NOTE ON SOME SPECTRAL INEQUALITIES OF C. R. PUTNAM

S. K. BERBERIAN

It is shown that if A is any operator in Hilbert space and $\lambda = re^{i\theta}$ is in the approximate point spectrum of A, then

$$\min A^*A \leq (\max J_{ heta})^2$$

and

$$r - \max J_{ heta} \mid \leq [(\max J_{ heta})^2 - \min A^*A]^{\scriptscriptstyle 1/2}$$
 ,

where

1

$$J_ heta = (1/2)(Ae^{-i heta}+A^*e^{i heta})$$
 .

Several corollaries are deduced for arbitrary operators, generalizing results of C. R. Putnam on semi-normal operators.

We employ the notations in Putnam's paper [3]. In particular if A is any operator (bounded linear, in a Hilbert space) and θ is a real number, $J_{\theta} = \operatorname{Re} (Ae^{-i\theta}) = (1/2)(Ae^{-i\theta} + A^*e^{i\theta})$. We write $\sigma(A)$ and $\pi(A)$ for the spectrum and approximate point spectrum of A, and $(x \mid y)$ for the inner product of vectors.

The following result extracts the essentials of the proof of Theorem 1 in Putnam's paper:

THEOREM. If A is any operator and $\lambda \in \pi(A)$, $\lambda = re^{i\theta}$ $(r \ge 0)$, then

(1)
$$\max J_{\scriptscriptstyle heta} \geq r \geq (\min A^*A)^{\scriptscriptstyle 1/2}$$
 ,

$$(2) mtext{max} \ J_{ heta} - r \leq [(ext{max} \ J_{ heta})^2 - ext{min} \ A^*A]^{1/2} \ .$$

Proof. Let x_n be a sequence of unit vectors with $(A - \lambda I)x_n \to 0$. Clearly $(Ax_n | x_n) \to \lambda$, $(x_n | Ax_n) \to \overline{\lambda}$; it follows that $(J_{\theta}x_n | x_n) \to r$ and therefore max $J_{\theta} \ge r$. Since $||Ax_n||$ is bounded,

$$0 = \lim \left((A - \lambda I) x_n \, | \, A x_n \right) = \lim \left\{ (A^* A x_n \, | \, x_n) - \lambda (x_n \, | \, A x_n) \right\},\,$$

thus $(A^*Ax_n | x_n) \to \lambda \overline{\lambda} = r^2$ and therefore $\min A^*A \leq r^2$. Thus (1) is proved. Since $(A - \lambda I)^*(A - \lambda I) = A^*A - 2rJ_{\theta} + r^2I$, one has

$$|||\,(A\,-\lambda I)x_{n}\,||^{_{2}}=(A^{*}Ax_{n}\,|\,x_{n})\,-\,2r(J_{ heta}x_{n}\,|\,x_{n})\,+\,r^{_{2}}\,,$$

hence

$$egin{aligned} \min A^*A &\leq (A^*Ax_n\,|\,x_n) = ||\,(A-\lambda I)x_n\,||^2 + 2r(J_{ heta}x_n\,|x_n) - r^2 \ &\leq ||\,(A-\lambda I)x_n\,||^2 + 2r\max J_{ heta} - r^2 \ ; \end{aligned}$$

letting $n \to \infty$,

$$\min A^*A \leq 2r \max J_{ heta} - r^2$$

Thus min $A^*A \leq (\max J_{\theta})^2 - (\max J_{\theta} - r)^2$, which proves (2).

Incidentally, if $\lambda = 0 \in \pi(A)$ then obviously min $A^*A = 0$ and the theorem yields no information other than max $J_{\theta} \ge 0$ for all θ .

If the dependence of J_{θ} on A is indicated by writing $J_{\theta} = J_{\theta}(A)$, evidently $J_{-\theta}(A^*) = J_{\theta}(A)$. One has $\pi(A^*) \subset \sigma(A^*) = (\sigma(A))^*$, thus $(\pi(A^*))^* \subset \sigma(A)$; if $\lambda = re^{i\theta} \in (\pi(A^*))^*$ then $re^{-i\theta} \in \pi(A^*)$ and application of the theorem to A^* yields the following:

COROLLARY 1. If A is any operator and $\lambda \in (\pi(A^*))^*$, $\lambda = re^{i\theta}$, then

$$(\ 3\) \qquad \qquad \max J_{\theta} \geqq r \geqq (\min AA^*)^{1/2} \ .$$

$$(\,4\,) \qquad \max J_ heta - r \leq [(\max J_ heta)^2 - \min AA^*]^{1/2}\,.$$

If A is hyponormal $(AA^* \leq A^*A)$ then $\pi(A^*) = \sigma(A^*) = (\sigma(A))^*$ [cf. 1, p. 1175] and Corollary 1 yields:

COROLLARY 2. If A is hyponormal then (3) and (4) hold for every $\lambda \in \sigma(A), \lambda = re^{i\theta}$.

