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GALOIS THEORY FOR BANACH ALGEBRAS

Davip T. BROWN

This paper deals with the classical Galois theory in the
context of the Arens-Hoffman extension B = A[x]/(a(x)) of a
commutative Banach algebra A (with identity over the complex
field &°) with respect to a monic polynomial «(x) over A with
an invertible discriminant., We show that the fundamental
theorem of the Galois theory for commutative rings [S.U.
Chase, D.K. Harrison, and A. Rosenberg, Galois theory and
cohomology of commutative rings, Memoirs, Amer, Math, Soc.
No. 52 (1965)] applies to our situation. The fixed algebras of
the subgroups of the Galois group are then characterized for
the case where A is semi-simple. The techniques are primarily
topological and consist in examining the relationships between
Op and @4, where the @’s denote the respective carrier spaces
of the Banach algebras A and B together with the usual
weak * topology.

The topological techniques referred to in the abstract, stem from
two results. The first is by J.A. Lindberg, Jr. [12, Proposition 1.3]
which shows that @, possesses a property similar to that possessed
by a covering space of @,. The other result is by G.A. Heuer [6,
Th. 3.5] which shows that under certain connectedness assumptions,
@, is a covering space (in the sense of Chevalley [5]) of @,. This
classical notion of a covering space will not be used since we do not
wish to limit ourselves to working with a connected and locally
connected space @,. At the other extreme, we do not need the full
generality used by S. Lubkin in [13]. We will therefore modify
Lubkin’s definition and work with our own version of a covering space.
The first section of this paper develops all aspects of this notion
which we will be using.

We present some of the basic notions of the Arens-Hoffman ex-
tension in §2 and then show that in a very special case (which includes
the case where @, is a connected space), the fundamental theorem of
the Galois theory for commutative rings [4] can be applied.

In §3 and §4, we characterize the fixed algebras of the subgroups
of the Galois group in terms of our notion of a covering space. This
will be done under the assumptions that A is semi-simple and that
the generating polynomial a(x) factors completely over B. After
obtaining results for the special case dealt with in §2, we prove
corresponding results for the general situation.

This paper builds upon the work of G.A. Heuer [6], J.A. Lindberg,
Jr. [11] and [12] and Heuer and Lindberg [7].
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1. DEeFINITION. Let X and Y be topological spaces, and let p
be a continuous mapping of X onto Y. We will say that (X, p) is a
local covering space of Y if card (p~'(y)) (= cardinality of the set
{p~(y)}) is a finite constant for each y € Y (this constant may depend
on yeY) and if for each ye Y with »p7'(y) = {, @,, ---, x;}, there
exists disjoint neighborhoods U, U,, ---, U, in X of %, x,, ---, x, re-
spectively such that p restricted to each U, is a homeomorphism of
U; onto p(U,) and p~'(p(U))) = UL, U..

In the event (X, p) is a local covering space of Y with the property
that card (p~'(y)) is a constant independent of y € Y, we will say that
(X, p) is a covering space of Y.

We give a necessary and sufficient condition that (X, p) be a local
covering space of Y in the case where both X and Y are compact
Hausdorff spaces. We note that the compactness of X implies that
the cardinality of each fiber p~'(y) in X must not only be finite, but
must also be bounded by some integer.

THEOREM 1.1. Assume X and Y are compact Hausdorff spaces
and p s a continuous mapping of X onto Y. Then (X, p) is a local
covering space (covering space) of Y if and only if p is an open
mapping with the property that for each x € X, there exists a neighbor-
hood V, in X of = such that p restricted to V, is one-to-one (and
card (p~'(y)) is a finite constant independent of ye Y).

Proof. Assume (X, p) is a local covering space of Y. Let V be
an open subset in X and select any point y,€ p(V) with p~'(y,) =
{2, -+, ,}. Let U, U, ---, U, be disjoint open neighborhoods in X
of x,,x,, --+,x, respectively such that U, N V # ¢, p restricted to each
U; is a homeomorphism of U; onto p(U,) and p~'(p(U))) = UL, U..

For each 7,set V; = U; N p7"(p(U, N V)). It follows that the V,’s
are mutually disjoint, p(V;) = (U, N V) for each 7 and p~'(p(V,)) =

¥, V;. Since p restricted to each U, is a homeomorphism, each V;
is open with respect to the relative topology of U,. Since the latter
set is open, each V,; is open in X.

Since X — p~(p(V))) is a compact subset of X, p(X — p~'(p(V.))) =
Y — p(V,) is a compact, and therefore closed, subset of Y. Therefore
(V) = (U, N V) is an open subset of ¥ which contains y, and which
is contained in p(V). Thus, p(V) is an open subset of Y. Consequent-
ly, p» is an open mapping.

To prove the converse, assume p is an open mapping, which satisfies
the given condition. Let y,< Y and set »~'(y,) = {x,, ---, ®,}. Since X
is a Hausdorff space, there exist mutually disjoint open neighborhoods
Vi, Vi oo+, V, in X of @, 2,, -+, x, respectively. We assume that p
restricted to each V, is one-to-one (if not, replace each V; by V;nN
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(interior of V,)). Let U, = N, p(V3) and let U; = V, N p~(U,) for each
1=1,2, -+, k. Thus U., U, cp(U,). Since p is a continuous open
mapping, U, is an open neighborhood in Y of y, and each U, is an
open neighborhood in X of z,. The U,s are mutually disjoint and
each of them is mapped onto U, by p.

Now let W= U,Nnp(X — UL, U;). This subset of Y is closed
with respect to the relative topology of U,. If W is the empty set,
then p~(U,) = U, U; and therefore p~ (U, = UL, U,. Also p|U;
(p restricted to U;) is one-to-one for 7 =1,2, ---, k. Finally p| U, is
a homeomorphism since each U, is open and p is an open mapping.
This completes the proof for the case W = ¢. If, on the other hand,
there is a point y € Y such that y € W, then there is a set W, in Y
which is open with respect to the relative topology of U, and which
contains y, but is disjoint from W. This means that p~(W,) c UL, U.,.
Since U, is open in Y and since y,c€ W,, W, is an open neighborhood
in Y of y,. For each 1, let W, = U,n p"(W,). This set is an open
set in X which contains z,. It follows that p(W,) = W, for i =
1,2,--+,k and »p(W,)= UL, W,. The proof is now completed by
applying to the W,s the argument used on the U,’s in the case
W = ¢.

From now on, when we write the phrase ‘‘(V, ») is a local covering
space (or covering space) of U’’, we will assume both V and U are
compact Hausdorff spaces and » is a continuous mapping of V onto
U. Note that a subset of a compact Hausdorff space is closed if and
only if it is compact, and a continuous mapping between two such
spaces is a closed mapping. Also, if » and s are two mappings such
that the composite mapping ros is defined, we will write rs for ros.

LemmaA 1.2, Let (X, p) and (Z,q) be two local covering spaces
of 'Y and assume w is a continuous mapping of X into Z such that
p=qw. Then w s an open Mmapping.

Proof. Let U be an open subset of X and suppose z € w(U).
Select a point x e w™'(z) N U. Since (Z, q) is a local covering space of
Y, there exists an open neighborhood V in Z of z such that q|V is
one-to-one. We assume V is so small that ¢(V)c p(U). There also
exists an open neighborhood U, in X of x such that U,cw (V)N U.
By replacing U, by U,N p~(p(U,) N ¢(V)) and V by U,N g~ (p(U,) N q(V))
if need be, we may and do assume that p(U,) = q(V).

Now let z,e V. There is a point x,€ U, such that p(z,) = q(z,).
Therefore qw(x,) = p(x,) = q(z,). Since U,cw V), wx,)e V. But
since ¢|V is one-to-one, w(x,) = 2, This means z,¢ w(U,. Thus
Vcw(U,) cw(U). The fact that ze V and V is open implies that
w(U) is an open subset of Z. This completes the proof.
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If (X, p) is a local covering space of Y, denote by E(X:Y) the
group of all homeomorphisms ¢ of X onto itself with the property
that pg = ».

