{1}\right) \subset P$, then we can choose an

$$
x_{2} \in P \backslash\left\{\left(x_{1}\right) \cup P^{2} \cup\left(\bigcup_{2=1}^{n} P_{i}\right)\right\}
$$

by [2; Proposition 2, p. 70]. We now consider $\left(x_{1}, x_{2}\right)$ and the remainder of the proof of Case 2 is the same as the proof of Case 1. Thus, P is a finitely generated ideal of R.

Case 3. $P^{2} \subset P$ and $R P \subset P$. Let $x \in P \backslash R P$. Then there exist prime ideals M_{1}, \cdots, M_{s} of R and $e_{1}, \cdots, e_{s+1} \in \omega_{0}$ such that $(x)=P M_{1}^{e_{1}} \cdots M_{s}^{e_{s}} R^{e_{s}+1} \varsubsetneqq R P$. Thus, $e_{i}=0$ for $1 \leqq i \leqq s+1$; that is, $P=(x)$.

Lemma 3. Each prime ideal of a general Z.P.I.-ring is finitely generated.

Proof. Let R be a general Z.P.I.-ring.
Case 1. R contains no proper prime ideal. If $R=R^{2}$, let $r \in R \backslash\{0\}$. Since R is a general Z.P.I.-ring, there exists a positive integer n such that $(r)=R^{n}=R$. If $R^{2} \subset R$, let $r \in R \backslash R^{2}$. Then $(r)=R$.

Case 2. R contains a proper prime ideal. Let M be a nonzero prime ideal of R. If M is a minimal prime ideal of R, M is finitely generated by Lemma 2. If M is not a minimal prime ideal of R, the proof of Lemma 1 implies that there exists a minimal prime ideal P of R such that $P \subset M$. Thus, R / P is Noetherian which implies that M / P is a finitely generated ideal of R / P. Since P is a finitely generated ideal of R, it follows that M is a finitely generated ideal of R.

Thus, each prime ideal of R is finitely generated.
Theorem 1. A general Z.P.I.-ring is Noetherian.

Proof. Let A be an ideal of R, a general Z.P.I.-ring. Then there exist prime ideals P_{1}, \cdots, P_{n} of R and positive integers e_{1}, \cdots, e_{n} such that $A=P_{1}^{e_{1}} \cdots P_{n}^{e_{n}}$. Since each P_{i} is finitely generated by Lemma 3 , it follows that A is finitely generated. Thus, R is Noetherian.

Remark. Theorem 1 also follows from the fact that a ring R is Noetherian if and only if each prime ideal of R is finitely generated. [4; Th. 2].

Result 1. If Q is a P-primary ideal in a ring R such that Q can be represented as a finite product of prime ideals, then Q is a power of P.

Proof. By hypothesis there exist distinct prime ideals P_{1}, \cdots, P_{n} and positive integers e_{1}, \cdots, e_{n} such that $Q=P_{1}^{e_{1}} \cdots P_{n}^{e_{n}}$. Since $Q=P_{1}^{e_{1}} \cdots P_{n}^{e_{n}} \subseteq P, P_{i} \subset P$ for some i-say $i=1$. Now, $P=\sqrt{\bar{Q}}=$ $P_{1} \cap \cdots \cap P_{n}$ which implies that $P \cong P_{i}$ for each i. Therefore, $P \subseteq P_{1} \subseteq P$; that is, $P_{1}=P$. We have that $Q=P^{e_{1}} P_{2}^{e_{2}} \cdots P_{n}^{e_{n}}$ where $P \subset P_{i}$ for $2 \leqq i \leqq n$. Since

$$
Q=P^{e_{1}}\left(P_{2}^{e_{2}} \cdots P_{n}^{e_{n}}\right) \subseteq Q
$$

and $P_{2}^{e_{2}} \cdots P_{n}^{e_{n}} \nsubseteq P$, it follows that $P^{e_{1}} \subseteq Q$. Hence, $Q=P^{e_{1}}$.
Definitions. Let R be a ring. We say that R has property (α), if each primary ideal of R is a power of its (prime) radical [3]. If each ideal of R is an intersection of a finite number of prime power ideals, we say that R has property (δ) [3]. Finally, we say that R satisfies property ($\#$) if R is a ring without identity such that each nonzero ideal of R is a power of R.