Another way of fulfilling (3) and (4) is via the relation

$$\partial \sigma(A) \subset \pi(A) \cap (\pi(A^*))^*$$
 .

If $\lambda = re^{i\theta} \in \partial\sigma(A)$, the boundary of $\sigma(A)$, then $\lambda \in \pi(A)$ [cf. 2, p. 39] hence (1) and (2) hold by the theorem. Moreover, $\overline{\lambda} \in (\partial\sigma(A))^* = \partial(\sigma(A))^* = \partial\sigma(A^*) \subset \pi(A^*)$, i.e., $\lambda \in (\pi(A^*))^*$ and so (3) and (4) hold by Corollary 1. Thus:

COROLLARY 3. If A is any operator and $\lambda = re^{i\theta}$ is a boundary point of $\sigma(A)$, then (1), (2), (3), (4) hold.

Corollary 3 is stated in [3, Th. 1; 4, p. 44, Th. 3.3.1] assuming $AA^* \ge A^*A$ (i.e., A^* hyponormal).

It follows readily from Corollary 3, as in [3], that the spectrum of a nonunitary isometry is the entire closed unit disc. The proof is similar to, and simpler than, the proof of the following corollary, which extends a result in [3, Corollary 2; 4, p. 44, Corollary 1] (the formulation there is inaccurate): COROLLARY 4. If A is an operator such that $\min A^*A > 0$ and $0 \in \sigma(A)$, then, for each real θ , $\sigma(A)$ contains the segment

$$S_{ heta} = \{se^{i heta} \colon 0 \leqq s \leqq R_{ heta}\}$$
 ,

where

$$R_{ heta} = \max J_{ heta} - [(\max J_{ heta})^2 - \min A^*A]^{1/2} > 0 \; .$$

Moreover, $\min_{\theta} R_{\theta} > 0$, thus $\sigma(A)$ contains the disc $\{\lambda : |\lambda| \leq \min_{\theta} R_{\theta}\}$.

Proof. The condition min $A^*A > 0$ means that $0 \notin \pi(A)$ and therefore $0 \notin \partial \sigma(A)$, thus 0 is an interior point of $\sigma(A)$. (Incidentally, $\pi(A) \neq \sigma(A)$, so A is nonnormal; indeed, A^* cannot be hyponormal.)

Fix θ and let L be the ray from 0 at angle θ . If $\lambda = re^{i\theta}$ is a boundary point of $\sigma(A)$ on L, then (Corollary 3) by (1) one has $(\max J_{\theta})^2 \ge \min A^*A > 0$; since $\max J_{\theta}$ is nonnegative (indeed $\ge r$) it follows that $R_{\theta} > 0$. Moreover, by (2) one has $|\lambda| = r \ge R_{\theta}$.

To show that $S_{\theta} \subset \sigma(A)$, suppose $\mu = se^{i\theta}$, $0 < s \leq R_{\theta}$. For any s_1 , $0 \leq s_1 < s$, the segment $\{te^{i\theta}: s_1 \leq t \leq s\}$ must contain a point of $\sigma(A)$ since otherwise some internal point λ of S_{θ} would belong to $\partial\sigma(A)$, contrary to the preceding paragraph; thus μ is adherent to, and therefore in, $\sigma(A)$.

Finally, since J_{θ} and therefore R_{θ} is a continuous function of θ ($0 \leq \theta \leq 2\pi, 0$ and 2π identified) one has $\min_{\theta} R_{\theta} > 0$.

In view of the symmetry in Corollary 3, the proof of Corollary 4 also shows: If min $AA^* > 0$ and $0 \in \sigma(A)$, then, for each real θ , $\sigma(A)$ contains the segment $\{se^{i\theta}: 0 \leq s \leq R'_{\theta}\}$, where

$$R'_{ heta} = \max J_{ heta} - [(\max J_{ heta})^2 - \min AA^*]^{1/2} > 0$$
 ;

if, in addition, A^* is hyponormal, then $R'_{\theta} \ge R_{\theta}$, which strengthens the conclusion of Corollary 4 [cf. 3, Corollary 2].

References

1. S.K. Berberian, A note on hyponormal operators, Pacific J. Math. 12 (1962), 1171-1175.

2. P. R. Halmos. A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967.

3. C.R. Putnam, On semi-normal operators, Pacific J. Math. 7 (1957), 1649-1652.

4. ____, Commutation properties of Hilbert space operators and related topics, Springer, New York, 1967.

Received November 26, 1968.

THE UNIVERSITY OF TEXAS AT AUSTIN