Lemma 1.3. Assume (X, p) and (Z,q) are two local covering
spaces of Y. Suppose w and w are two continuous mappings of X
wmto Z such that p = qw = qu. Then H = {x € X: wo(x) = u(x) for
any ¢ € B(X: Y)} ts an open and closed subset of X.

Proof. Since w¢ and u are both continuous mappings of X into
the Hausdorff space Z, H is closed in X. (See, for example, [10,
Problem C, p. 100]).

To show H is also open, let x,€ H and set z, = u(x,) = wa(x,).
Let U be any open neighborhood in Z of z, such that ¢| U is one-to-
one and let V be any open neighborhocod in X of =z, such that
w(VYNwe(Vyc U. If xeV, then u(x) and wg(x) are both in U, and
furthermore, qu(x) = p(x) = pé(x) = qwg(x). Since q| V is one-to-one,
w(x) = wé(x). This means xe€ H. We have thus shown that Vc H
which implies that H is an open subset. This completes the proof.

The next result enables us to work first with components of
spaces and then to extend to open and closed subsets. An equivalent
form of the following lemma can be found in [8, p. 47].

LemMMA 1.4. Let C be a component in a compact Hausdorff space
X and let U be any open set in X which contains C. Then there
exists an open and closed set K wn X which contains C and which
1s contained tn U.

LEMMA 1.5. Assume (X, p) is a local covering space of Y and
let K be an open and closed subset of X. Then for any integer s,
K, ={yeY:card (p~'(v) N K) = s} is an oper and closed subset of Y.

Proof. Let yeK, and let p~'(y) N K = {x, %, ---, x,}. Select
open neighborhoods V;in X of x;, for7 =1,2, ---, s such that (i) each
V. is contained in K (ii) p restricted to each V, is a homeomorphism
of V, onto a set V,in Y, and (iii) p (V) N K = Ui, V;. This choice
of the V’s is possible since p is an open mapping. (The details are
essentially the same as in the proof of Theorem 1.1).

V, is an open neighborhood in Y of y. It follows from (ii) and
(iii) that V, is contained in K,. This means K, is an open set. But
K, must also be closed since p(K) is the finite union of K;(7 =1, 2,
..+, N) and the K,’s are mutually disjoint. (Recall the comment prior
to Theorem 1.1 that there exists an integer N such that card (p~'(y)) < N
for all ye Y).
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Our main interest in local covering spaces is to obtain properties of
the group E(X:Y) of ‘‘covering homeomorphisms’’. The next result
is the first of our two main technical lemmas which deal with this

situation.

LEMMA 1.6. Assume (X, p) ts a local covering space of Y and
assume K 1is an open and closed subset of X. Also suppose that wx,
and x, are two distinct points of K, and that » and s are two con-
tinuous mappings of X into itself such that pr = p = ps, r(x,) = x|,
and s(xy) = x,. Then there is a homeomorphism ¢ in E(X: Y) such that
é(x,) = 25, 3(K) = K, and ¢ is the identity homeomorphism on X — K.

Proof. Let H = {xe X:sr(x) = x}. This is a nonempty subset of
X which, by Lemma 1.3 is open and closed. Since sr| H is the identity
mapping, r| H is one-to-one. Both mappings are closed since X is a
compact Hausdor{f space. Moreover by Lemma 1.2, both mappings are
also open.

Let C and D be the components in X such that x,€ C and «} e D.
Then CcKNH,DcK,»nC)cD and s(D)cC. Therefore, C =
sr(C) c s(D) c C. Consequently, s(D) = C. Furthermore »(C) = D since
D cr(H) and rs|r(H) is the identity mapping. If C and D are distinct
components, then there exists disjoint open sets U and V in X such
that CcUcCcKnNnH, DcVcKnrH), and »(U)c V. By Lemma
1.4, there exists an open and closed set K, in X such that C c K, c U.
Thus »(K)cr(U)c V. If follows that the sets 7(K,) and K, are
disjoint. Define a mapping ¢ of X into itself as follows:

ol Ky =7rK, ¢|r(K)=s|rK),

and ¢ is the identity mapping on X — K, U »(K,). This is a one-to-one
mapping of K, onto »(K,;) and of »(K,) on K,. Since K, and »(K,) are
disjoint, ¢ € E(X: Y). Also, ¢(x,) = =), and the fact that K,c K im-
plies ¢(K) = K and ¢ is the identity off of K. This completes the
proof for the case where C and D are distinct components.

On the other hand, if C and D are the same component, then
C) = C = s(C). Since p(C) is a closed and connected subset of Y,
the argument used in the proof of [12, Th. 2.4] shows that p~'(p(C))
is a finite union of disjoint connected sets each of which is open (and
therefore closed) in the relative topology of p~*(p(C)). This means
that there exists an open set U in X such that U N p~'(p(C)) = C.
We assume, without loss of generality, that U is a subset of HN»(H)N K.
By Lemma 1.4, there exists an copen and closed subset K, in X such
that C < K, c U. It follows that K, N p~'(p(C)) = C. Also, K, HNr(H)
implies that both »| K, and s| K, are one-to-one mappings.

Let y, be any element of p(C) and assume card (p~'(y,) N C) = m.
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It follows from Lemma 1.5 that K,, = {y € p(K,): card (p~'(y) N K,) = m}
is an open and closed subset of Y. Since p(C) is connected and has
a nonempty intersection with K,, it must be a subset of K,. There-
fore, for any y € p(C), card (p~'(y) N C) = card (p~(y) N p~(P(C)) N K,) =
card (p~'(y) N K,) = m.

Now let P={yeK,:r(p'(y) N K,)CK,}. P is a subset of Y
which contains p(C) and is contained in K,. We note that ye P if
and only if ye K,, and » maps p~'(y) N K, onto itself. We will show
that P is an open and closed subset of Y.

(i) P is an open set. Let y,€P and assume p ' (y,) N K, =
{xf, 2%, --+, 2}, For each ¢ =1,2,---,m, let U, be an open neigh-
borhood in X of z{ such that both U; and »(U,) are contained in the
open and closed set p~'(K,) N K, and such that p restricted to each
U, is a homeomorphism of U; onto a set U, in Y. For any point
ye U, p~'(y) N K,c p(K,) N K,. This means card (p~'(y) N K,) = m.
Consequently, p~'(y) N K, U, U,. Thus for zep'(y) N K, r(x) is
an element of »(U;) for some j. Since the latter set is a subset of
K, r(p'(y) N K,) < p~'(y) N K,. Therefore U,c P. It follows, since
U, is open, that P is an open set.

(ii) P is a closed set. Let y, be a point in the closure of P and
assume there exists x,€p'(y,) N K, such that »(x,) ¢ K,. (i.e. assume
y, ¢ P.) Let V be any open neighborhood in X of x, such that
Vcp (K, NV,and »(V)N K, = 6. Since p(V) is an open neighbor-
hood in Y of y,, there exists a point v in p(V) N P. But for any 2
in p~'(y) N V, r(x) must be a point in p~'(y) N K,. Thus »(V)N K, is
nonempty. This is a contradiction. Therefore any 2, in p7'(y,) N K,
has the property that »(x,) ¢ K,. This means y, ¢ P and thus P is a
closed set.