Remark. If R is a ring satisfying property (\#), it follows that either R is an integral domain in which $\left\{R^{i}\right\}_{i=1}^{\infty}$ is the collection of nonzero ideals of R or R is not an integral domain and $\left\{R, R^{2}, \cdots, R^{n}=(0)\right\}$ is the collection of all ideals of R for some $n \in \omega$.

Corollary 1. A general Z.P.I.-ring has property (α).
Proof. This follows immediately from Result 1.
Theorem 2. Structure theorem of a general Z.P.I.-ring. A $\operatorname{ring} R$ is a general Z.P.I.-ring if and only if R has the following structure:
(a) If $R=R^{2}$, then $R=R_{1} \oplus \cdots \oplus R_{n}$ where R_{i} is either a Dedekind domain or a special P.I.R. for $1 \leqq i \leqq n$.
(b) If $R \neq R^{2}$, then either $R=F \oplus T$ or $R=T$ where F is a field and T is a ring satisfying property (\#).

Proof. (\rightarrow) If R is a general Z.P.I.-ring, then R is Noetherian and has property (α). Hence, [3; Corollary 6] implies that (δ) holds in R. If $R=R^{2}$, then R contains an identity by [5; Corollary 2]. Therefore, [1; Th. 1] implies that part (a) holds. If $R \neq R^{2}$, then by (BG) $R=F_{1} \oplus \cdots \oplus F_{u} \oplus T$ where each F_{i} is a field and T is a nonzero ring satisfying property (\#). Using a contrapositive argument, we show that $u \nsupseteq 2$.

Assume that $u \geqq 2$. We show that R is not a general Z.P.I.ring. Since $u \geqq 2$, it is clear that T is an ideal of R that is not prime. The prime ideals of R containing T are R and

$$
P_{i}=F_{1} \oplus \cdots \oplus F_{i-1} \oplus(0) \oplus F_{i+1} \oplus \cdots \oplus F_{u} \oplus T
$$

for $1 \leqq i \leqq u$ where $T \subset P_{i}$ for each i. Now

$$
\begin{aligned}
& P_{i} P_{j} \\
= & F_{1} \oplus \cdots \oplus F_{i-1} \oplus(0) \oplus F_{i+1} \oplus \cdots \oplus F_{j-1} \oplus(0) \oplus F_{j+1} \oplus \cdots \oplus F_{u} \oplus T^{2}, \\
& R P_{i}=F_{1} \oplus \cdots \oplus F_{i-1} \oplus(0) \oplus F_{i+1} \oplus \cdots \oplus F_{u} \oplus T^{2}
\end{aligned}
$$

and $R^{2}=F_{1} \oplus \cdots \oplus F_{u} \oplus T^{2}$. Since $T^{2} \subset T$, it follows that $T \nsubseteq P_{i} P_{j}$, $T \nsubseteq R P_{i}$, and $T \nsubseteq R^{2}$ for $1 \leqq i, j \leqq u$. Thus, T cannot be represented as a finite product of prime ideals of R; that is, R is not a general Z.P.I.-ring. Therefore, if R is a general Z.P.I.-ring, $u \nsupseteq 2$; that is, $R=F_{1} \oplus T$ or $R=T$ where F_{1} is a field and T is a ring satisfying property (\#).
(\leftarrow) If R is a direct sum of finitely many Dedekind domains and special P.I.R.'s R is a general Z.P.I.-ring by [1; Th. 1]. If $R=T$ where T is a ring satisfying property ($\#$), then R is clearly a general Z.P.I.-ring. If $R=F \oplus T$ where F is a field and T is a ring satisfying property (\#), then $\left\{F \oplus T^{i}, T^{i},(0): i \in \omega\right\}$ is the collection of ideals of R. It follows that each ideal of R is a finite product of prime ideals. Therefore, if R satisfies either (a) or (b), R is a general Z.P.I.-ring.
3. Necessary and sufficient conditions on a general Z.I.P.ring. In this section we again use results of Butts and Gilmer in [3] to derive several necessary and sufficient conditions for a ring to be a general Z.P.I.-ring.

