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GALOIS THEORY FOR BANACH ALGEBRAS

DAVID T. BROWN

This paper deals with the classical Galois theory in the
context of the Arens-Hoffman extension B — A[x]/(a(x)) of a
commutative Banach algebra A (with identity over the complex
field ^ ) with respect to a monic polynomial a(x) over A with
an invertible discriminant. We show that the fundamental
theorem of the Galois theory for commutative rings [S.U.
Chase, D. K. Harrison, and A. Rosenberg, Galois theory and
cohomology of commutative rings, Memoirs, Amer. Math. Soc.
No. 52 (1965)] applies to our situation. The fixed algebras of
the subgroups of the Galois group are then characterized for
the case where A is semi-simple. The techniques are primarily
topological and consist in examining the relationships between
ΦB and ΦA, where the Φ's denote the respective carrier spaces
of the Banach algebras A and B together with the usual
weak * topology.

The topological techniques referred to in the abstract, stem from
two results. The first is by J.A. Lindberg, Jr. [12, Proposition 1.3]
which shows that ΦB possesses a property similar to that possessed
by a covering space of ΦA. The other result is by G.A. Heuer [6,
Th. 3.5] which shows that under certain connectedness assumptions,
ΦB is a covering space (in the sense of Chevalley [5]) of ΦA. This
classical notion of a covering space will not be used since we do not
wish to limit ourselves to working with a connected and locally
connected space ΦA. At the other extreme, we do not need the full
generality used by S. Lubkin in [13]. We will therefore modify
Lubkin's definition and work with our own version of a covering space.
The first section of this paper develops all aspects of this notion
which we will be using.

We present some of the basic notions of the Arens-Hoffman ex-
tension in §2 and then show that in a very special case (which includes
the case where ΦA is a connected space), the fundamental theorem of
the Galois theory for commutative rings [4] can be applied.

In §3 and §4, we characterize the fixed algebras of the subgroups
of the Galois group in terms of our notion of a covering space. This
will be done under the assumptions that A is semi-simple and that
the generating polynomial a(x) factors completely over B. After
obtaining results for the special case dealt with in §2, we prove
corresponding results for the general situation.

This paper builds upon the work of G.A. Heuer [6], J.A. Lindberg,
Jr. [11] and [12] and Heuer and Lindberg [7].
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1* DEFINITION. Let X and Y be topological spaces, and let p
be a continuous mapping of X onto Y. We will say that (X, p) is a
local covering space of Y if card (p~\y)) (= cardinality of the set
{p~ί(y)}) is a finite constant for each y e Y (this constant may depend
on yeY) and if for each ye Y with p~ι(y) = {aά, α?2, •••,%}, there
exists disjoint neighborhoods C/i, ί72, •••, Uk in X of ^x, xz, * 9xk re-
spectively such that p restricted to each Uζ is a homeomorphism of
U* onto j>(^) and j r 1 ^ ) ) - Uί=i Ut.

In the event (X, p) is a local covering space of Y with the property
that card (p~\y)) is a constant independent of y e Y, we will say that
(X, p) is a covering space of F.

We give a necessary and sufficient condition that (X, p) be a local
covering space of Y in the case where both X and Y are compact
Hausdorff spaces. We note that the compactness of X implies that
the cardinality of each fiber p~ι(y) in X must not only be finite, but
must also be bounded by some integer.

THEOREM 1.1. Assume X and Y are compact Hausdorff spaces
and p is a continuous mapping of X onto Y. Then (X, p) is a local
covering space (covering space) of Y if and only if p is an open
mapping with the property that for each x e X, there exists a neighbor-
hood Vx in X of x such that p restricted to Vx is one-to-one (and
card (p~ι(y)) is a finite constant independent of yeY).

Proof. Assume (X, p) is a local covering space of Y. Let V be
an open subset in X and select any point yoep(V) with p~1(y0) =
fan •••>#*;}- Let Uu U21 - >,Uk be disjoint open neighborhoods in X
of x19x2, , xk respectively such that Uι Π V Φ φ, p restricted to each
Ui is a homeomorphism of £/* onto p(Uλ) and p~ι(p(Uλ)) — \Ji=1 U{.

For each i, set F< = i7< Π P~ι(p(U, Π V)). It follows that the F/s
are mutually disjoint, p(Vi) = p(Uλ Π V) for each i and p~\p{V$) =
Uί=i V% Since p restricted to each Ui is a homeomorphism, each F;
is open with respect to the relative topology of J7<. Since the latter
set is open, each V{ is open in X.

Since X — p"\p{V^) is a compact subset of X, p(X — p^ipiVΊ))) =
Y — p(Vj) is a compact, and therefore closed, subset of Y. Therefore
PiVΊ) = 2>(Z7i Π V) is an open subset of Y which contains y0 and which
is contained in p(V). Thus, p(V) is an open subset of Y. Consequent-
ly, p is an open mapping.

To prove the converse, assume p is an open mapping, which satisfies
the given condition. Let yoe Y and set p~\y0) — {xίf , %}. Since X
is a Hausdorff space, there exist mutually disjoint open neighborhoods
Vlf F 2, , Vk in X of xlf x2, , xk respectively. We assume that p
restricted to each F* is one-to-one (if not, replace each F< by F 4 Γί
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(interior of Vx.)). Let UQ = ΠU p(Vi) and let Ut = V, n r W o ) for each
i = 1, 2, , k. Thus UiU ϋί c P~\UQ). Since p is a continuous open
mapping, Ϊ7O is an open neighborhood in Y of y0 and each E7, is an
open neighborhood in X oΐ xit The t//s are mutually disjoint and
each of them is mapped onto Uo by p.

Now let W = ί/o (Ί p(X - U?=i E/i) T h ί s subset of Γ is closed
with respect to the relative topology of UQ. If W is the empty set,
then p-ι(UQ) c:\JLiUi and therefore p~\UQ) = USU ^ Also p | [7,
(p restricted to £7*) is one-to-one for i = 1, 2, , k. Finally p\Ui is
a homeomorphism since each £7* is open and p is an open mapping.
This completes the proof for the case W = φ. If, on the other hand,
there is a point yeY such that yeW, then there is a set Wo in F
which is open with respect to the relative topology of Uo and which
contains y0 but is disjoint from W. This means that p~ι(WQ) c (Jί=i £7*-
Since Uo is open in Y and since #0 e T70, Wo is an open neighborhood
in Y of #0. For each i, let TΓi = ?/» Π P'H Wo) This set is an open
set in X which contains xi% It follows that p(Wi) = Wo for ί =
1,2, ••-,& and ^(Wo) = Ui=i ^ The proof is now completed by
applying to the TF/s the argument used on the CZ/s in the case
W = φ.

From now on, when we write the phrase "(V, r) is a local covering
space (or covering space) of i7", we will assume both V and U are
compact Hausdorff spaces and r is a continuous mapping of V onto
U. Note that a subset of a compact Hausdorff space is closed if and
only if it is compact, and a continuous mapping between two such
spaces is a closed mapping. Also, if r and s are two mappings such
that the composite mapping ros is defined, we will write rs for ros.

LEMMA 1.2. Let (X, p) and (Z, q) be two local covering spaces
of Y and assume w is a continuous mapping of X into Z such that
p = qw. Then w is an open mapping.

Proof. Let U be an open subset of X and suppose zew(U).
Select a point x e wy(z) Π U. Since (Z, q) is a local covering space of
Y, there exists an open neighborhood V in Z of z such that g | V is
one-to-one. We assume V is so small that q(V) czp(U). There also
exists an open neighborhood Uo in Xof x such that Uocz w~\V) n U.
By replacing Uo by Uo Π ̂ (^(U o ) Π q(V)) and F b y UoΠ q~\p(Uo) Π q(V))
if need be, we may and do assume that p(UQ) = q(V).

Now let zoe F. There is a point xoe UQ such that p(xQ) = q(z0).
Therefore qw(x0) = p(x0) = g(20). Since Uo c w" x (F), w(»0) e F. But
since g | F is one-to-one, w(£0) = «0 This means zoew(Uo). Thus
7 c ^ ( ί / 0 ) c w ( [ / ) . The fact that zeV and F is open implies that
w(U) is an open subset of Z. This completes the proof.
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If (X, p) is a local covering space of Y, denote by E(X: Y) the
group of all homeomorphisms φ of X onto itself with the property
that pφ = p.