Finally, consider the set @ = p'(P) N K,. This is an open and
closed set in X which contains C. Since pr = p, and »(p~*(P)) < p~'(P),
r maps @ into itself. But the fact that »|K, is one-to-one and
card (p~'(y) N K;,) = m for all ye P implies that » must map @ onto
itself. -

Define a mapping ¢ of X into itself by ¢|Q = r|Q and ¢ is the
identity elsewhere. Since K, K and »| K, is one-to-one, ¢| K is a
one-to-one mapping of K onto itself. It follows that ¢(x,) = «/ and
6c E(X:Y). This completes the proof for the case where C and D
are the same component. Therefore the proof of Lemma 1.6 is
complete.

We have the following corollary to the proof of the above lemma.

COROLLARY 1.7. Assume (X, ) is a local covering space of Y
and let C be a component of X. Then card (p~(y) N C) s a constant,
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say m, independent of ye p(C). Furthermore, if K is any open and
closed set in X which contains C and if v is a continuous mapping
of X into itself such that pr = p and r(C) = C, then there exists an
open and closed set Q in X with the following properties: (i) C c Q C K,
) @) =@, (iii) card (p~'(¥) N Q) = m for all yep@), and (iv)
p(p(C)NK=C.

We also remark that if C and D are distinct components such
that p(C) = p(D), then the corresponding open and closed sets @, and
@, given by the above corollary can be chosen such that they are
disjoint and such that p(Q.) = »(Q)).

The above two results now yield a structure theorem for local
covering spaces.

COROLLARY 1.8. (X, ») is a local covering space of Y if and
only tf there exists a finite covering of Y by mutually disjoint, open
and closed sets Y., -++, Y, with the property that if X, = p~(Y;) and
p; = 9| X;, then (X;, »;) 18 a covering space of Y; for 1 =1,2, - k.

Proof. Assume (X, p) is a local covering space of Y and let R
be a component of Y. Then, as in the second half of the proof of
Lemma 1.6, p~'(R) = Ui., B;, where the R,’s are mutually disjoint,
connected, open and closed with respect to the relative topology of
p~(R), and p(R;) = p(R,) foreachj =1,2, ..., q. It follows that each
R; is a component of X. By applying the above corollary to each of
the R,’s with » equal to the identity mapping in each case, there
exists open and closed sets @, @,, ---,Q, in X containing R, R,, - - -,
R, respectively such that if m; = card (p~'(y) N R;) for each y ¢ R, then
m; = card (p~'(y) N Q;) for each ye p(Q,). We assume, without loss
of generality, that the Q,’s are mutually disjoint and that p maps
each Q; onto a set @, in Y. This latter set is open and closed in Y.
Thus for each y € @,, card (p~'(y)) = 3%, m;. This means that (p~4(@Q,),
p|p7(Q) is a covering space of Q,. This part of the proof is com-
pleted by using the fact that Y is a compact space. Since the converse
is immediate, the proof is complete.

DEFINITION. Assume (X, p) is a local covering space of Y and K
is any open and closed set in X. We will say that a subset E of
E(X:Y) is (stmply) transitive on the fibers of K if for any y e p(K)
and for any two points #, and 2, in p~(y) N K, there exists a (unique)
homeomorphism ¢ in E such that ¢(x,) = w,.

If for any yep(K), card(p'(y) N K) = m, then a subset E of
E(X:7Y) is simply transitive on the fibers of K if and only if E con-
tains exactly m elements no two of which agree at any point of K.
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We have an additional corollary to Lemma 1.6.

COROLLARY 1.9. Assume (X, p) is a local covering space of Y
and let K be any open and closed set in X. If E(X:Y) is transitive
on the fibers of X, then E(K: p(K)) is transitive on the fibers of K.

For the remainder of this section, we will deal exclusively with
covering spaces. (Our application of local covering spaces does not
occur until the last section of this paper.) The next result is the
second of our two major lemmas in this section.

LEmMA 1.10. Assume (X, p) is a covering space of Y. Then
E(X:Y) is transitive on the fibers of X tf and only if there exists
a subset E of E(X:Y) which is simply transitive on the fibers of X.

Proof. Assume there exists elements ¢, 4, -+-,¢, in E(X:Y)
(n = card (p~'(y)) for all ycY) such that for any xe X and 7 = J
d:(x) = ¢;(x). Let ye Y and let z, and z, be any two points in p7'(y).
Since card ({g;(x,): ¢ = 1,2, .-+, n}) = n = card (p~'(y)), there exists a j
such that ¢;(#,) = #,. Thus E(X: Y) is transitive on the fibers of X.

Assume E(X:Y) is transitive on the fibers of X and let D be a
component in Y. We will construct n elements of E(X:Y) no two
of which agree at any point of p~'(D). As in the proof of Corollary
1.8, p~'(D) = Ur, X; where the X,’s are mutually disjoint components
of X which are open and closed with respect to the relative topology
of p~Y(D). If X; and X, are any two distinct components, then there
is at least one homeomorphism ¢ in E(X: Y) such that ¢(X;) N X, is
nonempty. But the latter set is open and closed with respect to the
relative topology of p~*(D). Thus ¢(X;) = X;. Consequently, there is a
constant k independent of j =1, 2, ---, m such that card (p~'(y) N X;) =
k for all ye D. (Note that km = n).

For any ye D, arbitrarily label the points of p~(y) N X, by x,
Xojy ++ vy Tpje  Since KE(X: Y) is transitive on the fibers of X, for each
1=1,2,.-- k there exists an element p;; in E(X:Y) such that
0;;(%,;) = ;. An argument used in a previous paragraph of this proof
shows that each p,; maps X, onto itself. By Lemma 1.3, no two
p;;’s agree at any point of X,. Upon applying Corollary 1.7 for each
p;; and then taking the intersection of all of the open and closed sets
in X obtained, there exists an open and closed set @; in X which
contains X; and has the following properties: card (p~*(y) N Q;) = k for
all y e p(Q,); p:;(Q;) = Q; foreach i =1,2, ---, k; and p (D) N Q; = X;.
For any « in Q;; with p(x) =y, {p;;(x):1=1,2, .-+, k} = p7'(y) N Q,.
Consequently, no two p,;’s agree at any point of @;.

By replacing each @; by @; N (N »(Q,)) if need be, we may and
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do assume that p maps each @; onto a set @, in Y. Furthermore, we
assume the Q,’s are mutually disjoint since we can select m mutually
disjoint open and closed sets K, ---, K,, in X containing X, ---, X,,
respectively and then (Corollary 1.7) pick the Q,’s such that in addition
to all of the above properties, X; @, K; for each j. It follows
from these assumptions that p~(Q,) = U Q;.

The next step in the proof is to show that without the loss of
generality, we may assume that for eachj =1,2, -+, m, E; = {p;;: 1 =
1,2, .---,k} is a subgroup of E(Q,: ®,). This part of the proof is ac-
complished in two steps.

(i) Corresponding to each integer (1 < 1 < k), there exists an
integer »(1 £ r < k) such that p,;(x,;) = pi7(®,;). By Lemma 1.3, H; =
{x e X: p,;(x) = p;f(x)} is an open and closed subset of X. Thus X; C H;
for 1=1,2,---, k. Let T, =Q,N(N%, H;). This set is open and
closed in X, X; C T, @, and the elements of E; restricted to T; are
closed with respect to the operation of taking inverse mappings. We
now modify the 7T,’s so that p maps each T; onto a subset 7, in ¥
and p~(T,) = Y%, T;. Therefore we may and do assume 7; = Q; for
i=1,2, v, k.