Definition. Let A be an ideal of a ring R. We say that A
is simple if there exist no ideals properly between A and A^{2}. To avoid conflicts with other definitions of a simple ring we say in case $A=R$ that R satisfies property S.

Lemma 4. Let A be an ideal of a Noetherian ring R. If $B=\bigcap_{i=1}^{\infty} A^{i}$, then $A B=B$.

Proof. See $\left[15 ; L_{1}\right]$.
Lemma 5. If A is a genuine ideal of a Noetherian domain D, then $\bigcap_{i=1}^{\infty} A^{i}=(0)$.

Proof. Let K be the quotient field of D and let $D^{*}=D[e]$ where e is the identity of K. Then D^{*} is Noetherian by [5; Th. 1], and since A is also an ideal of D^{*}, [16; Corollary 1, p. 216] shows that $\bigcap_{i=1}^{\infty} A^{i}=(0)$.

Lemma 6. Let A be a simple ideal of a ring R. Then for each $i \in \omega$ there are no ideals properly between A^{i} and A^{i+1}. Further, the only ideals between A and A^{n} for $n \in \omega$ are A, A^{2}, \cdots, A^{n}.

Proof. See [7; Lemma 3].
Lemma 7. Let A be a proper simple ideal of a Noetherian ring R. If there exists a prime ideal P of R such that $(0) \subset P \subset A \subset R$, P is unique and $P=\bigcap_{i=1}^{\infty} A^{i}$. Also, if Q is a P-primary ideal of $R, Q=P$.

Proof. We first show by an inductive argument that $P \subset A^{i}$ for each $i \in \omega$. By hypothesis $P \subset A$. Assume that $P \subset A^{k}$ for some $k \in \omega$. Since A / P is a proper ideal of R / P, a Noetherian integral domain, $A^{k} / P \supset\left(A^{k} / P\right)(A / P)=\left(A^{k+1}+P\right) / P \supset P / P$ by [5; Corollary 1] which shows that $A^{k} \supset A^{k+1}+P \supseteqq A^{k+1}$. Therefore, $A^{k+1}+P=A^{k+1}$. Since $A^{k+1}+P \supset P$, it follows that $P \subset A^{k+1}$. Thus, $P \subset A^{i}$ for each $i \in \omega$.

We now show that $P=\bigcap_{i=1}^{\infty} A^{i}$. Since A / P is a proper ideal of a Noetherian domain, $P / P=\bigcap_{i=1}^{\infty}(A / P)^{i}$ by Lemma 5. Also, since $\bigcap_{i=1}^{\infty}(A / P)^{i}=\bigcap_{i=1}^{\infty}\left(\left(A^{i}+P\right) / P\right)=\bigcap_{i=1}^{\infty}\left(A^{2} / P\right)=\left(\bigcap_{i=1}^{\infty} A^{i}\right) / P, \quad$ it \quad follows that $P=\bigcap_{i=1}^{\infty} A^{i}$.

Finally, we show that if Q is a P-primary ideal of R, then $Q=P$. Lemma 4 shows that $P=A\left(\bigcap_{i=1}^{\infty} A^{i}\right)=A P$. There exists an $a \in A$ such that $a p=p$ for each $p \in P$ by [5; Corollary 1]; that is, $a p-p=0$ for each $p \in P$. If $x \in R \backslash A$, then $p(a x-x)=a p x-p x=$ $0 \in Q$ for each $p \in P$. Since $x \notin A, a x-x \notin A$ which shows that $a x-x \notin P$. Thus, $p \in Q$ for each $p \in P$ since $p(a x-x) \in Q$ for each
$p \in P, a x-x \notin P$, and Q is a P-primary ideal of R. Thus, $P \subseteq Q$ which shows that $Q=P$.