LEMMA 1.3. Assume (X, p) and (Z, q) are two local covering
spaces of Y. Suppose w and u are two continuous mappings of X
into Z such that p = qw = qu. Then H = {x e X: wψ(x) = u(x) for
any φ e E(X: Y)} is an open and closed subset of X.

Proof. Since wφ and u are both continuous mappings of X into
the Hausdorff space Z, H is closed in X. (See, for example, [10,
Problem C, p. 100]).

To show H is also open, let xoeH and set z0 = u(x0) = wφ(x0).
Let U be any open neighborhood in Z of z0 such that q \ U is one-to-
one and let V be any open neighborhood in X of x0 such that
u(V) Π wφ(V) a U. If xe V, then u(x) and wφ(x) are both in U, and
furthermore, qu(x) = p(x) = pφ(x) = qwφ(x). Since q | V is one-to-one,
w(a?) = w0(α;). This means xeH. We have thus shown that VczH
which implies that H is an open subset. This completes the proof.

The next result enables us to work first with components of
spaces and then to extend to open and closed subsets. An equivalent
form of the following lemma can be found in [8, p. 47].

LEMMA 1.4. Let C be a component in a compact Hausdorff space
X and let U be any open set in X which contains C. Then there
exists an open and closed set K in X which contains C and ivhich
is contained in U.

LEMMA 1.5. Assume (X, p) is a local covering space of Y and
let K be an open and closed subset of X. Then for any integer s,
Ks = {y e Y: card (p~\y) Π K) = s] is an open and closed subset of Y.

Proof. Let y e Ks and let p~\y) Π K = {xly x2, , x8}. Select
open neighborhoods VΊ in X of x{ for i — 1, 2, , s such that (i) each
Vi is contained in K (ii) p restricted to each V{ is a homeomorphism
of Vt onto a set Vo in Γ, and (iii) p~ι(VQ) Π K = \J8

i=1 F<. This choice
of the F?s is possible since p is an open mapping. (The details are
essentially the same as in the proof of Theorem 1.1).

Fo is an open neighborhood in Y of y. It follows from (ii) and
(iii) that Vo is contained in Ks. This means Ks is an open set. But
Ks must also be closed since p(K) is the finite union of K{(i = 1,2,
• , N) and the if/s are mutually disjoint. (Recall the comment prior
to Theorem 1.1 that there exists an integer N such that card {p~\y)) < N
for all yeY).
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Our main interest in local covering spaces is to obtain properties of
the group E(X: Y) of "covering homeomorphisms". The next result
is the first of our two main technical lemmas which deal with this
situation.

LEMMA 1.6. Assume (X, p) is a local covering space of Y and
assume K is an open and closed subset of X. Also suppose that xQ

and x'o are tivo distinct points of K, and that r and s are two con-
tinuous mappings of X into itself such that pr — p — ps, r(xQ) = x'o,
and s(xΌ) — x0. Then there is a homeomorphism ψ in E(X: Y) such that
φ(x0) — ajj, φ(K) = Kj and φ is the identity homeomorphism on X — K.

Proof. Let H — {xe X: sr(x) = x}. This is a nonempty subset of
X which, by Lemma 1.3 is open and closed. Since sr \ H is the identity
mapping, r | H is one-to-one. Both mappings are closed since X is a
compact Hausdorff space. Moreover by Lemma 1.2, both mappings are
also open.

Let C and D be the components in X such that x0 e C and x'Q e D.
Then CaKΓ) H, D <z K,r(C) a D and s(D)czC. Therefore, C =
sr(C) c s(D) c C. Consequently, s(D) = C. Furthermore r(C) = D since
D c r(H) and rs \ r(H) is the identity mapping. If C and D are distinct
components, then there exists disjoint open sets U and V in X such
that CdUciKnH.DczVczKnriH), and r (17)c7 . By Lemma
1.4, there exists an open and closed set KQ in X such that C a KQ c U.
Thus r{K,)ar{U)c: V. If follows that the sets r(KQ) and KQ are
disjoint. Define a mapping φ of X into itself as follows:

and φ is the identity mapping on X — K0 U r(KQ). This is a one-to-one
mapping of Ko onto r(K0) and of r(KQ) on Ko. Since KQ and r(K0) are
disjoint, φ e E(X: Y). Also, φ(x0) = #5, and the fact that K0 c K im-
plies φ(K) = K and φ is the identity off of K. This completes the
proof for the case where C and D are distinct components.

On the other hand, if C and D are the same component, then
r(C) = C = s(C). Since p(C) is a closed and connected subset of Y,
the argument used in the proof of [12, Th. 2.4] shows that p~~\p(C))
is a finite union of disjoint connected sets each of which is open (and
therefore closed) in the relative topology of p~\p{C)). This means
that there exists an open set U in X such that U Π P"\p{C)) = C.
We assume, without loss of generality, that U is a subset of Hf] r{H) Π K.
By Lemma 1.4, there exists an open and closed subset Ko in X such
that C(zKodU. It follows that KQ Π P~ι{v{C)) = C. Also, KoaHn r(H)
implies that both r | KQ and s \ Ko are one-to-one mappings.

Let y± be any element of p(C) and assume card (p~\y^ Π C) = m.
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It follows from Lemma 1.5 that Km = {y e p(K0): card {p~\y) Π Ko) = m)
is an open and closed subset of Y. Since p(C) is connected and has
a nonempty intersection with Km, it must be a subset of Km. There-
fore, for any y e p(C), card (p-ι(y) Π C) = card (jr\y) Π P~\P(C)) Π lζ>) =
card {p~\y) Π 1Q = m.

Now let P = {y e Km: r(p-ι(y) Π i Q c i Q . P is a subset of Y
which contains p(C) and is contained in Km. We note that y e P if
and only if y e Km and r maps p~\y) Π iζ> onto itself. We will show
that P is an open and closed subset of Y.

( i ) P is an open set. Let yoeP and assume p~\y0) Π Ko =
{#J, Λ?O, •••,<&?}. For each i = 1, 2, , m, let J7< be an open neigh-
borhood in X of x\ such that both J7i and r(Ui) are contained in the
open and closed set p~ι(Km) Π KQ and such that p restricted to each
Ui is a homeomorphism of U{ onto a set £70 in Y. For any point
y e Uo, P"\v) Π Ko c ^(^Γm) Π iΓ0. This means card (p- 1^) Π Ko) = m.
Consequently, p~ι(y) Π Kod \J™=1 U%. Thus for x e p~ι(y) Π iζ>, r(ίc) is
an element of r(Uj) for some j . Since the latter set is a subset of
Ko, τ{p-\y) Π i Q c p-1^/) Π iζ). Therefore [/0 c P. It follows, since
Uo is open, that P is an open set.

(ii) P is a closed set. Let yL be a point in the closure of P and
assume there exists xγ e p~l(yi) Π Ko such that r(^) g ϋΓ0. (i.e. assume
y^P.) Let V be any open neighborhood in X of xι such that
F c p " 1 ^ ) Π Fo and r ( F ) Π Ko = ψ. Since p(F) is an open neighbor-
hood in Y of yλ, there exists a point 7/ in p(V) Π P. But for any £
in p" 1 ^) Π F, r(.τ) must be a point in p~\y) Π i^0. Thus r(V) Π if0 is
nonempty. This is a contradiction. Therefore any xx in p^iyj Π if0

has the property that r(xι) e iΓ0. This means yλe P and thus P is a
closed set.

Finally, consider the set Q — p~\P) Π Ko. This is an open and
closed set in X which contains C. Since pr = p, and r(p~1(P)) c p~\P),
r maps Q into itself. But the fact that r\K0 is one-to-one and
card (p~\y) Π Ko) — m for all y e P implies that r must map Q onto
itself.