(ii) For any two distinct integers » and s (1 < r,s < k) there
exists an integer ¢ such that p,;(z,;) = p,;(p,;(®,;)). An application of
Lemma 1.3 yields an open and closed set in X which contains X; and
on which p,; = p,;p,;. We now repeat this argument for each of the
k* elements in E; x E,;,. Upon taking the intersection of all of the
sets obtained, we get an open and closed set O; in X which contains
X;. Set Z; = Q; N O;. This is an open and closed set such that the
elements of E; restricted to Z; are closed with respect to the operation
of taking composite mappings. We modify the sets Z; as above.
Therefore we may and do assume Z; = @, for each j. We have shown,
therefore, that without loss of generality, E; = {p;;:1=1,2, ---, k}
can be assumed to be a subgroup of E(Q;: Q,) foreachj =1,2, --- m.
Indeed, FE; is a k' order subgroup which is simply transitive on the
fibers of Q;(j = 1,2, ---,m). (That is, for each ¥ in @, and any two
points & and 2’ in p~'(y) N Q;, there exists a unique 7 such that
p;;(®) = «’.) For each j, we redefine each p;;(1 =1,2,---,k) to be
the identity mapping on X — Q,. Let E,=E, X E, X --- x E,. E,
is an n'* order subgroup of E(p~(Q,): @, which is simply transitive
on the fibers of p~%(Q,). We also view E, as a subgroup of E(X: Y).

To summarize the proof thus far, corresponding to each component
D in Y, there exists an open and closed set Q, in Y containing D and
there also exists an xn'* order subgroup E, of E(p~(Q,): Q) which is
simply transitive on the fibers of p~%(Q,).

Using the compactness of Y, we extract a finite covering of Y by
open and closed sets Y,, Y,, ---, Y, such that corresponding to each



586 DAVID T. BROWN

Y., there exists an n'* order subgroup E, = {¢.., ¢sr, ***, $ns} Of
E(p~'(Y,): Y,) which is simply transitive on the fibers of p~'(Y,).
Also, each of the ¢;.’s is the identity mapping off of p~*(Y,). Finally,
we may and do assume the Y,’s are mutually disjoint since if not,
set Y=Y, and for 2<r<s,set Y. =Y, — Uz Y.

For each v = 1,2, .-+, n, define the mapping ¢, of X into itself
by ¢;|p(Y,) = ¢, |p(Y,) for »r =1,2,---,s. Since each ¢; maps
p~(Y,) onto itself and is the identity mapping off of p~'(Y,), each g,
is a well-defined homeomorphism in E(X: Y). Also the set {g,, ¢, «--,
é,} has the property that no two of its elements agree at any point
of X. That is, the set E = {¢,, ¢, -+, 9} is simply transitive on the
fibers of X. This completes the proof of Lemma 1.10.

We emphasize that the set E given by the above lemma does
not in general form a subgroup of E(X: Y). Also, the elements in
the set E are not unique. The proof of Lemma 1.10 yields the follow-
ing corollary, which will be exploited in the final section of this paper.

CoROLLARY 1.11. Assume (X, ) is a covering space of Y and
also assume E(X:Y) is transitive on the fibers of X. Then there
exists a finite covering of Y by mutually disjoint open and closed
sets Y,, Y,, ---, Y, with the property that for each r, there exists an
nt* order subgrouwp E, of E(p=(Y.): Y, which is simply transitive
on the fibers of p~(Y,) and each of whose elements is the identity
mapping off of p~(Y,).

There is one case where the set {4, ---, ¢,} given by Lemma 1.10
does form a subgroup of E(X: Y).

COROLLARY 1.12. Assume (X, p) is a covering space of a connect-
ed space Y. Then E(X:Y) vs transitive on the fibers of X if and
only if there exists an n'* order subgroup of E(X: Y) which 1s stmply
transitive on the fibers of X. Also, if X 1s conmnected, then E(X:Y)
is transitive on the fibers of X if and only if it is simply transitive
on the fibers of X. (This implies that E(X: Y) 1s transitive on the
fibers of X if and only if its order is m).

The final topic in this section deals with the ‘‘orbit space’ of a
finite subgroup of E(X:Y). We assume (X, p) is a covering space
of Y and let E be a finite subgroup of E(X: Y). Let R = {(z,2")e X x X:
for some ¢ec F, ¢(x) = «’}. R is a closed subset of X x X since R =
Usez {(, ') € X X X: ¢(x) = «'}. Denote by X/E the space of equivalence
classes determined by the equivalence relation defined by E. We endow
this space with the quotient topology. That is, the largest topology
(greatest number of open sets) which makes the projection map
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P: X — X/E continuous. Thus a set U is open in X/E if and only
if P~%(U) is an open subset of X (see [10, p. 94] for details). If A
is an open subset of X, R[A] = {xe X: for some 2’ € A4, (x,2")c R} =
{xe X: for some '€ A and g€ E, ¢(x) = 2’} = User $(4). Thus R[A]
is an open subset of X. Therefore, P is an open mapping of X onto
X/E [10, p. 97]. It follows from [10, p. 98] that X/E is a Hausdorft
space. Moreover, since P is a continuous mapping, X/E is a compact
space. Consequently, P is also a closed mapping.

To summarize, if E is a finite subgroup of FE(X: Y), then the
“‘orbit space’’ X/E is a compact Hausdorff space with respect to the
quotient topology. Also the projection mapping P of X onto X/E is
a continuous, open and closed mapping. If follows from Theorem 1.1
that (X, P) is a covering space of X/E if and only if card (P~'(P(%)))
is a finite constant independent of P(x) e X/E. We also note that the
subgroup E of E(X:Y) is transitive on the fibers of (X, P).

LEmMMA 1.13. Assume (X, p) is a covering space of Y and assume
E is a finite subgroup of E(X:Y) with the property that no two
elements of E agree at any point of X. Then (X, P) is a covering
space of X/E. Conversely, if (X, P) is a covering space of X/E, then
E possesses a set of k (= card (P~ (P(x))) for all P(x)e X/E) elements
which is stmply transitive on the fibers of (X, P).

Proof. From the above remarks, we need only show that card
(P~*(P(x))) is a constant independent of P(x) ¢ X/E. Since P~'(P(x)) =
U,z {2’ € X: ¢(x) = «’}, the assumption on E implies that for each
P(x) e X/E, card (P~'(P(x))) = order of K.

Since F is transitive on the fibers of (X, P), the converse follows
from Lemma 1.10. This completes the proof.

2. After presenting some basic facts concerning Arens-Hoffman
extensions, we give a necessary and sufficient condition for the generat-
ing polynomial to factor into monic linear factors over B. The final
objective of this section is to apply the fundamental theorem of the
Galois theory for commutative rings [4].

We assume A is a commutative Banach algebra over the complex
field & and we assume A possesses an identity element e¢. Let a(x) =
2 + St axt be a monic polynomial in AJx]. Denote by (a(x)) the
principal ideal in AJx] generated by «(x). Then R. Arens and K.
Hoffman have shown in [2] that B = A[x]/(a(x)) possesses a family of
equivalent norms with respect to which B is a Banach algebra with
the property that the natural embedding of A into B is an isometric
isomorphism of A onto a closed subalgebra of B. The family of norms
is given by
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H :gaixi + (a(x)) H = :E;Ol” a; ||t (for a; € A)

where ¢ is any positive number such that >0 | «a;||t* < . Since
such a t always exists, we take ¢ = 1. We refer to B as the Arens-
Hoffman extension of A with respect to a(x).

We denote the coset # + (a(x)) in B by r and the coset a + (a(x))
in B by a for any a € A. Thus any element in B is uniquely expressible
in the form >\7='a;x‘ for a;€ A. Also, the norm of such an element

is || 2t axt || = St || a; || where the latter norm is the given norm
in A.
If Bx) =>r,Bx e Alx], we view x as an indeterminant over

A (= Gelfand representation of 4A) and & as well as an indeterminant
over A and we let S(z) and 5,(x) denote, respectively, the polynomials
m B4t in /i[x] and 3, B,(h)z; in & [x] for h e @,. Arens and Hoffman
have shown that if B = A[x]/(a(x)), then @, is identifiable with the
set {(h,\) e @, X & a,(\) = 0} together with the relative topology of
9, x [2, Th. 4.2]. (We note that the carrier space @, of any
commutative Banach algebra U over & with identity is a compact
Hausdorff space.) The projection mapping 7« of @; onto @, defined by
w(h, ) = h for (h,\) e @, is a continuous open mapping [12, §1].