Theorem 3. Let R be a ring.
(A) If R contains an identity, then R is a general Z.P.I.-ring if and only if R satisfies the following two conditions:
(1) R is Noetherian.
(2) Each maximal ideal of R is simple.
(B) If R does not contain an identity and R contains a proper prime ideal, then R is a general Z.P.I.-ring if and only if R satisfies the following four conditions:
(1) R is Noetherian.
(2) R satisfies property S.
(3) Each maximal prime ideal of R is simple.
(4) $\bigcap_{i=1}^{\infty} R^{i}$ is a field.
(C) If R does not contain an identity and R contains no proper prime ideal, then R is a general Z.P.I.-ring if and only if R satisfies the following two conditions:
(1) R is Noetherian.
(2) R satisfies property S.

Proof of (A). Part (A) follows immediately from [1; Th. 5].
Proof of $(\mathrm{B}) .(\rightarrow)$ Assume that R is a general Z.P.I.-ring. Then R is Noetherian by Theorem 1. Since R contains a proper prime ideal, Theorem 2 shows that $R=F \oplus T$ where F is a field and T is a ring satisfying property (\#). Hence, R clearly satisfies property S. If T is a domain, then F and T are the maximal prime ideals of R. If T is not a domain, then T is the maximal prime ideal of R. It follows that each maximal prime ideal of R is simple. Finally, $\bigcap_{i=1}^{\infty} R^{i}=\bigcap_{i=1}^{\infty}(F \oplus T)^{i}=F$, a field.
(\leftarrow) Assume that conditions (1), (2), (3), and (4) hold. Let Q be a P-primary ideal of R. If $P=R$ or if P is a maximal prime ideal of R, there exists an integer n such that $P^{n} \cong Q$ since R is Noetherian. Hence Lemma 6 shows that there exists an integer k such that $Q=P^{k}$. If P is a proper nonmaximal prime ideal of R, there exists a maximal prime ideal M of R such that $P \subset M \subset R$, and it follows from Lemma 7 that $Q=P$. Thus, R is a Noetherian ring having property (α) which shows that (δ) holds in R. [3; Corollary 6]. Therefore, by (BG) $R=F_{1} \oplus \cdots \oplus F_{m} \oplus T$ where each F_{i} is a field and T satisfies property (\#). Since R contains a proper prime ideal, $m \geqq 1$; condition (4) implies that $m \ngtr 1$. Hence $R=F_{1} \oplus T$ which implies that R is a general Z.P.I.-ring.

Proof of (C). (\rightarrow) If R is a general Z.P.I.-ring containing no proper prime ideal, then $R=T$ where T is a ring satisfying property (\#), Hence, R is Noetherian and satisfies property S.
(\leftarrow) Assume that conditions (1) and (2) hold. Since R is Noetherian and since R is the only nonzero prime ideal in R, R has property (α). Thus, R is a general Z.P.I.-ring by an argument similar to that given in part (B) above.

Lemma 8. A ring R has property (δ) if and only if R satisfies the following three conditions:
(1) R is Noetherian.
(2) R satisfies property S.
(3) Each maximal prime ideal of R is simple.

Proof. (\rightarrow) Assume that R has property (δ). If $R=R^{2}$, [3; Th. 11] implies that R is a general Z.P.I.-ring. Therefore, (1), (2), and (3) hold by Theorem 3. If $R \neq R^{2}$, then [3; Th. 12] implies that R is Noetherian. From (BG) we have that $R=F_{1} \oplus \cdots \oplus F_{m} \oplus T$ where each F_{i} is a field and T satisfies property (\#). It follows from the representation of R, that (2) and (3) hold.
(\leftarrow) We showed in the proof of Theorem 3 (B) that if (1), (2), and (3) hold in a ring R, then (δ) holds in R.