Define a mapping 0 of X into itself by φ | Q = r | Q and ^ is the
identity elsewhere. Since Koa K and r \ Ko is one-to-one, φ \ K is a
one-to-one mapping of i ί onto itself. It follows that φ(x0) = xό and
φ e E(X: Y). This completes the proof for the case where C and D
are the same component. Therefore the proof of Lemma 1.6 is
complete.

We have the following corollary to the proof of the above lemma.

COROLLARY 1.7. Assume (X, p) is a local covering space of Y
and let C be a component of X. Then card (p^iy) ΠC) is a constant,
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say m, independent of yep(C). Furthermore, if K is any open and
closed set in X which contains C and if r is a continuous mapping
of X into itself such that pr = p and r(C) = C, then there exists an
open and closed set Q in X with the following properties: (i) C c Q a K,
(ii) r(Q) = Q, (iii) card (p~\y) Π Q) = m, for all yep(Q), and (iv)

Π Q = C.

We also remark that if C and D are distinct components such
that p(C) = p(D), then the corresponding open and closed sets Qc and
QD given by the above corollary can be chosen such that they are
disjoint and such that p(Qc) — p{QD).

The above two results now yield a structure theorem for local
covering spaces.

COROLLARY 1.8. (X, p) is a local covering space of Y if and
only if there exists a finite covering of Y by mutually disjoint, open
and closed sets Y19 , Yk with the property that if Xι = P~\Yd and
Pi = p\ X{, then (Xit p{) is a covering space of Y{ for i = 1, 2, , k.

Proof. Assume (X, p) is a local covering space of Y and let R
be a component of Y. Then, as in the second half of the proof of
Lemma 1.6, p~ι(R) — \Jqj=\Rj, where the R/s are mutually disjoint,
connected, open and closed with respect to the relative topology of
p~ι(R), and p(Rj) = p(Ri) for each j = 1, 2, - , q. It follows that each
Rj is a component of X. By applying the above corollary to each of
the R/s with r equal to the identity mapping in each case, there
exists open and closed sets Q19 Q2, , Qq in X containing R19 R2, - ,
Rq respectively such that if my = card (p~\y) Π Rj) for each y e Rf then
nij = card (p~~ι(y) Π Qs) for each y e p(Q3). We assume, without loss
of generality, that the Q/s are mutually disjoint and that p maps
each Qj onto a set Qo in Y. This latter set is open and closed in Y.
Thus for each y e QQ, card (p-'iy)) = Σy=i m i τ h i s means that (p~L(Q0),
P I P^iQo)) is a covering space of Qo. This part of the proof is com-
pleted by using the fact that Y is a compact space. Since the converse
is immediate, the proof is complete.

DEFINITION. Assume (X, p) is a local covering space of Y and K
is any open and closed set in X. We will say that a subset E of
E(X: Y) is {simply) transitive on the fibers of K if for any y e p{K)
and for any two points xx and x2 in p~\y) Π K, there exists a (unique)
homeomorphism φ in E such that φ(Xj) = x2.

If for any yep(K), card (p~ι(y) Π K) = m, then a subset E of
i?(X: Y) is simply transitive on the fibers of K if and only if E con-
tains exactly m elements no two of which agree at any point of K.
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We have an additional corollary to Lemma 1.6.

COROLLARY 1.9. Assume (X, p) is a local covering space of Y
and let K be any open and closed set in X. If E(X: Y) is transitive
on the fibers of X, then E(K: p(K)) is transitive on the fibers of K.

For the remainder of this section, we will deal exclusively with
covering spaces. (Our application of local covering spaces does not
occur until the last section of this paper.) The next result is the
second of our two major lemmas in this section.

LEMMA 1.10. Assume (X, p) is a covering space of Y. Then
E(X: Y) is transitive on the fibers of X if and only if there exists
a subset E of E(X: Y) which is simply transitive on the fibers of X.

Proof. Assume there exists elements Φi,φ2, 9φn in E(X: Y)
(n = card (p~\y)) for all y e Y) such that for any x e X and i Φ j
Φi(x) Φ Φj(%). Let ye Y and let x, and x2 be any two points in p~\y).
Since card {{φ^x^: i = 1, 2, , n}) = n = card {p~\y)), there exists a j
such that φjixj) = x2. Thus E(X: Y) is transitive on the fibers of X.

Assume E(X: Y) is transitive on the fibers of X and let D be a
component in Y. We will construct n elements of E(X: Y) no two
of which agree at any point of p~\D). As in the proof of Corollary
1.8, p~\D) = UΓ=i Xj where the X/s are mutually disjoint components
of X which are open and closed with respect to the relative topology
of p~ι(D). If Xi and Xά are any two distinct components, then there
is at least one homeomorphism ψ in E(X: Y) such that φ{Xi) Π X3 is
nonempty. But the latter set is open and closed with respect to the
relative topology of p~ι{D). Thus φ(Xi) = X3. Consequently, there is a
constant k independent of j = 1, 2, , m such that card (p~\y) Π X3) =
k for all y e D. (Note that km = n).

For any y e D, arbitrarily label the points of p~\y) Π X3 by xu,
%2j, ' — ,%kj- Since E(X: Y) is transitive on the fibers of X, for each
i = 1, 2, , k there exists an element pi3 in E(X: Y) such that
Pij(χιj) — χij- An argument used in a previous paragraph of this proof
shows that each pτj maps Xά onto itself. By Lemma 1.3, no two
Pi/s agree at any point of X3 . Upon applying Corollary 1.7 for each
pi3 and then taking the intersection of all of the open and closed sets
in X obtained, there exists an open and closed set Q3- in X which
contains X3 and has the following properties: card {p~~\y) Π Q3) = k for
all y e p(Q3); pi3{Qό) = Q3 for each i = 1, 2, •, k; and p~\D) n Q3 = X3.
For any x in Qά; with p(x) = y, {pi3(x): i = 1, 2, - , k) = p~\y) Π Q3 .
Consequently, no two pi3 's agree at any point of Qo .

By replacing each Q3 by Q3 n (ΠΓ=i P(QJ)) ^ n e e d be, we may and
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do assume that p maps each Q3 onto a set Qo in Y. Furthermore, we
assume the Q/s are mutually disjoint since we can select m mutually
disjoint open and closed sets Kίy , Km in X containing Xly , Xm

respectively and then (Corollary 1.7) pick the Q/s such that in addition
to all of the above properties, X3 c Q3 c K3 for each j . It follows
from these assumptions that p^iQo) = UΓ=i Qj

The next step in the proof is to show that without the loss of
generality, we may assume that for each j = 1,2, , m, E3 — {pi3: i —
1, 2, , k] is a subgroup of E(Q3: Qo). This part of the proof is ac-
complished in two steps.

( i ) Corresponding to each integer ί(l ^ i ^ k), there exists an
integer r ( l ^ r ^ k) such that prj(xl3) = pTlfaij)* By Lemma 1.3, Hi =
{x e X: prj(x) = pτ/(x)} is an open and closed subset of X. Thus X3 c H{

for i = 1, 2, , k. Let T3 = Q3 Π (Γiϊ=i H*) This set is open and
closed in X, X3 c T3 c Q3 and the elements of Eά restricted to T3 are
closed with respect to the operation of taking inverse mappings. We
now modify the T/s so that p maps each T3 onto a subset To in Y
and P~\TQ) — (J;=i ^ Therefore we may and do assume T3 = Q3 for
i = l ,2 , . . . ,&.

(ii) For any two distinct integers r and s (1 ^ r, s <̂  A:) there
exists an integer q such that pqj(x13) — ί>rj(3>.i(^ii)). An application of
Lemma 1.3 yields an open and closed set in X which contains X3 and
on which pqj = PrjPsj We now repeat this argument for each of the
k2 elements in E3 x E3. Upon taking the intersection of all of the
sets obtained, we get an open and closed set O3 in X which contains
Xj. Set Zj = Q3 Π O3. This is an open and closed set such that the
elements of E3 restricted to Z3 are closed with respect to the operation
of taking composite mappings. We modify the sets Z3 as above.
Therefore we may and do assume Z3 = Q3 for each j . We have shown,
therefore, that without loss of generality, E3 = {pi3: i = 1, 2, , k]
can be assumed to be a subgroup of E(Q3: Qo) for each j = 1,2, , m.
Indeed, E3 is a kth order subgroup which is simply transitive on the
fibers of Q3(j = 1, 2, , m). (That is, for each y in Qo and any two
points x and x' in p~ι(y) Π Q3, there exists a unique i such that
pi3{x) = xr.) For each j , we redefine each ^ ( i = 1,2, •••,&) to be
the identity mapping on X — Q iβ Let Eo = E1 x E2 x x i?m. JEΌ
is an nth order subgroup of E(p~'γ(Q0): Qo) which is simply transitive
on the fibers of p~\QQ). We also view Eo as a subgroup of E(X: Y).