If B(x)e A[z], the discriminant d; of B(x) is defined as in [15, p.
82] and is an element of A. Furthermore for he®,, d,(h) is the
discriminant of AB,(x). Thus ds(k) = 0 if and only if B,(x) = 0 has at
least one root of multiplicity = 2. Throughout this paper we will be
assuming that the generating polynomial a(x) has an invertible dis-
criminant d. Thus d(h) = 0 for each h e @,. Therefore, 7~*(h) consists
of precisely n (= degree of a(x)) distinct points in @, for each h e @,.
In order to simplify the statements of our results, we denote by I(A4)
(or simply I if there is no confusion as to the algebra in question) the
collection of all monic polynomials in A[x] having an invertible dis-
criminant in A.

For the remainder to this paper we assume A is a commutative
Banach algebra over the complex field &, A has an identity element
e, and B = Alzx]/(a(x)) is the Arens-Hoffman extension of A with re-
spect to the n'* degree polynomial a(x) € I.

From the above remarks and from Theorem 1.1, we have the
following:

2.1. (@, ) is a covering space of @,.
Another proof of this follows from [12, Proposition 1.3].

The following is our criterion for showing that a monic polynomial
in A[x] factors into monic linear factors over B.
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LEMMA 2.2. Let v(x) be an n'* degree monic polynomial in Alx]
and let A be any Banach algebra extension of A. (i.e., U is a Banach
algebra which possesses a closed subalgebra isomorphic and isometric
to A.)

If there exists b, b, «++, b, in A such that v(b;) = 0 for each i, and
if (b; — b))t e for all © +# 7, then v(x) = [Iri(x — b;) in A[z].

Proof. Let B(x) = I~ (x — b;). Since both ~(x) and B(x) are
monic polynomials of the same degree in [x], there exists a polynomial
r(x) € Afx] such that v(x) = B(x) + r(x) where either »(x) = 0 or else
the degree of r(x) is less than n. We assume »(x) = 0. Since »(b,) = 0,
r(x) = (v — b)q.(x). Also, since 7(b,) = (b, — b,)q,(b,) = 0 and (b, — b,) e ¥,
q.(b;) = 0. Thus »(x) = (¢ — b)(x — b,)q,(x). Continuing in this fashion,
r(@) = B(x)q.(x). Thus the degree of r(x) is at least m. This is a
contradiction and the proof is complete.

The next theorem uses the full machinery for covering spaces
which was developed in the first section.

THEOREM 2.3. A mecessary and sufficient condition for a(x) to
factor into monic linear factors over B tis that the group E(Dy: @,)
18 transitive on the fibers of @y Moreover, if the condition does
hold, we may select the n distinct roots of a(x) = 0 so that each of
them generates B over A.

Proof. Assume a(x) = []™~, (x — b;), where the b,’s are all distinct
elements of B. Since a(x)ec I, for each (h,\) e @, and for each pair
of distinct integers ¢ and j, bi(h, N) = 5j(h, A). For +=1,2, ..., m,
define the mappings p; of @, into itself by pi(h, ) = (k, b,(h, \)) for
(h,\) € ®,. Each p, is a continuous mapping, which by Lemma 1.2
is also open. (There are examples to show that the p,’s are not
necessarily one-to-one.) For any (h,\)e®,, {b(h,\):i=1,2, .-, n}
congists of the m distinet roots of «,(x) = 0. It follows that for any
he®, and (h,N) e'(h), 77 (k) = {ps(h,\):2 =1,2, .-+, n}.

To show E(®,: @,) is transitive on the fibers of @,, let he @, and
assume (%, A) and (h, \') are two points of 7~'(k). From the above
paragraph, there exists two integers j and j’ such that p;(h, \) =
(h, \) and p;,(h, N') = (h, \). By Lemma 1.6, there exists a homeomor-
phism ¢ € E(@: @,) such that ¢(h, \) =(h, \'). Thus this part of the
proof is complete.

Conversely, assume FE(@;:®,) is transitive on the fibers of @,.
By Lemma 1.10 there exists a set {¢,, ¢y +*+, ¢} in E(@,: @,) which
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is simply transitive on the fibers of @,. Define, foreach1=1,2, ..., n,
the functions f; of @, into itself by fi(h, \) = X(#:(k, N)) for (h, \) € @y,
Since each f; is a simple root of «,(x) = 0, by the Arens-Calderon
Theorem [1, Th. 7.2], there exists elements b, ---,b, in B such that
a(b;) = 0 and b, = f,.. The fact that each b, seperates each fiber of
@, implies by [11, Th. 7.2] that each b, generates B over A. Thus
A[b;] = B. Now for any two distinct integers ¢ and j, and for any
(hy, N) € @y, (b; — b,) (h, \) = x(3:(h, \)) — Z(¢;(h, N)) # O since no two of
the ¢,’s agree at any point of @,. Therefore (b; — b;)'€ B. An ap-
plication of Lemma 2.2 completes the proof.

Both the necessary and the sufficient condition in the above theorem
are true if the assumption that a(x)e I is slightly weakened. Also,
the former condition is true if A is a normed algebra. (See [3], for
details.)

Denote by G(B: A) the group of all automorphisms g on B such
that g(a) = a for all ae€ A. The following facts enable us to translate
a property of G(B: A) into one of E(®,: @,) and thus utilize the material
in the first section of this paper. For any g€ G(B: A), the dual
mapping ¢* of ¢ is defined by b(g* (h, \)) = g(b)"(k, ) for all (h, \) e @,
and be B. Since g* e E(@;: @,) ([11, Lemma 6.2]), we have a mapping
from G(B: A) into E(®,: ®,). This mapping is order reversing and, by
[11, Corollary 6.5], it is also one-to-one and onto. Thus G(B: A) is
anti-isomorphic to E(@;: @,). For any subgroup G of G(B: A), we
denote by G* the image of G under this anti-isomorphism.

For the remainder of this section, we assume G(B: A) possesses
an n'* order subgroup G,B: A) with the property that G,(B: A)* =
E,(®,: @) is simply transitive on the fibers of @,. Thus, for example,
if @, is connected, then by Corollary 1.12 and Theorem 2.3, the existence
of Gy(B: A) is a necessary and sufficient condition for a(x) to factor
into monic linear factors over B. If follows from Lemma 2.2 that

2.4. If G(B:A) = {9, 9, *--, 9.}, then a(x) = [T (® — 9:(2)).

LEMMA 2.5. Let F,=1{beB:g() =b for all gc GyB: A)} be the
fixed algebra of Gy(B:A). Then F,= A.

Proof. Assume Gy(B: A) ={g,, -+, ¢,} and set b; = g,;(x) for j =
1,2, --.,n. If b=3""ayx" is any element in F|, then b is a symmetric
function of the b;’s. Therefore, b can be written as a polynomial in
the elementary symmetric functions of the b;’s with coefficients in A.
But in view of 2.4, these elementary symmetric functions are the
coefficients of a(x). Consequently, be A. This means F,c A. The
proof is complete since the reverse inclusion always holds.
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DEFINITION. ([4, Definition 1.4 and Th. 1.8, pp. 18-20]). Let G
be a finite group of automorphisms on a commutative ring S and let
R ={seS:9(s) =s forall geG}. Then S is called a Galois extension
of R with Galois group G if for any ge G and any maximal ideal
M in S, there exists an element se€ S such that s — g(s) ¢ M.

