NOTE ON SOME SPECTRAL INEQUALITIES OF C. R. PUTNAM

S. K. Berberian

It is shown that if A is any operator in Hilbert space and $\lambda=r e^{i \theta}$ is in the approximate point spectrum of A, then

$$
\min A^{*} A \leqq\left(\max J_{\theta}\right)^{2}
$$

and

$$
\left|r-\max J_{\theta}\right| \leqq\left[\left(\max J_{\theta}\right)^{2}-\min A^{*} A\right]^{1 / 2},
$$

where

$$
J_{\theta}=(1 / 2)\left(A e^{-i \theta}+A^{*} e^{i \theta}\right) .
$$

Several corollaries are deduced for arbitrary operators, generalizing results of C. R. Putnam on semi-normal operators.

We employ the notations in Putnam's paper [3]. In particular if A is any operator (bounded linear, in a Hilbert space) and θ is a real number, $J_{\theta}=\operatorname{Re}\left(A e^{-i \theta}\right)=(1 / 2)\left(A e^{-i \theta}+A^{*} e^{i \theta}\right)$. We write $\sigma(A)$ and $\pi(A)$ for the spectrum and approximate point spectrum of A, and $(x \mid y)$ for the inner product of vectors.

The following result extracts the essentials of the proof of Theorem 1 in Putnam's paper:

Theorem. If A is any operator and $\lambda \in \pi(A), \lambda=r e^{i \theta}(r \geqq 0)$, then

$$
\begin{equation*}
\max J_{\theta} \geqq r \geqq\left(\min A^{*} A\right)^{1 / 2}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\max J_{\theta}-r \leqq\left[\left(\max J_{\theta}\right)^{2}-\min A^{*} A\right]^{1 / 2} \tag{2}
\end{equation*}
$$

Proof. Let x_{n} be a sequence of unit vectors with $(A-\lambda I) x_{n} \rightarrow 0$. Clearly $\left(A x_{n} \mid x_{n}\right) \rightarrow \lambda,\left(x_{n} \mid A x_{n}\right) \rightarrow \bar{\lambda}$; it follows that $\left(J_{\theta} x_{n} \mid x_{n}\right) \rightarrow r$ and therefore $\max J_{\theta} \geqq r$. Since $\left\|A x_{n}\right\|$ is bounded,

$$
0=\lim \left((A-\lambda I) x_{n} \mid A x_{n}\right)=\lim \left\{\left(A^{*} A x_{n} \mid x_{n}\right)-\lambda\left(x_{n} \mid A x_{n}\right)\right\},
$$

thus $\left(A^{*} A x_{n} \mid x_{n}\right) \rightarrow \lambda \bar{\lambda}=r^{2}$ and therefore $\min A^{*} A \leqq r^{2}$. Thus (1) is proved. Since $(A-\lambda I)^{*}(A-\lambda I)=A^{*} A-2 r J_{0}+r^{2} I$, one has

$$
\left\|(A-\lambda I) x_{n}\right\|^{2}=\left(A^{*} A x_{n} \mid x_{n}\right)-2 r\left(J_{\theta} x_{n} \mid x_{n}\right)+r^{2},
$$

hence

$$
\begin{aligned}
\min A^{*} A \leqq\left(A^{*} A x_{n} \mid x_{n}\right) & =\left\|(A-\lambda I) x_{n}\right\|^{2}+2 r\left(J_{\theta} x_{n} \mid x_{n}\right)-r^{2} \\
& \leqq\left\|(A-\lambda I) x_{n}\right\|^{2}+2 r \max J_{0}-r^{2} ;
\end{aligned}
$$

letting $n \rightarrow \infty$,

$$
\min A^{*} A \leqq 2 r \max J_{\theta}-r^{2}
$$

Thus $\min A^{*} A \leqq\left(\max J_{\theta}\right)^{2}-\left(\max J_{\theta}-r\right)^{2}$, which proves (2).
Incidentally, if $\lambda=0 \in \pi(A)$ then obviously $\min A^{*} A=0$ and the theorem yields no information other than $\max J_{\theta} \geqq 0$ for all θ.

If the dependence of J_{θ} on A is indicated by writing $J_{\theta}=J_{\theta}(A)$, evidently $J_{-\theta}\left(A^{*}\right)=J_{\theta}(A)$. One has $\pi\left(A^{*}\right) \subset \sigma\left(A^{*}\right)=(\sigma(A))^{*}$, thus $\left(\pi\left(A^{*}\right)\right)^{*} \subset \sigma(A)$; if $\lambda=r e^{i \theta} \in\left(\pi\left(A^{*}\right)\right)^{*}$ then $r e^{-i \theta} \in \pi\left(A^{*}\right)$ and application of the theorem to A^{*} yields the following :

Corollary 1. If A is any operator and $\lambda \in\left(\pi\left(A^{*}\right)\right)^{*}, \lambda=r e^{i \theta}$, then

$$
\begin{equation*}
\max J_{\theta} \geqq r \geqq\left(\min A A^{*}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\max J_{\theta}-r \leqq\left[\left(\max J_{\theta}\right)^{2}-\min A A^{*}\right]^{1 / 2} \tag{4}
\end{equation*}
$$

If A is hyponormal $\left(A A^{*} \leqq A^{*} A\right)$ then $\pi\left(A^{*}\right)=\sigma\left(A^{*}\right)=(\sigma(A))^{*}$ [cf. 1, p. 1175] and Corollary 1 yields:

Corollary 2. If A is hyponormal then (3) and (4) hold for every $\lambda \in \sigma(A), \lambda=r e^{i \theta}$.