To summarize the proof thus far, corresponding to each component
D in Y, there exists an open and closed set Qo in Y containing D and
there also exists an nth order subgroup Eo of Eip-^Qo): Qo) which is
simply transitive on the fibers of p^iQo)*

Using the compactness of Y, we extract a finite covering of Y by
open and closed sets Y19 Y2, •••, Ys such that corresponding to each
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Yr, there exists an nth order subgroup Er = {φlr, φ2r, , ψnr} of
E(p~\Yr): Yr) which is simply transitive on the fibers of p~ι(Yr).
Also, each of the φir's is the identity mapping off of p~\Yr). Finally,
we may and do assume the Y/s are mutually disjoint since if not,
set Y[ = Y, and for 2 ^ r ^ s, set Y'r = Yr - Uί^1 Y'*

For each i = 1,2, •••, w, define the mapping φi of X into itself
by & I P~ι(Yr) = 9 i r I p-1( Yr) for r = 1, 2, , s. Since each ^ ί r maps
p~\Yr) onto itself and is the identity mapping off of p~ι(Yr), each φi

is a well-defined homeomorphism in E(X: Y). Also the set {φ19 φ2, ,
φn) has the property that no two of its elements agree at any point
of X. That is, the set E = {φ19 φ2, , φn) is simply transitive on the
fibers of X. This completes the proof of Lemma 1.10.

We emphasize that the set E given by the above lemma does
not in general form a subgroup of E(X: Y). Also, the elements in
the set E are not unique. The proof of Lemma 1.10 yields the follow-
ing corollary, which will be exploited in the final section of this paper.

COROLLARY 1.11. Assume (X, p) is a covering space of Y and
also assume E(X: Y) is transitive on the fibers of X. Then there
exists a finite covering of Y by mutually disjoint open and closed
sets Yx, Y2, •••, Ys with the property that for each r, there exists an
nth order subgro%ιp Er of E(p~1(Yr): Yr) which is simply transitive
on the fibers of p~ι(Yr) and each of whose elements is the identity
mapping off of p~ι{Yr).

There is one case where the set {φlf , φn) given by Lemma 1.10
does form a subgroup of E(X: Y).

COROLLARY 1.12. Assume (X, p) is a covering space of a connect-
ed space Y. Then E(X: Y) is transitive on the fibers of X if and
only if there exists an nth order subgroup of E(X: Y) which is simply
transitive on the fibers of X. Also, if X is connected, then E(X: Y)
is transitive on the fibers of X if and only if it is simply transitive
on the fibers of X. (This implies that E(X: Y) is transitive on the
fibers of X if and only if its order is n).

The final topic in this section deals with the "orbit space" of a
finite subgroup of E(X: Y). We assume (X, p) is a covering space
of Yand let E be a finite subgroup of E(X: Y). Let R = {(x, xf) e X x X:
for some φ e E, φ(x) = x'}. R is a closed subset of X x X since R =
UφeE {(%, ®f) e X x X' Φ(x) = %'}. Denote by X/E the space of equivalence
classes determined by the equivalence relation defined by R. We endow
this space with the quotient topology. That is, the largest topology
(greatest number of open sets) which makes the projection map
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P: X—> X/E continuous. Thus a set U is open in X/E if and only
if P~\U) is an open subset of X (see [10, p. 94] for details). If A
is an open subset of X, R[A] = {x e X: for some x' e A, (x, xr) e R] =
{xeX: for some x'e A and φeE,φ(x) = x'} = \JφeEφ(A). Thus R[A]
is an open subset of X. Therefore, P is an open mapping of X onto
X/E [10, p. 97]. It follows from [10, p. 98] that X/E is a Hausdorff
space. Moreover, since P is a continuous mapping, X/E is a compact
space. Consequently, P is also a closed mapping.

To summarize, if 7̂ is a finite subgroup of E(X: Y), then the
" orbit space" X/E is a compact Hausdorff space with respect to the
quotient topology. Also the projection mapping P of X onto X/E is
a continuous, open and closed mapping. If follows from Theorem 1.1
that (X, P) is a covering space of X/E if and only if card (P~](P(x)))
is a finite constant independent of P(x) e X/E. We also note that the
subgroup E of E(X: Y) is transitive on the fibers of (X, P).

LEMMA 1.13. Assume (X, p) is a covering space of Y and assume
E is a finite subgroup of E(X: Y) with the property that no two
elements of E agree at any point of X. Then (X, P) is a covering
space of X/E. Conversely, if (X, P) is a covering space of X/E, then
E possesses a set of k ( = card (P~1(P(x))) for all P(x) e X/E) elements
which is simply transitive on the fibers of (X, P).

Proof. From the above remarks, we need only show that card
(P-'iPix))) is a constant independent of P(x) e X/E. Since P~ι(P{x)) =
\JφeE {xf e X: φ{x) = x'}j the assumption on E implies that for each
P(x) e X/E, card (P~ι(P(x))) = order of E.

Since E is transitive on the fibers of (X, P), the converse follows
from Lemma 1.10. This completes the proof.

2* After presenting some basic facts concerning Arens-Hoffman
extensions, we give a necessary and sufficient condition for the generat-
ing polynomial to factor into monic linear factors over B. The final
objective of this section is to apply the fundamental theorem of the
Galois theory for commutative rings [4].

We assume A is a commutative Banach algebra over the complex
field & and we assume A possesses an identity element e. Let a(x) =

χn _|_ Σΐlϊ (XiX* be a monic polynomial in A[x]. Denote by (a(x)) the
principal ideal in A[x] generated by a(x). Then R. Arens and K.
Hoffman have shown in [2] that B = A[x]/(a(x)) possesses a family of
equivalent norms with respect to which B is a Banach algebra with
the property that the natural embedding of A into B is an isometric
isomorphism of A onto a closed subalgebra of B. The family of norms
is given by
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Λ - l

ΣΣ llαillί* (for

where £ is any positive number such that Σ S H ^ I I ^ ^ ^ . Since
such a £ always exists, we take t = 1. We refer to i? as the Arens-
Hoffman extension of A with respect to α(α?).

We denote the coset x + (a(x)) in j? by £ and the coset α + (α(aθ)
in B by α for any aeA. Thus any element in B is uniquely expressible
in the form Σ U ^ Γ for a{ e A. Also, the norm of such an element
is 11 Σ S 1 <iit 11 = ΣS111 &i 11 where the latter norm is the given norm
in A.

If β(x) = ̂ Σjf^βiX1 e A[x], we view a? as an indeterminant over
A (= Gelfand representation of A) and ^ as well as an indeterminant
over A and we let β(x) and βh(x) denote, respectively, the polynomials
ΣΠ=o &&' in A [a] and ΣΓ=0 &(&)&< in i f [α;] for heΦA. Arens and Hoffman
have shown that if B = A[ίc]/(α(x)), then ΦB is identifiable with the
set {{h, X)eΦA x ^ : αΛ(λ) = 0} together with the relative topology of
ΦA x ^[2, Th. 4.2], (We note that the carrier space Φ^ of any
commutative Banach algebra SI over ^ with identity is a compact
Hausdorίf space.) The projection mapping π of ΦB onto ΦA defined by
π(h,X) = h for (h,X)eΦB is a continuous open mapping [12, §1].