As is shown in [4], S is a Galois extension of R with Galois group
G if and only if S is a separable R-algebra (i.e., S is a projective
S & zS-module) and the elements of G are pairwise strongly distinct.
(Two ring homomorphisms %, and h, from T into U (both commutative
rings) are called strongly distinct if for any nonzero idempotent u in
U there exists an element ¢ e T such that &, (t)u = hy(t)u.)

LEMMA 2.6. If Gy(B: A) is a subgroup of G(B:A) such that
G,(B: A)* is simply transitive on the fibers of @, then B is a Galois
extenston of A with Galois group Gy(B: A).

Proof. By Lemma 2.5, F, = A. It follows from the fact that
Gy(B: A) is simply transitive on the fibers of @, that if g, and g, are
two distinct automorphisms in Gy(B: A4), then (g,(x) — ¢x(x))~*€ B. Thus
for any ge G,(B: A) not equal to the identity, (r — g(x))'eB. In

particular, (r — ¢(x)) is not in any maximal ideal of B. This completes
the proof.

In the event @, is connected, the above result is not new (see
[9, Th. 2.2]).

DEFINITION. ([4, p. 22]). Let % be any Banach algebra which
contains A and which is a Galois extension of A with Galois group
G. Then a subalgebra F of U is called G-strong if the restrictions
to F of any two elements of G are either equal or strongly distinct
as maps from F' into 2[.

THEOREM 2.7. ([4, Th. 2.3, p. 24]). Assume G (B: A) is a sub-
group of G(B: A) such that G,(B: A)* is simply transitive on the fibers
of ©;. Then there exists a one-to-one lattice inverting correspondence
between the subgroups of GyB: A) and the separable A-subalgebras of
B which are Ggstrong. If F is a separable A-subalgebra of B
which 1s Gystrong, then the corresponding subgroup is Go(B: F') =
{g€ Gy(B: A): g(¢c) = ¢ for all ce F'}. Moreover, for gec Gy(B: A), G«B,
g(F")) = g Gy(B: F)g=. A subgroup G of Gy«B: A) is a normal subgroup
if and only if the fized algebra F of G is mapped onto itself by
every element of Gy(B:A). In this case, F is a Galois extension of
A with Galots group G|(B: A)/G.
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3. Our goal in this section is to characterize the G, -strong
separable A-subalgebras of B in terms of our notion of a covering
space. This characterization will be established under the assumptions
that A is semi-simple and G(B: A) contains an n'* order subgroup
Go(B: A) such that Gy(B: A)* is simply transitive on the fibers of @,.
We first present a few facts concerning subalgebras of B.

Assume F is a closed subalgebra of B which contains 4. We
define the restriction mapping V, of @; into @, by Vy(h,N) = (h, )| F
for (h,\) e @,. Since V; is the dual of the injection mapping of F
into B, V; is continuous [14, p. 116]. We now show V, maps @; onto
@,. That is, we show that any maximal ideal M in F' extends to a
maximal ideal in B. By [16, p. 254], B is an integral extension of
A (i.e., each element of B is a zero of a monic polynomial in A[zx]).
Thus B is an integral extension of F. Therefore, by [16, p. 257], each
prime ideal in F can be extended to a prime ideal in B. Since each
maximal ideal in F' is a prime ideal, and since each prime ideal in B
can be extended to a maximal ideal in B, each maximal ideal in F can
be extended to a maximal ideal in B.

Next, let 7, denote the restriction mapping of @, onto @, defined
by mx(£) = #| A for each <€ @,. Then, as with V,, 7, is continuous.
Any maximal ideal 27'(0) in A (he®,) can be extended to a maximal
ideal in F since if (h, \) € 77'(h), then (k, N)7%(0) N F' is a maximal ideal
in F. Therefore 7, maps @, onto @,. Finally, 7, is an open mapping
since if U is an open subset of @,, then #(V3'(U)) is an open subset
of @®,. The fact that 7,V, = 7 implies that 7.(U) = n(V7}(U)).

In summary, we have the following:

ProposiTiON 3.1. Assume F is a closed subalgebra of B which
contains A. Then the restriction mapping Vy is a continuous mapping
of @, onto @, while the restriction mapping Ty 1S AN oPen coONtiINUOUS
mapping of @, onto .

Now let G be a finite subgroup of G(B: 4), and let F' = {be B: g(b) =
b for all ge G} be the fixed algebra of G. F is a subalgebra of B
which contains A. Also, since each g e G is continuous, F'is a closed
subalgebra. Let E be the subgroup of E(®,: @,) such that G* = K.
We denote by @,/FE the space of equivalence classes under the equivalence
relation defined by means of the group E. (Thus (k,\) ~ (k, ) if
and only if for some g€ E, ¢(h, ) = (h,\)). Recally from §1 that
@/FE is a compact Hausdorff space and also recall that the projection
mapping P is a continuous open mapping of @, onto @,/E. We will
identify the carrier space @, of F.

THEOREM 3.2. Let G be a finite subgroup of G(B: A), F the fixed
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algebra of G, and E the subgroup of E(Pp: ®,) such that G* = E
Then there exists a homeomorphism v of @, onto Oz/E such that
vV = P, where P is the projection mapping of @, onto Oy/E, and
Vi 1s the restriction mapping of @, onto Dy.

Proof. Define a mapping v of @, onto @z/E by Y(Vy(h,\)) =
P(h,\) for (h,\)e®;. We must show v is well-defined. Assume
G=1{9, 9 -, 9. If, for hed, and for any two points (%, ) and
(hy,\') in w='(h), P(h,\) #= P(h,\'), then for each j =1,2, ..., 7, g¥(h,
N) #= (b, V). By [14, Lemma 2.6.9] there is an element beB such
that b(h,\) =0 and b(gi(h,\)) = 1 for each j. Let ¢ = IT5_, g;(b).
Thence F,é(h,N)=0and ¢(h,\) = II7_,g,(b) " (h, \) = b(gj‘(h ) =1.
Therefore, (h, \) | F = (b, M) | F. Th1s means Vy(h, >») 7& Ve(h, ). Con-
sequently, v is well-defined. It now follows that v is a continuous,
one-to-one mapping of @, onto @,/FE. This completes the proof.

Throughout the remainder of this section we assume G,(B: A) is
an n'* order subgroup of G(B: A) such that Gy(B: A)* = E(@,: @) is
simply transitive on the fibers of @,.

LEMMA 3.3. Let F be a Ggstrong separable A-subalgebra of B.
Then (@5, Vi) 1s a covering space of @,.

Proof. By Theorem 2.7, F' is the fixed algebra of G(B:F) =
{ge Gy(B: A): g(¢c) = ¢ for all ce F'}. We let E, be the subgroup of
E(®;: @) such that G(B: F')* = E,. By Theorem 3.2, there exists a
homeomorphism v of @, onto @,/E, such that vV, = P. The fact that
E, is a subgroup of E(®j: @,) implies that no two elements of E,
agree at any point of @,. Consequently, by Lemma 1.13, (@, P) is
a covering space of @ /E,. It follows that (@,, V) is a covering space
of @,.

LEMMA 3.4. Assume A is semi-simple and let F be a closed
subalgebra of B which contains A. Also suppose (D, V) 1s a covering
space of @p. Then Go(B: F)* = E(@y: Vi Op) = {p € Ey(Dy: D) Vg =
V). Furthermore, if F is Gy-strong, then the order of Ey(Dy: Vi @p) =
card (V54(#)) = k, and the latter group is simply transitive on the
fibers of (D5, V).

Proof. Assume ge Gy(B: F). Let ceF, e ®, and (h, \) € V7'(4).
Then ¢(£) = &(V(h,N)) = &(h, N)=g() " (h, M) = E(g*(h, N)) = E(V (97 (h, ).
(We use ¢ to denote the element ée B as well as the element é e F).
Since F' separates the points of @,, V(h, \) = Vi(g9*(h, \)). Therefore
Ve = Vpg*. This means GyB: F)* C E(Dgz: V,: Op).