Lemma 9. In a Noetherian ring R, property (α) is equivalent to the following two conditions:
(2) R satisfies property S.
(3) Each maximal prime ideal of R is simple.

Proof. This follows immediately from Lemma 8 and [3; Corollary 6].

Theorem 4. If R is a ring with identity, R is a general Z.P.I.-ring if and only if R is Noetherian and (α) holds in R.

Proof. The necessity follows from Theorem 1 and Corollary 1 and the sufficiency follows from [3; Corollary 6 and Th. 11].

Corollary 2. Let R be a ring without identity.
(A) If R contains a proper prime ideal, then R is a general Z.P.I.-ring if and only if R satisfies the following three conditions:
(1) R is Noetherian.
(2') (α) holds in R.
(4) $\bigcap_{i=1}^{\infty} R^{i}$ is a field.
(B) If R contains no proper prime ideal, then R is a general
Z.P.I.-ring if and only if R satisfies the following two conditions: (1) R is Noetherian.
(2') (α) holds in R.
Proof. This follows immediately from Theorem 3 and Lemma 9.

References

1. Keizo Asano, Über kommutative Ringe, in denen jedes Ideal als Produkt von Primidealen darstellbar ist, J. Math. Soc. Japan 1 (1951), 82-90.
2. N. Bourbaki, Éleménts de Mathématique, Algèbre Commutative, Chap. 7, Paris, 1961.
3. H. S. Butts and Robert W. Gilmer, Jr., Primary ideals and prime power ideals, Canad. J. Math. 18 (1966), 1183-1195.
4. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.
5. Robert W. Gilmer, Jr., Eleven nonequivalent conditions on a commutative ring, Nagoya Math. J. 26(1966), 183-194.
6. - On a classical theorem of Noether in ideal theory, Pacific J. Math. 13 (1963), 579-583.
7. Robert W. Gilmer, Jr., and Joe Leonard Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Amer. Math. Soc. 114 (1965), 40-52.
8. Wolfgang Krull, Idealtheorie, New York, 1948.
9. —, Über den Aufbau des Nullideals in ganz abgeschlossenen Ringen mit Teilerkettensatz, Math. Ann. 102 (1926). 363-369.
10. Keizi Kubo, ひ̈ber die Noetherschen fünf Axiome in kommutativen Ringen, J. Sci. Hiroshima Univ. (A) 10 (1940), 77-84.
11. Shinziro Mori, Allgemeine Z.P.I.-Ringe, J. Sci. Hiroshima Univ. (A) 10 (1940), 117-136.
12. —, Axiomatische Begründung des Multiplikationringe, J. Sci. Hiroshima Univ. (A) 3 (1932), 45-59.
13. E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl-und Funktionenkörpern, Math. Ann. 96 (1926), 36-61.
14. M. Sono, On congruences, II, Mem. Coll. Sci. Kyoto Univ. 3 (1918), 113.
15. Michio Yoshida and Motoyoshi Sakuma, The intersection theorem on Noetherian rings, J. Sci. Hiroshima Univ. (A) 17 (1954), 317-320.
16. Oscar Zariski and Pierre Samuel, Commutative algebra, Vol. I, Princeton, 1958.
17. -, Commutative algebra, Vol. II, Princeton, 1960.

Received November 5, 1968. This paper is a portion of the author's doctoral dissertation, which was written under the direction of Professor Robert W. Gilmer Jr., at The Florida State University.

The Florida State University
Tallahasse, Florida

[^0]: ${ }^{1}$ M. Sono [14] and E. Noether [13] were among the first to consider Dedekind domains. For a historical development of the theory of Dedekind domains see [4; pp. 31-32].
 ${ }^{2}$ S. Mori in [11] considered both general Z.P.I.-rings with identity and Z.P.I.rings without identity which contain no proper zero divisors, but Mori's results in these cases are not as sharp as those of Asano and Gilmer.

[^1]: ${ }^{3}$ The proof of Lemma 2 was suggested to the author by Professor Gilmer.