If β(x) e A[x], the discriminant dβ of /3(#) is defined as in [15, p.
82] and is an element of A. Furthermore for h e ΦA, dβ(h) is the
discriminant of βh(x). Thus dβ(h) — 0 if and only if βh(x) = 0 has at
least one root of multiplicity ^ 2. Throughout this paper we will be
assuming that the generating polynomial a(x) has an invertible dis-
criminant d. Thus d(h) Φ 0 for each h e ΦA. Therefore, π~ι(h) consists
of precisely n (= degree of a(x)) distinct points in ΦB for each h e ΦA.
In order to simplify the statements of our results, we denote by I(A)
(or simply I if there is no confusion as to the algebra in question) the
collection of all monic polynomials in A[x] having an invertible dis-
criminant in A.

For the remainder to this paper we assume A is a commutative
Banach algebra over the complex field ^ , A has an identity element
e, and B = A[x]/(a(x)) is the Arens-Hoffman extension of A with re-
spect to the nth degree polynomial a(x) e I.

From the above remarks and from Theorem 1.1, we have the
following:

2.1. (ΦB, π) is a covering space of ΦA.

Another proof of this follows from [12, Proposition 1.3].
The following is our criterion for showing that a monic polynomial

in A[x] factors into monic linear factors over B.
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LEMMA 2.2. Let Ύ(X) be an nth degree monic polynomial in A[x]
and let 2ί be any Banach algebra extension of A. (i.e., 21 is a Banach
algebra which possesses a closed subalgebra isomorphic and isometric
to A.)

If there exists bub2, , 6% in 21 such that 7(6*) = 0 for each i, and
if φi - bj)-1 e 21 for all i Φ j , then y(x) = Π?=i(a ~ h) in %[x].

Proof. Let β(x) = Π?=i (& ~ δ<) Since both Ύ(X) and β(x) are
monic polynomials of the same degree in 2ί[#], there exists a polynomial
r(x) e 2I[#] such that y(x) = β{x) + r(x) where either r(x) = 0 or else
the degree of r(x) is less than n. We assume r(x) ^ 0. Since r{bx) = 0,
r(#) = (α — δjg^ίϋ). Also, since r(b2) = (b2 — 61)g

r

1(62) = 0 and (δ2 — δj""1 e 2ί,
^(δg) = 0. Thus r(x) — (x — b.Xx — b2)q2(x). Continuing in this fashion,
r(x) = β(x)qn(x). Thus the degree of r(x) is at least n. This is a
contradiction and the proof is complete.

The next theorem uses the full machinery for covering spaces
which was developed in the first section.

THEOREM 2.3. A necessary and sufficient condition for a(x) to
factor into monic linear factors over B is that the group E(ΦB\ ΦA)
is transitive on the fibers of Φβ. Moreover, if the condition does
hold, we may select the n distinct roots of a(x) — 0 so that each of
them generates B over A.

Proof. Assume a(x) = ΠΓ=i (χ — &*•)> where the 6/s are all distinct
elements of B. Since a(x) e I, for each (h,X)e ΦB and for each pair
of distinct integers i and j , b^h, λ) Φ bά(h, λ). For i = 1, 2, , n,
define the mappings p{ of ΦB into itself by Pi(h, λ) = (h, bι(h, λ)) for
(h, λ) e ΦB. Each pt is a continuous mapping, which by Lemma 1.2
is also open. (There are examples to show that the p/s are not
necessarily one-to-one.) For any (h, λ) e ΦB, {b^h, λ): i = 1, 2, , n)
consists of the n distinct roots of ah{x) = 0. It follows that for any
heΦA and (h, λ) e π~ι{h), π~\h) = [p^h, λ): i = 1, 2, . . . , n).

To show E(ΦB: ΦA) is transitive on the fibers of ΦB, let h e ΦA and
assume (h, λ) and (h, λ') are two points of π~\h). From the above
paragraph, there exists two integers j and j ' such that pό{h, λ) ==
(h, λ') and pjf(h, λ') = (h, λ). By Lemma 1.6, there exists a homeomor-
phism φeE(ΦB:ΦA) such that Φ(h,X) =(h, λ'). Thus this part of the
proof is complete.

Conversely, assume E(ΦB: ΦA) is transitive on the fibers of ΦB.
By Lemma 1.10 there exists a set {φL, φ2, '",φn} in E(ΦB:ΦA) which
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is simply transitive on the fibers of ΦB. Define, for each i = 1,2, •••,%,
the functions /< of ΦB into itself by f^ti, λ) = £(&(&, λ)) for (h, λ) e ΦB.
Since each f{ is a simple root of ah(x) = 0, by the Arens-Calderon
Theorem [1, Th. 7.2], there exists elements b19 •••,&» in B such that
α:(&.) = 0 and bt = /<. The fact that each 64 seperates each fiber of
ΦB implies by [11, Th. 7.2] that each 6< generates i? over A. Thus
Af&i] = B. Now for any two distinct integers i and j>, and for any
(h, λ) G Φ5, (6i - 6yΠλ, λ) = %(φi(h, λ)) - ΐXΦj(h, λ)) ^ 0 since no two of
the φ/s agree at any point of ΦB. Therefore φι — &,-)-1 e J?. An ap-
plication of Lemma 2.2 completes the proof.

Both the necessary and the sufficient condition in the above theorem
are true if the assumption that a(x) e I is slightly weakened. Also,
the former condition is true if A is a normed algebra. (See [3], for
details.)

Denote by G(B: A) the group of all automorphisms g on B such
that g(a) — a for all ae A. The following facts enable us to translate
a property of G(B: A) into one of E(ΦB: ΦA) and thus utilize the material
in the first section of this paper. For any g eG(B: A), the dual
mapping g* of g is defined by b(g*(h, λ)) = gφ)~(h, λ) for all (h, λ) e ΦB

and beB. Since g* eE(ΦB: ΦA) ([11, Lemma 6.2]), we have a mapping
from G(B: A) into E(ΦB: ΦA). This mapping is order reversing and, by
[11, Corollary 6.5], it is also one-to-one and onto. Thus G(B: A) is
anti-isomorphic to E(ΦB: ΦA). For any subgroup G of G(B: A), we
denote by G* the image of G under this anti-isomorphism.

For the remainder of this section, we assume G(B: A) possesses
an nth order subgroup GQ(B: A) with the property that G0(B: A)* =
E0(ΦB: ΦA) is simply transitive on the fibers of ΦB. Thus, for example,
if ΦA is connected, then by Corollary 1.12 and Theorem 2.3, the existence
of G0(B: A) is a necessary and sufficient condition for a(x) to factor
into monic linear factors over B. If follows from Lemma 2.2 that

2.4. If G0(B: A) = {g19 g2, ., gn}, then a(x) = Π?=i (» - &(ϊ)).

LEMMA 2.5. Let Fo = {be B: gφ) = b for all g e G0(B: A)} be the

fixed algebra of GQ(B: A). Then FQ — A.

Proof. Assume G0(B: A) = {gly , gn} and set bά = gfa) for j =

1, 2, , n. If b = ΣΓ̂ Ό1 ait is any element in Fo, then b is a symmetric
function of the 6/s. Therefore, b can be written as a polynomial in
the elementary symmetric functions of the δ/s with coefficients in A.
But in view of 2.4, these elementary symmetric functions are the
coefficients of a(x). Consequently, be A. This means FoaA. The
proof is complete since the reverse inclusion always holds.
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DEFINITION. ([4, Definition 1.4 and Th. 1.3, pp. 18-20]). Let G
be a finite group of automorphisms on a commutative ring S and let
R = {s e S: g(s) = s for all g e G}. Then S is called a Galois extension
of R with Galois group G if for any g e G and any maximal ideal
M in S, there exists an element s e S such that s — g(s) $ M.

As is shown in [4], S is a Galois extension of JB with Galois group
G if and only if S is a separable iϋ-algebra (i.e., S is a protective
S 0 RS-module) and the elements of G are pair wise strongly distinct.
(Two ring homomorphisms hλ and h2 from T into [7 (both commutative
rings) are called strongly distinct if for any nonzero idempotent u in
U there exists an element te T such that hjftu Φ h2(t)u.)

LEMMA 2.6. // G0(B: A) is a subgroup of G(B: A) such that
G0(B: A)^ is simply transitive on the fibers of ΦB, then B is a Galois
extension of A with Galois group G0(B: A).