Conversely, if ¢ ¢ E(@,: Vz: @), thenV,¢ = V,. Since ¢ € E(D;: D)),
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there exists an automorphism g e Gy(B: A) such that g* = ¢. We must
show ge G(B: F). That is, we must show g(¢c) = ¢ forall ce F. For
any ce F and (h, \) € @5, we have g(¢)"(k, N) = ¢(g*(h, N)) = S(Vi(s(h,
) = é(Vp(h, N)) = é(h,N). Thus g(¢)” = é on @, Since A is semi-
simple and a(x) e I, B is semi-simple [2, Th. 4.3]. Therefore g(¢) = c.

To prove the second assertion in the lemma, since (@, V;) is a
covering space of @, and since no two elements of E(@y: V,: @;) agree
at any point of (@ V;) (i.e., on @, viewed as the covering space
(g, Vi) of @), k = card (V7(£)) = order of E(@,: V,: @;). We will
show that the latter group is transitive on the fibers of (@, V).
(This will imply that it is simply transitive on the fibers of (@, V;)).

Let ze @, and let (h, A) and (h, \) be any two points in V3'(«).
Since m(h, N) = w(h,\'), there exists a homeomorphism ¢ in E(®;: @,)
such that ¢(2, ) = (k, \'). Thus V,é(h, ) = Vp(h,N). By Lemma 1.3,
there exists an open and closed set @ in @, such that V,¢|Q = V| Q.
Let w be the idempotent in B such that @ = {(h, \) € @: i(h, ) = 1}.
Let ge G,(B: A) such that g* = ¢. We will show that ge Gy(B: F).
For any ce F and any (h, M) € Q, é(h, \) = g(¢)"(h, N). Since B is semi-
simple, g(c)u = cu for any cc F. Consequently, for any g,e G(B: F),
g(e)u = cu = g,(c)u for any ce F. The fact that F' is G,-strong implies
that g must be an element of G,(B: F'). Therefore ¢ € E(Py: Vy: @p).
Thus the latter group is transitive on the fibers of (@, V,). This
completes the proof.

THEOREM 3.5. Assume A 1s semi-stmple. Let F' be a G,-strong
closed subalgebra of B which contains A and ts such that (Dz, V) is
a covering space of @p.. Then F is the fixed algebra of G,B: F').

Proof. Let B, = F[z]/(a(z)). Since a(z) € I(F'), B, is a semi-simple
Banach algebra [2, Th. 4.3] and its carrier space is @, = {(£,\) € D, X
& ag(N) = 0}. Let w, be the usual projection of @, onto @,. Define
a mapping w of (@,, V) into @, by w(h,\) = (Vi(h, N), \) for (k, \) € @,,.
(Throughout this proof we view @, as the covering space (9, V) of
@, and will thus write (@, V;) in place of @;). w is a continuous,
one-to-one mapping of (9., V,) onto a compact subset K of @,. Since
w is an open mapping (Lemma 1.2), K is an open subset of @,.
Furthermore, 7,(K) = 7,w(®;) = V(D) = O,

By [12, Th. 2.1], there exists mutually orthogonal idempotents
Uy, Uy, +++, U, in F, and polynomials B;(z), Q:(z) in F'[z] for ¢ =1, 2,
.-+, s which have the following properties: (1) e = >,i_; u;, (ii) each
w:iB:(2) is monic in u,F'[z], (ili) K = Ui @,, where D; = w,F'[2]/(u:8:(z))
and (iv) a(z) = X, :8:(2)Q:(z). The fact that w,a(z) € I(u;F') implies
that u;8,(2) ¢ I(w,F") for 1 =1,2, .-+, s. Since card (V;(»)) = k for
each <€ @,, and since w is a homeomorphism of (@,, V;) onto K such
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that 7, w = V5, k = card (77'(¥) N K) for each <€ @,. It follows from
(iii) that the degree of each u;5;(2) must be k. Let B8(z) = 3o w:;5:(2).
This polynomial is monic and of degree k over F. Furthermore, since
the wu,’s are mutually orthogonal, B(z) € I(F').

If we denote the canonical root of u,5,(z) = 0 in D; by 3, for
1=1,2,.--,8 then ¢ = >\ u;3 is a root of B(z) =0 in >, D,.
Let D = F[y]/(B(y)). (We change the variable from z to % in order
to distinguish between the canonical roots 3 and y of B(x) =0 in
B, and D, respectively). It follows that the mapping 3.7 fiv' —
Sy S fiak = ke fiet for fie Fois an isomorphism of D onto
=1 D;. Therefore K = UJj-, @, can be identified topologically with
?,.

If (4,A)e K and if (b, \) € V7' («), then ) = g(k, \) = 3(Vz(h, N),
M) = §(w(h, N)). This means ¥ = fw. Thus B(z) = 0. This implies,
since B, is semi-simple, that A(x) = 0.

We now show that B (viewed as a Banach algebra extension of
F') can be identified algebraically with D. Define the mapping T of
D into B by T(Zt3 fiv') = 3k5 fir® for fie F. This is a well-defined
homomorphism which, since F[g] = B, maps D onto B. If (&, \) € (D5,
Vz), then T(H)~(h,\) = £(h, \) = §(w(h,\)). Consequently, the dual
mapping T* of T must be equal to w. By [14, Th. 3.1.17], T* maps
(95, V) homeomorphically onto the hull of 7-'(0) in ®,. But T* = w
maps (P, V5 onto K = @,. Thus the hull of 7-'(0) in @, must be
equal to @,. Since D is semi-simple, T7-'(0) = (0). Therefore B is
isomorphic to D.

By (2.4),if G(B: A) ={9., 95, * * *, 9.}, then a(x) = I1}_,(x —9,(x)) € Blz].
For each 1 =1,2, ..+, m, let ¢;€ D such that T(c;) = g;(x). Then for
each ¢, B(¢;) = B(T'g;T(y)) = 0 since T'¢,T is an automorphism on D.
We relable the g¢,’s if need be and assume Gy«B:F) = {9, **+, Ji}-
(Lemma 3.4 shows that the order of G,(B: F') is indeed k.) Since the
mapping g — T'gT for ge G(B: F') is a group isomorphism of G(B: F')
onto G(D: F'), the latter group possesses a k' order subgroup G,(D: F')
isomorphic to Gy(B: F'). Since Gy(B: F)* is simply transitive on the
fibers of @, (Lemma 3.4), and since w is a homeomorphism of @, onto
@, such that m,w = V,, Go(D: F)* must be simply transitive on the
fibers of @,. Now, by Lemma 2.5, F'is the fixed algebra of G,(D: F').
Therefore F' must also be the fixed algebra of G,(B: F'). This completes
the proof of Theorem 3.5.

We note that the above theorem need not be true if A is not
semi-simple, since there may exist two distinct closed subalgebras of
B which contain A and which have the same carrier space.

COROLLARY 3.6. Under the same assumptions as in Theorem 3.5,
there exists a polynomial B(y) e I(F') of degree k = card (V7' («)) with
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the property that B (viewed as an extension of F') can be algebraically
and topologically identified with F'[y]/(B(y)).

Proof. From the above proof, the mapping T defined by
T Gz fiv") = Skt fix' for fie F' is an isomorphism of D onto B. We
show that T is also a homeomorphism.
Assume the norm on D is given by || S5 fiv'|] = Skt || fi |l ¢ for
some positive number t. Let L = min{t:7 =0,1, -,k — 1}. Then
k—1
|= =S

k—1 .
< LS It = L

>, fv'

Thus T is a continuous mapping of D onto B. By the inverse mapping
theorem, T is a continuous mapping of B onto D. This completes
the proof.

Combining Lemma 3.3 with Theorem 3.5, we have the following
characterization of the fixed algebras of subgroup of G,(B: A).

