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INJECTIVE HULLS OF SEMI-SIMPLE MODULES
OVER REGULAR RINGS

A. K. TlWARY

The object of this paper is to provide an explicit construc-
tion of the injective hull of a semi-simple module over a
commutative regular ring.

The existence of injective hulls of an arbitrary module M and
their uniqueness upto isomorphism over M was shown by B. Eckmann
and A. Schopf in 1953 [6]. But only in few cases these hulls have
been described explicitly [1, 2].

In the special case when the ring is regular as well as Noetherian,
the problem is already solved since over such a ring every module is
known to be semi-simple [9] and hence is its own injective hull [11,
10]. To begin with we show that every monotypic component of the
module is injective and then prove a topological lemma about 7\-spaces.
The Zariski topology of the maximal ideal space of the basic ring being
T19 we make use of the lemma to obtain the desired construction of
an injective hull of the module. We show by an example that a semi-
simple module over a regular ring need not always be injective and
obtain finally a necessary and sufficient condition for the injectivity
of the module.

DEFINITION 1. A ring R is called (von Neumann) regular if for
every ae R, there exists an element x e R such that axa = α. This
condition reduces to a2x = a if R is commutative. A Boolean ring is
an example of a commutative regular ring. It is well known that a
commutative ring R with unit is regular if and only if every simple
lϋ-module is injective [11],

Throughout this paper we shall consider R to be a commutative
regular ring with unit 1. Let Ω denote the set of maximal ideals of
R. For each aeR define Ωa by Ωa = {Pe Ω\ a$ P}. It follows that
Ωa Π Ωb = Ωab. Thus Ω can be made into a topological space with
{Ωa I a e R} as the system of basic open sets. This topology of Ω is
known as the Zariski topology. Ω is clearly a TVspace since if P
and Q are any two distinct points in Ω, there exists aeP — Q which
implies that Ωa is a neighbourhood of Q not containing P.

DEFINITION 2. Let M be a semi-simple ϋ?-module. For any simple
submodule S of M, there exists exactly one PeΩ with S = R/P. The
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sum of all those simple submodules of M which are isomorphic to
R/P, will be denoted by MP and will be called the R/P-monotypίc
componet of M. The support of M, to be denoted by Supp (M) is
the set of all those maximal ideals P in Ω for which MP is nonzero.

In our discussion M will always denote a semi-simple i?-module
with supp (M) = S. As usual for any function /, the symbol supp (/)
will mean the set of all those elements in domain (/) for which
f(x) φ 0. We shall write E = H(M) to express the fact that E is an
injective hull of M. Where no ambiguity can arise, we let H(M)
stand for an arbitrary injective hull of M. If a is any cardinal num-
ber and L any module, the sombol a (•) L will stand for the external
sum of a copies of L.

THEOREM 1. For any PeS, the associated monotypic component
MP is an injective module.

Proof. Let a be the length of MP and T a set with | T | = a.
Then MP ~ a ® RIP = E. Let π be the set of all functions from T
into R/P. Now each factor R/P of π being injective [11], π is in-
jective; hence there exists an H(E) £ π. Without loss of generality
we can take a to be an infinite cardinal. Assume E is not injective.
Then EaH(E) S π. Take any element / e H(E) - E. Since H(E)
is an essential extension of E, one has Rf Π E Φ 0 which implies
0 Φ rfeE for some reR - P. As R/P is a field and f(t) Φ 0 for
infinitely many teT, we have 0 Φ (r + P)f(t) = rf(t) for infinitely
many t e T. But this contradicts the fact that rfeE. Hence E is
injective.

REMARK 1. ΐ[Pes Mp is injective since each factor MP is injective.

DEFINITION 3. Let X be any topological space and A any subset
of X. An element x e A is called an isolated point of A if there
exists a neighbourhood U oί x such that ί/Π A = {x}, i.e., if {#} is
an open set in the relative topology of A. A subset A of X is said
to be discrete if every element x in A is an isolated point of A.

LEMMA 1. Let fe ΐ[Pes MP and aeR such that 0 Φ afe ®PeS MPi

then every element in supp (af) is an isolated point of supp (/).

Proof. Let supp (af) = {P19 P2, , Pn) where Pt Φ P3 if i Φ j .
This implies t h a t there exist elements aiβPi — Pλ (i = 2, 3, •••, w).