Proof. By Lemma 2.5, FQ = A. It follows from the fact that
G0(B: A) is simply transitive on the fibers of ΦB that if gι and g2 are
two distinct automorphisms in G0(B: A), then (g^γ) — ̂ (ί))"1 e B. Thus
for any g e G0(B: A) not equal to the identity, (jc — g(£))~ι e B. In
particular, (j — #(g)) is not in any maximal ideal of B. This completes
the proof.

In the event ΦA is connected, the above result is not new (see
[9, Th. 2.2]).

DEFINITION. ([4, p. 22]). Let 21 be any Banach algebra which
contains A and which is a Galois extension of A with Galois group
G. Then a subalgebra F of 21 is called G-strong if the restrictions
to F of any two elements of G are either equal or strongly distinct
as maps from F into 2ί.

THEOREM 2.7. ([4, Th. 2.3, p. 24]). Assume G0(B: A) is a sub-
group of G(B: A) such that G0(B: Ay is simply transitive on the fibers
of ΦB. Then there exists a one-to-one lattice inverting correspondence
between the subgroups of G0(B: A) and the separable A-subalgebras of
B which are G0-strong. If F is a separable A-subalgebra of B
which is Go-strong, then the corresponding subgroup is G0(B: F) —
{g e GQ(B: A): g(c) - c for all c e F). Moreover, for g e G0(B: A), G0(B,
g(F)) = g G0(B: F)g~ι. A subgroup G of GQ(B: A) is a normal subgroup
if and only if the fixed algebra F of G is mapped onto itself by
every element of G0(B: A). In this case, F is a Galois extension of
A with Galois group G0(B: A)/G.
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3. Our goal in this section is to characterize the G0-strong
separable A-subalgebras of B in terms of our notion of a covering
space. This characterization will be established under the assumptions
that A is semi-simple and G(B: A) contains an nth order subgroup
G0(B: A) such that G0(B: A)* is simply transitive on the fibers of ΦB.
We first present a few facts concerning subalgebras of B.

Assume F is a closed subalgebra of B which contains A. We
define the restriction mapping VF of ΦB into ΦF by VF(h, λ) = (h,X)\F
for (h, λ) G ΦB. Since VF is the dual of the injection mapping of F
into B, VF is continuous [14, p. 116]. We now show VF maps ΦB onto
ΦF. That is, we show that any maximal ideal M in F extends to a
maximal ideal in B. By [16, p. 254], B is an integral extension of
A (i.e., each element of B is a zero of a monic polynomial in A[x]).
Thus B is an integral extension of F. Therefore, by [16, p. 257], each
prime ideal in F can be extended to a prime ideal in B. Since each
maximal ideal in F is a prime ideal, and since each prime ideal in B
can be extended to a maximal ideal in B, each maximal ideal in F can
be extended to a maximal ideal in B.

Next, let πF denote the restriction mapping of ΦF onto ΦA defined
by πF{sί) = /C\A for each 4, e ΦF. Then, as with VF, πF is continuous.
Any maximal ideal h~\0) in A (he ΦA) can be extended to a maximal
ideal in F since if (h, λ) e π~\h), then (h, λ)~1(0) Π F is a maximal ideal
in F. Therefore πF maps ΦF onto ΦA. Finally, πF is an open mapping
since if U is an open subset of ΦF, then π(VF\U)) is an open subset
of ΦA. The fact that πFVF = π implies that πF(U) = π(VF\U)).

In summary, we have the following:

PROPOSITION 3.1. Assume F is a closed subalgebra of B which
contains A. Then the restriction mapping VF is a continuous mapping
of Φβ onto ΦF, while the restriction mapping πF is an open continuous
mapping of ΦF onto ΦA.

Now let G be a finite subgroup of G(B: A), and let F = {beB: g(b) =
b for all g eG} be the fixed algebra of G. F is a subalgebra of B
which contains A. Also, since each g eG is continuous, F is a closed
subalgebra. Let E be the subgroup of E(ΦB: ΦA) such that G* = E.
We denote by ΦB/E the space of equivalence classes under the equivalence
relation defined by means of the group E. (Thus (h, λ) ~ (h, λ') if
and only if for some φ eE, ψ(h, λ) = (h, λ')). Recally from §1 that
ΦBIE is a compact Hausdorff space and also recall that the projection
mapping P is a continuous open mapping of ΦB onto ΦBjE. We will
identify the carrier space ΦF of ί7.

THEOREM 3.2. Lei G be a finite subgroup of G(B: A), F the fixed
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algebra of G, and E the subgroup of E(ΦB: ΦA) such that G* = E.
Then there exists a homeomorphism 7 of ΦF onto ΦB/E such that
ΊVF — P, where P is the projection mapping of ΦB onto ΦB/E, and
VF is the restriction mapping of ΦB onto ΦF.

Proof. Define a mapping 7 of ΦF onto ΦBjE by Ί{VF{h,X)) =
P(h, λ) for (h, λ) G ΦB. We must show 7 is well-defined. Assume
G = {gu g2, , gr}. If, for heΦA and for any two points (h, λ) and
(h, V) in π~\h), P(h, λ) Φ P(h, λ'), then for each j = 1, 2, . . . , r, <?;(&,
λ) =5* (/&, λ'). By [14, Lemma 2.6.9] there is an element beB such
that b(h, λ') = 0 and δ(0*(Λ, λ)) = 1 for each j . Let c = Πr

j=ι g3(b).
Then ceF, c(h,X') = 0 and c(h,X) = Π^^g^bΠh, λ) = Πr

j=ιb(gf(h,X)) = 1.
Therefore, (h,\)\F Φ (h,X')\ F. This means F^(fe, λ) Φ VF(h, V). Con-
sequently, 7 is well-defined. It now follows that 7 is a continuous,
one-to-one mapping of ΦF onto ΦB/E. This completes the proof.

Throughout the remainder of this section we assume G0(B: A) is
an nth order subgroup of G(B: A) such that G0(B: Ay = EQ(ΦB: ΦA) is
simply transitive on the fibers of ΦB.

LEMMA 3.3. Let F be a GQ-strong separable A-subalgebra of B.
Then (ΦB, VF) is a covering space of ΦF.

Proof. By Theorem 2.7, F is the fixed algebra of G0(B: F) =
{geG0(B:A):g(c) = c for all ceF}. We let Eo be the subgroup of
E0(ΦB: ΦA) such that G0(B: F)* = Eo. By Theorem 3.2, there exists a
homeomorphism 7 of ΦF onto ΦB/E0 such that 7 VF = P. The fact that
Eo is a subgroup of E0(ΦB: ΦA) implies that no two elements of Eo

agree at any point of ΦB. Consequently, by Lemma 1.13, (ΦB, P) is
a covering space of ΦB/E0. It follows that (ΦB, VF) is a covering space
of ΦF.

LEMMA 3.4. Assume A is semi-simple and let F be a closed
subalgebra of B which contains A. Also suppose (ΦB1 VF) is a covering
space of ΦF. Then G0(B: FT = E0(ΦB: VF: ΦF) = {φ e EQ(ΦB: ΦA): VFφ =
VF). Furthermore, if F is GQ-strong, then the order ofE0(ΦB: VF: ΦF) =
card(F/(^)) = k, and the latter group is simply transitive on the
fibers of (ΦB, VF).

Proof. Assume ge G0(B: F). Let ceF, ^eΦF and (h, λ) e VF\^).
Then c(*) = c( VF(h, λ)) = c(h, λ) - g(cΓ(h, λ) = c(g*(h, λ)) = c( VF{g*{h, X))).
(We use c to denote the element c e B as well as the element ceF).
Since F separates the points of ΦF, VF(h, λ) = VF(g*(h, λ)). Therefore
VF = VFg*. This means G0(B: FT c EQ(ΦB: VF: ΦF).