Another way of fulfilling (3) and (4) is via the relation

$$
\partial \sigma(A) \subset \pi(A) \cap\left(\pi\left(A^{*}\right)\right)^{*}
$$

If $\lambda=r e^{i \theta} \in \partial \sigma(A)$, the boundary of $\sigma(A)$, then $\lambda \in \pi(A)$ [cf. 2, p. 39] hence (1) and (2) hold by the theorem. Moreover, $\bar{\lambda} \in(\partial \sigma(A))^{*}=$ $\partial(\sigma(A))^{*}=\partial \sigma\left(A^{*}\right) \subset \pi\left(A^{*}\right)$, i.e., $\lambda \in\left(\pi\left(A^{*}\right)\right)^{*}$ and so (3) and (4) hold by Corollary 1. Thus:

Corollary 3. If A is any operator and $\lambda=r e^{i \rho}$ is a boundary point of $\sigma(A)$, then (1), (2), (3), (4) hold.

Corollary 3 is stated in [3, Th. 1; 4, p. 44, Th. 3.3.1] assuming $A A^{*} \geqq A^{*} A$ (i.e., A^{*} hyponormal).

It follows readily from Corollary 3, as in [3], that the spectrum of a nonunitary isometry is the entire closed unit disc. The proof is similar to, and simpler than, the proof of the following corollary, which extends a result in [3, Corollary $2 ; 4$, p. 44, Corollary 1] (the formulation there is inaccurate) :

Corollary 4. If A is an operator such that $\min A^{*} A>0$ and $0 \in \sigma(A)$, then, for each real $\theta, \sigma(A)$ contains the segment

$$
S_{\theta}=\left\{s e^{i \theta}: 0 \leqq s \leqq R_{\theta}\right\},
$$

where

$$
R_{\theta}=\max J_{\theta}-\left[\left(\max J_{\theta}\right)^{2}-\min A^{*} A\right]^{1 / 2}>0
$$

Moreover, $\min _{\theta} R_{\theta}>0$, thus $\sigma(A)$ contains the disc $\left\{\lambda:|\lambda| \leqq \min _{\theta} R_{\theta}\right\}$.
Proof. The condition $\min A^{*} A>0$ means that $0 \notin \pi(A)$ and therefore $0 \notin \partial \sigma(A)$, thus 0 is an interior point of $\sigma(A)$. (Incidentally, $\pi(A) \neq \sigma(A)$, so A is nonnormal ; indeed, A^{*} cannot be hyponormal.)

Fix θ and let L be the ray from 0 at angle θ. If $\lambda=r e^{i \theta}$ is a boundary point of $\sigma(A)$ on L, then (Corollary 3) by (1) one has $\left(\max J_{\theta}\right)^{2} \geqq \min A^{*} A>0$; since $\max J_{\theta}$ is nonnegative (indeed $\geqq r$) it follows that $R_{\theta}>0$. Moreover, by (2) one has $|\lambda|=r \geqq R_{\theta}$.

To show that $S_{\theta} \subset \sigma(A)$, suppose $\mu=s e^{i \theta}, 0<s \leqq R_{\theta}$. For any $s_{1}, 0 \leqq s_{1}<s$, the segment $\left\{t e^{i \theta}: s_{1} \leqq t \leqq s\right\}$ must contain a point of $\sigma(A)$ since otherwise some internal point λ of S_{θ} would belong to $\partial \sigma(A)$, contrary to the preceding paragraph; thus μ is adherent to, and therefore in, $\sigma(A)$.

Finally, since J_{θ} and therefore R_{θ} is a continuous function of $\theta\left(0 \leqq \theta \leqq 2 \pi, 0\right.$ and 2π identified) one has $\min _{\theta} R_{\theta}>0$.

In view of the symmetry in Corollary 3, the proof of Corollary 4 also shows: If $\min A A^{*}>0$ and $0 \in \sigma(A)$, then, for each real $\theta, \sigma(A)$ contains the segment $\left\{s e^{i \theta}: 0 \leqq s \leqq R_{\theta}^{\prime}\right\}$, where

$$
R_{\theta}^{\prime}=\max J_{\theta}-\left[\left(\max J_{\theta}\right)^{2}-\min A A^{*}\right]^{1 / 2}>0 ;
$$

if, in addition, A^{*} is hyponormal, then $R_{\theta}^{\prime} \geqq R_{\theta}$, which strengthens the conclusion of Corollary 4 [cf. 3, Corollary 2].

References

1. S.K. Berberian, A note on hyponormal operators, Pacific J. Math. 12 (1962), 11711175.
2. P. R. Halmos. A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. 3. C.R. Putnam, On semi-normal operators, Pacific J. Math. 7 (1957), 1649-1652.
3. - Commutation properties of Hilbert space operators and related topics, Springer, New York, 1967.

Received November 26, 1968.
The University of Texas at Austin