THEOREM 3.7. Assume A is semi-simple, B is the Arens-Hoffman
extension of A with respect to the n'* degree polynomial a(x) € I, and
G(B: A) contains an n'* order subgroup G«B: A) such that Gi(B: A)*
18 simply transitive on the fibers @,. Then a G,-strong closed subalgebra
F of B which contains A 1is the fixed algebra of a subgroup G of
Go(B: A) if and only tf (@g, V;) is a covering space of @p.

4. In this section, we will prove a theorem similar to Theorem
3.7, but the condition that a subgroup of E(®;: @,) exists which is
simply transitive on the fibers of @, will be weakened.

Our assumptions throughout this portion of the paper are as
follows: A is semi-simple, and a(x) factors into monic linear factors
over B. (Or equivalently by Theorem 2.3, E(®: @,) is transitive on
the fibers of @;).

By Corollary 1.11, there exists a finite covering of @, by mutually
disjoint open and closed sets Q,, Q,, -+, @, with the property that
corresponding to each Q;, there exists an n'* order subgroup E; of
E(n'(Q;): Q;) which is simply transitive on the fibers of 77(Q,).
Furthermore, each homeomorphism in E; is the identity homeomorphism
off of 77%(Q;). We denote by E(®;: @,) the subgroup E, X E, X --- X E,
of E(®z: @,). The order of this subgroup is %-s.

For each j, let u; be the idempotent in A corresponding to the
open and closed set @; in @,. (i.e., Q; = {he @, u;(h) =1}.) Then
9,,+=Q; and @, = 77(Q;) for each j. We note that e = 3.j_,u;.
For j=1,2,..-,s,let G, be the n'* order subgroup of G(u,;B: u;A) such
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that G,* = E;. We denote by G,(B: A) the subgroup G, x G, X -+ X G,
of G(B: A). It follows that the order of Gy(B: A) is n-s and G,(B: A)* =
E(®@;:@,). (In the event s =1, then these two subgroups coincide
with the subgroups G,(B: A) and E,(®;: @,) used in §2 and §3). If
g€ Gy(B: A), then g=1(9,9, +++,9,) where g;e€G; for each j. If
b= >%_u;be B, then u;g(b) = g(u;b) = g;(u;b). Also, g(b) = >i_, g(u;b) =
S wg(ub) = i, g,(ud). We relate fixed algebras of subgroups of
Gy(B: A) to those of subgroups of G,.

4.1. If F is the fixed algebra of a subgroup G’ of G,(B: A), then
for each j, u,F is the fixed algebra of G; = G’ N G,.

Proof. If ceF, then since g,;(u;c) = u;g9(c) = u;c for each g, € G,
u;F' is contained in the fixed algebra of G. Conversely if, for some
ce B, g;(u;c) = u;c for each g; € G}, then g(u;c) = g;(u;c) = u,c for each
g€ G'. Therefore u,;F' must be the fixed algebra of Gi.

4.2. If for each j, F; is a subalgebra of ;B which is the fixed
algebra of a subgroup G of G;, then F' = >5_, w,F; is the fixed algebra
of =G XG, x «++ X Gl

Proof. For ce F,wu,ce F; for each j. Therefore, for any automor-
phism ge G’, we have g(c) = 335, g(u;0) = 3.1 9;(u;e) = 35, uc = c.
This means F is contained in the fixed algebra of G’. On the other
hand, if g(¢) = ¢ for some ¢ € B and for all g e G', then g;(u,;c) = u;g9(c) =
u;e. Therefore u,ceu;F,;. Thus ce F. Consequently, F'is the fixed
algebra of G'.

As a consequence of Lemma 2.5 and 4.2, we have
4.3. A is the fixed algebra of G,(B: A).

We also note that by Lemma 2.6, u;B is a Galois extension of
;A with Galois group G,.

LEMMA 4.4. If F is the fixed algebra of
G(B: F) ={geG(B: A): g(c) = ¢
Sor all ce I}, then (D, V) is a local covering space of @j.
Proof. By 4.1, u,F is the fixed algebra of
G{(B: F) = {geG;: g(uc) = u;c for all ce F'} .

Thus, (Theorem 2.7), u,F is a separable u;A-subalgebra of ;B which
is G;-strong. Now by Lemma 3.3, (9,5, V,) is a covering space of
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@7, where V; = V| ®, 5. The proof is completed by applying Corol-
lary 1.8.

LEMMA 4.5. If F is a closed subalgebra of B which contains A
and each w;F is G;-strong, and if (Dz V;) is a local covering space
of @, then F is the fized algebra of G(B: F).

Proof. By Corollary 1.8, there exists a finite covering of @, by
mutually disjoint, open and closed sets R, R,, ---, R, such that for
each 1, (V7'(R:), V| V7 (R)) is a covering space of R,. Let Z; =
R.N®,pfori=1,2 -1 and 7 =1,2, ..., s. Without loss of ge-
nerality we assume that these sets are mutually disjoint. Let X;;=
ViNZ;;) and Y;; = n(Xi;) = Ve(Z;;). These open and closed sets are
such that (X;;, V;;) is a covering space of Z;;, where V;; = V| X,
and (X;;, 7;;) is a covering space of Y,; where 7;; = 7| X;;. Since
Y, C O, and E; is an n™ order subgroup of E(u,B:u;A) which is
simply transitive of the fibers of @, ;, it follows that K, = E;| X;;
is an n™ order subgroup of E(X;;: Y;,) which is simply transitive on
the fibers of X;.

For each 7 and j, let ¢;; be the idempotent in A corresponding to
the open and closed set Y;;. Also, let G;; be the n" order subgroup
of G;|e;;B such that G} = E;;. It follows that G;; = G, |e;;B and
thus G; = Gy; X Gy X +++ X Gy;. Since e¢;,;A is the fixed algebra of
G;; (Lemma 2.5), by Lemma 2.6, ¢;B is a Galois extension of e;A
with Galois group G;.

We next show that each ¢;;F' is G;;-strong. By our assumptions
on the u,F’s, for each j, for any two distinct automorphisms g, and
g, in G;, and for any idempotent u, in u,B, there exists an element
¢ in F such that g,(u;c)u, # g,(u,c)u,. In particular, for g, g, in G;;
and for any idempotent ¢, in ¢;;B C u,B, there exists an element ¢ e F
such that

gi(es;0)e = 9:(u0)ei;8 # gou;0)es0, = gu(€ise)e, -

Therefore each e, F is G;;-strong.

By Theorem 3.5, ¢;;F is the fixed algebra of G,;(B: F') = {ge G,;:
gle;;e) = e;;¢ for all ce F} for each ¢ and j. Since the proof of 4.2
does not depend upon the particular decomposition of F, F' is the fixed
algebra of

Gu(B:F) X +++ X Gy(B:F) X +++ X Gu(B: F) X +++ X G(B: F")
=GB:F) X +--G(B: F) = G(B: F) .

This completes the proof.
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In conclusion, we have the following charcterization of the fixed
algebras of Gy(B: A).

THEOREM 4.6. Assume A 1is semi-simple, B = Alz]/(a(x)) and
a(x)el factors imto monic linear factors over B. Let G(B:A) =
G, X Gy X +++ X G, be defined as in the opening remarks of this sec-
tion. Then a closed subalgebra F of B which contains A with the
property that u;F is G,-strong for each j is the fixed algebra of a
subgroup of G«(B: A) if and only if (@4, V) 1s a local covering space
of Op.

The author would like to express his appreciation to Professor
John A. Lindberg, Jr. The author would also like to thank the re-
ferees for their helpful suggestions and especially for pointing out
the error in the original version of Lemma 1.10.

The author is also indebted to Mr. Philip Downum for a careful
reading of the preprint and for pointing out two minor mistakes, which
have been corrected.
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