Conversely, if φ e E0(ΦB: VF: ΦF), t h e n F ^ = VF. Since φ e E0(ΦB: ΦA),
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there exists an automorphism g e GQ(B: A) such that g* = φ. We must
show g e G0(B: F). That is, we must show g(c) = c for all ceF. For
any ceF and (h, λ) e Φg, we have g(c)~(h, λ) = c(g*(h, λ)) = c(F*.(0(/&,
λ))) = c(FF(/&, λ)) = c(h, λ). Thus g(c)~ = c on ΦB. Since A is semi-
simple and a(x)el, B is semi-simple [2, Th. 4.3]. Therefore #(c) = c.

To prove the second assertion in the lemma, since (ΦB, VF) is a
covering space of ΦF and since no two elements of E0(ΦB: VF: ΦF) agree
at any point of (ΦBy VF) (i.e., on ΦB viewed as the covering space
(ΦB, VF) of ΦF), k = card (Vγ(^)) ^ order of EQ(ΦB: VF: ΦF). We will
show that the latter group is transitive on the fibers of (ΦB, VF).
(This will imply that it is simply transitive on the fibers of (ΦB, VF)).

Let /ίeΦF and let (h, λ) and (h, λ') be any two points in VF\^).
Since π(h, λ) = π(h, λ'), there exists a homeomorphism ψ in E0(ΦB: ΦA)
such that 0(Λ, λ) = (h, λ'). Thus F^(A, λ) = VF(h, λ). By Lemma 1.3,
there exists an open and closed set Q in ΦB such that VFφ \Q = VF\Q.
Let u be the idempotent in B such that Q — {(h, λ) e ΦB: u(h, λ) = 1}.
Let geG0(B:A) such that g* = φ. We will show that geG0(B:F).
For any ceF and any (fe, λ) e Q, c(/&, λ) = g(c)~(h, λ). Since I? is semi-
simple, g(c)u = c^ for any ceF. Consequently, for any gQeGQ(B: F),
g(c)u = cu = #o(c)^ for any ceF. The fact that F is G0-strong implies
that g must be an element of G0(B: F). Therefore Φ e E0(ΦB: VF: ΦF).
Thus the latter group is transitive on the fibers of (ΦB, VF). This
completes the proof.

THEOREM 3.5. Assume A is semi-simple. Let F be a G0-strong
closed subalgebra of B which contains A and is such that (ΦB1 VF) is
a covering space of ΦF. Then F is the fixed algebra of G0(B:F).

Proof. Let B, = F[z]/(a(z)). Since a{z)eI(F),Bγ is a semi-simple
Banach algebra [2, Th. 4.3] and its carrier space is ΦB1 = {(d, λ) eΦF x
rέ?\ α^(λ) = 0}. Let πι be the usual projection of Φβι onto ΦF. Define
a mapping w of (ΦB, VF) into ΦBι by w(h, λ) = (VF(h, λ), λ) for (A, λ) e ΦB.
(Throughout this proof we view ΦB as the covering space (ΦBi VF) of
ΦF and will thus write (ΦB, VF) in place of ΦB). w is a continuous,
one-to-one mapping of (ΦBί VF) onto a compact subset K of ΦBχ. Since
w is an open mapping (Lemma 1.2), K is an open subset of ΦBi.
Furthermore, πλ(K) = πγw{ΦB) = VF{ΦB) = ΦF.

By [12, Th. 2.1], there exists mutually orthogonal idempotents
u19u2, " ,u8 in F, and polynomials βi(z),Qi(z) in F[z] for i = 1, 2,
•• ,s which have the following properties: (ί) e = Σί=i^ί> (ϋ) e a c ^
Uiβi(z) is monic in u{F[z], (iii) iΓ = (J?=i ^^^ where A = UiF[z]/(u$i(z))
and (iv) α(^) = Σl^uβ^Q^z). The fact that u^iz) e I^F) implies
that UiβiφeliUiF) for ΐ = 1, 2, - -, s. Since card(F^(^)) = k for
each ^ G ΦF, and since w is a homeomorphism of (Φ#, V )̂ onto K such
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that πjjo = VF, k = card (πf](^) π K) for each ^ e ΦF. It follows from
(iii) that the degree of each uβ^z) must be k. Let β(z) = ΣJ=i Uiβi(z).
This polynomial is monic and of degree & over î 7. Furthermore, since
the Ui's are mutually orthogonal, β(z) e I(F).

If we denote the canonical root of uβ^z) — 0 in Dt by & for
i = 1, 2, , s, then c = Σί=i %*& is a root of /3(#) = 0 in Σ?Σ?=i
Let JD = î [̂ /]/(/5(̂ /)). (We change the variable from z to y in order
to distinguish between the canonical roots % and t) of /3(#) = 0 in
Bι and Z), respectively). It follows that the mapping ΣfcfΛΓ"-"
Σ i ^ i ^ i Σ t ί / Λ ί = Σ t o Λ c * for fteF is an isomorphism of D onto
Σj=i -Dy. Therefore K = U;=i Φ^ c a n be identified topologically with
Φ

If (^, λ) G K and if (λ, λ) e Vγ(^), then λ = j(A, λ) = j(FF(A, λ),
λ) = §(w(h, λ)). This means j = §w. Thus β(ι) = 0. This implies,
since ^ is semi-simple, that /3(g) = 0.

We now show that B (viewed as a Banach algebra extension of
F) can be identified algebraically with D. Define the mapping T of
D into B by Γ(Σf=o/Λ*) = ΣSSΛϊ* for /, e F . This is a well-defined
homomorphism which, since F[γ] = B, maps D onto B. If (&, λ) e (ΦB,
VF), then Γ(^(A, λ) = χ(fe, λ) = $(w(fc, λ)). Consequently, the dual
mapping Γ* of Γ must be equal to w. By [14, Th. 3.1.17], T* maps
(Φa, Fp) homeomorphically onto the hull of T-^O) in ΦD. But T* = w
maps (Φ£, FF) onto K = ΦD. Thus the hull of T-^O) in ΦD must be
equal to ΦD. Since Z) is semi-simple, T-^O) = (0). Therefore B is
isomorphic to D.

By (2.4), if G0(B: A) = {glyg2, -.,gn}, thena(x) = ΠU(x-g^)) e B[x].

For each i = 1, 2, , n, let c{ e D such that T(^) = ^(jc). Then for
each ί, β(Ci) — β(T~ιgiT($)) — 0 since T~γg{Ύ is an automorphism on D.
We relable the g^s if need be and assume GQ(B: F) = {̂ , , gk}.
(Lemma 3.4 shows that the order of G0(B: F) is indeed k.) Since the
mapping g —* Ύ~γgΎ for g e G(B: F) is a group isomorphism of G(B: F)
onto G(D: F), the latter group possesses a kth order subgroup G0(D: ^ )
isomorphic to G0(B: F). Since G0(B: F)* is simply transitive on the
fibers of ΦF (Lemma 3.4), and since w is a homeomorphism of ΦB onto
ΦD such that ΓiW = VF, G0(D: F)* must be simply transitive on the
fibers of ΦD. Now, by Lemma 2.5, F is the fixed algebra of G0(D: F).
Therefore F must also be the fixed algebra of G0(B: F). This completes
the proof of Theorem 3.5.

We note that the above theorem need not be true if A is not
semi-simple, since there may exist two distinct closed subalgebras of
B which contain A and which have the same carrier space.

COROLLARY 3.6. Under the same assumptions as in Theorem 3.5,
there exists a polynomial β(y)eI(F) of degree k = card(F/(^)) with
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the property that B (viewed as an extension of F) can be algebraically
and topologically identified with F[y]/(β(y)).

Proof. From the above proof, the mapping T defined by
ίΠΣfcί/ΛO = ΣfcoΛϊ* for ft e F is an isomorphism of D onto B. We
show that T is also a homeomorphism.

Assume the norm on D is given by || Σfco/Λ* il = Σί=o 11/; P* f° r

some positive number t. Let L = min {tim. i = 0,1, , k — 1}. Then

7 ( § 1 / Λ < )
A c α

Σ/tf
i0

i = 0

k—1

i = 0

J f c - 1

i = 0

I c - 1

Σ/Λ*
=0

Thus T is a continuous mapping of D onto J3. By the inverse mapping
theorem, T~ι is a continuous mapping of B onto D. This completes
the proof.

Combining Lemma 3.3 with Theorem 3.5, we have the following
characterization of the fixed algebras of subgroup of G0(B: A).

THEOREM 3.7. Assume A is semi-simple, B is the Arens-Hoffman
extension of A with respect to the nth degree polynomial a{x) e J, and
G(B: A) contains an nth order subgroup G0(B: A) such that G0(B: A)*
is simply transitive on the fibers ΦB. Then a GQ-strong closed subalgebra
F of B which contains A is the fixed algebra of a subgroup G of
G0(B: A) if and only if (ΦB, VF) is a covering space of ΦF.

4* In this section, we will prove a theorem similar to Theorem
3.7, but the condition that a subgroup of E(ΦB: ΦA) exists which is
simply transitive on the fibers of ΦB will be weakened.

Our assumptions throughout this portion of the paper are as
follows: A is semi-simple, and a(x) factors into monic linear factors
over B. (Or equivalently by Theorem 2.3, E(ΦB: ΦA) is transitive on
the fibers of ΦB).

By Corollary 1.11, there exists a finite covering of ΦA by mutually
disjoint open and closed sets QL, Q2, , Qs with the property that
corresponding to each Q3, there exists an nth order subgroup Eό of
E(π~1(Qj): Q5) which is simply transitive on the fibers of π~ι(Qj).
Furthermore, each homeomorphism in Eά is the identity homeomorphism
off of π~ι(Qj). We denote by E0(ΦB: ΦA) the subgroup Eγ x E2 x x Es

of E(ΦB: ΦA). The order of this subgroup is n s.
For each j , let uά be the idempotent in A corresponding to the

open and closed set Q, in ΦA. (i.e., Q3 = {h e ΦA: uά{h) = 1}.) Then
ΦUJA = Qj and ΦUjB = π-^Qj) for each j . We note that e = Σ5=i %•
For j = 1, 2, , s, let G3- be the nth order subgroup of G{u5B: u5A) such
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that Gy* = E3. We denote by G0(B: A) the subgroup G1 x G2 x x Gs

of G(B: A). It follows that the order of G0(B: A) is n-s and G0(B: Ay =
E0(ΦB: ΦA). (In the event s = 1, then these two subgroups coincide
with the subgroups G0(B: A) and E0(ΦB: ΦA) used in §2 and §3). If
geG0(B:A), then g = (g19 g2, •••, g8) where g3eG3 for each i . If

b = Σ5=i î& e 5 , then ^ ( δ ) = g(u3b) = g^b). Also, </(δ) - Σ;=i flr(M) =
Σί=i uMujb) — Σί=i 9j(ujb)- We relate fixed algebras of subgroups of
<?o(#: A) to those of subgroups of G3.

4.1. If F is the fixed algebra of a subgroup G' of G0(B: A), then
for each j , u3F is the fixed algebra of G'3 = G' n Ĝ  .

Proof. If c e F , then since g3(u3c) = %#(<?) = %c for each ^ e GJ,
%i^ is contained in the fixed algebra of G'3 . Conversely if, for some
ceB, g3(u3c) = %c for each g3 £ GJ, then #(%c) == g3{u3e) = %c for each
geG'. Therefore u3F must be the fixed algebra of G'3.

4.2. If for each j , F3 is a subalgebra of %j? which is the fixed
algebra of a subgroup G' of G i ? then F = Σ5=i ^ i^ i i s ^ e fixed algebra
of G' = G[ x Ĝ  x x G's.

Proof. For ce F, u3 c e F3 for each j . Therefore, for any automor-
phism g e G', we have g(c) = Σί=i g(v>,c) = Σ?=i ^i(%c) = Σί=i % c = c

This means ί7 is contained in the fixed algebra of G\ On the other
hand, if g(c) = c for some C G 5 and for all geG', then g3{n3c) = %0(c) =
%c. Therefore uάceu3F3. Thus ceF. Consequently, .F is the fixed
algebra of G\

As a consequence of Lemma 2.5 and 4.2, we have

4.3. A is the fixed algebra of G0(B: A).

We also note that by Lemma 2.6, u3B is a Galois extension of
UjA with Galois group G3.

LEMMA 4.4. // F is the fixed algebra of

GQ(B:F) = {geG0(B:A):g(c) = c

for all ceF}, then {Φβ1 VF) is a local covering space of ΦF.

Proof. By 4.1, u3F is the fixed algebra of

G3(B: F) = {ge G3: g(u3c) = u3c f o r a l l c e F ) .

Thus, (Theorem 2.7), u3F is a separable %A-subalgebra of u3B which
is Gy-strong. Now by Lemma 3.3, (ΦuB, V3) is a covering space of
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ΦUjF, where V3 = VF \ ΦUjB- The proof is completed by applying Corol-
lary 1.8.

LEMMA 4.5. If F is a closed subalgebra of B which contains A
and each u3 F is Grstrong, and if (ΦB, VF) is a local covering space
of ΦF, then F is the fixed algebra of GQ{B: F).

Proof. By Corollary 1.8, there exists a finite covering of ΦF by
mutually disjoint, open and closed sets Rl9 R2, -- ,Rt such that for
each i, (W(i^) , VF\ V^{Ri)) is a covering space of R{. Let Zi3 =
Ri Π ΦUjF for i = 1, 2, , t and j = 1, 2, , s. Without loss of ge-
nerality we assume that these sets are mutually disjoint. Let Xi3 =
Vγ{Zi3) and Yi3 = π(Xi3) = VF{Zi3 ) . These open and closed sets are
such that (Xij9 Vi3) is a covering space of Zij9 where Vi3 = VF \ Xijf

and (Xij9 πi3) is a covering space of Yi3 where π<5 = π | Z ^ . Since
Y^ c Φu .A and ^ is an nth order subgroup of E(u3B: u3A) which is
simply transitive of the fibers of ΦU.B1 it follows that Ei3 = E3 \ Xiά

is an nth order subgroup of E(Xi3 : Yi3) which is simply transitive on
the fibers of Xi3 .

For each i and j , let eί3 be the idempotent in A corresponding to
the open and closed set Yi3. Also, let Gi3 be the nth order subgroup
of G3 I ei3B such that Gf3 = Ei3. It follows that Gi3 = G3 \ ei3B and
thus G3 — Gl3 x G2j x x Gtj. Since β^ A is the fixed algebra of
Gi3 (Lemma 2.5), by Lemma 2.6, ei3B is a Galois extension of ei3-A
with Galois group G i ; .

We next show that each β^ F is G i Γstrong. By our assumptions
on the UjF's, for each j , for any two distinct automorphisms gx and
g2 in Gj, and for any idempotent uQ in u3B, there exists an element
c in F such that g^u.c)^ Φ g2(u3c)uQ. In particular, for gί9 g2 in Gi:?

and for any idempotent e0 in ei3B c ^^ΰ, there exists an element c e f
such that

g,{ei3c)eQ = g^u^e^ Φ g2(u3c)ei3e0 = g2(ei3c)eQ .

Therefore each e^-F is G ί Γstrong.

By Theorem 3.5, ei3-F is the fixed algebra of Gio(B: F) = {geGi3:
g(ei3c) = e4jc for all c e F ) for each i and j . Since the proof of 4.2
does not depend upon the particular decomposition of F, F is the fixed
algebra of

Gn(B: F) x . . . X G1S(B: F) x x Gtl(B: F) x x G ί s (5: F )

= G^B: F) x . . . GS(B: F ) = G0(ΰ: F ) .

This completes the proof.
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In conclusion, we have the following charcterization of the fixed
algebras of G0(B: A).

THEOREM 4.6. Assume A is semi-simple, B = A[x]/(a(x)) and
a(x) e I factors into monic linear factors over B. Let G0(B: A) =
G1 x G2 x x Gs be defined as in the opening remarks of this sec-
tion. Then a closed subalgebra F of B which contains A with the
property that uάF is Grstrong for each j is the fixed algebra of a
subgroup of G0(B: A) if and only if (ΦB, VF) is a local covering space
of ΦF.
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John A. Lindberg, Jr. The author would also like to thank the re-
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