P u t 6 = aa2az - - an. Then 6 g P1 and 6 e P for each Pe supp(/) with

P Φ Px. Hence Ωb f] supp(/) = {PJ showing t h a t Px is an isolated



INJECTIVE HULLS OF SEMI-SIMPLE MODULES OVER REGULAR RINGS 249

point of supp(/). Similar argument will prove that P2, * -,Pn are
also isolated points of supp(/).

REMARK 2. It follows from the lemma that the support of any
nonzero element in an essential extension of 0 P e S J l ί ? contains an iso-
lated point.

LEMMA 2. Let E be a proper essential extension of φ P £ 5 J l ί P .
Then for any fe E — (BPQSMP, supp (/) contains infinitely many
isolated points.

Proof. Since E is an essential extension of ®PeS MP and 0 Φ fe E,
we can find an element aeR such that 0 Φ afeφPeS MP. Let
supp (af) = {Plf P2, , Pn). By Lemma 1, each Pγ is an isolated point
of supp (/). Choose an element Q e supp (/) — supp (af). As Pt g Q,
there exist elements r̂  e P^ ~ Q(i — 1, 2, , n). Then

r = r,r2 . . . rn e (P1ΓΊ P 2 Π Π Pn) - Q .

It follows that 0 Φ rfeE. Since for some se R, 0 Φ srfeφPesMPi

we can apply Lemma 1 to show that the elements in supp (srf) are
isolated points of supp (/) and they are all distinct from P19 P2, , Pn.
Now supp (/) being infinite, we can find an element in

supp (/) - (supp (af) U supp (srf))

which will give rise to another set of finitely many elements isolated
points of supp (/) each being different from the ones obtained before.
Proceeding thus we get infinitely many isolated points of supp (/).
This proves the lemma.

We now prove the following topological fact about Γrspaces:

LEMMA 3. In any T^space X, if A and B are nonvoid subsets
such that A as well as every nonvoid subset of B has an isolated
point, then there exists an isolated point in A U B.

Proof. Let the complement of a subset C of X be denoted by
C. Since A is given to have an isolated point p, there exists an
open neighbourhood U of p such that U Π A = {p}. From

UΠ(Au(Bf) U'))= UΠA

we conclude t h a t p is also an isolated point of A[j (B f] Uf). IfBΠU

is empty, then p is an isolated point of A U B and so the lemma holds.

We have therefore to consider only the case when B Π U is nonvoid.
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By hypothesis B f) U contains an isolated point q which can be assumed
to be distinct from p without any loss in generality. This assump-
tion, together with the fact that X is ϊ\ implies that {p}' is an open
set containing q. Now q being an isolated point of B Π U, we have
V Π B Π U = {q} for some neighbourhood V of q. Thus we obtain

unvf) {PY n(AuB)=unvn {py n δ - M n {PY = {q}.

Since U Π V Π {PY is a neighbourhood of g, the above relation implies
that q is an isolated point of A (J B.

REMARK 3. From Lemma 3 we immediately have the following
( i ) Let B be a discrete subset of a Γrspace X and A any sub-

set of X with an isolated point, then A U B has an isolated point.
(ii) If A and B are nonvoid subsets of a TV-space X with the

property that each of their nonvoid subsets has an isolated point then
A U B has the same property.

LEMMA 4. Let A = [JieiAt where each Ai is without an isolated
point. Then A has no isolated point.

Proof. Suppose A has an isolated point p. Then peAi for some
i e I and {p} = U Π A for some neighbourhood U of p. Hence {p} —
U Π A{ contrary to the hypothesis that At is without an isolated
point. Thus A has no isolated point.

LEMMA 5. If A has no isolated point, then A, the closure of A
also has no isolated point.

Proof. Assume p is an isolated point in A with V f] A = {p} for
some neighbourhood V of p, then peAf) A' implies the existence of
an element qe Vf] AQVΠ A with q distinct from p, a contradiction.
Hence A has no isolated point.

REMARK 4. We know that the semi-simple module M = ΣpesMp
(direct) hence M ~ ®P6ls MP. Since the injective module Y[PeS MP con-
tains φP6<s MP as a submodule, it also contains an H(φPeS MP). Thus
to find an injective hull of M, it is sufficient to obtain one of (&PesMP

inside Y[PesMP. This is done in the following:

THEOREM 2. Let H = {/ eY[PeSMP\ Every nonvoid subset of
supp (/) has an isolated point}. Then H is an injective hull of

Proof. Let /, g be any two elements in H, then since
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supp (/ + g) C Supp (/) U supp (g)9 we have / + g e H by Remark 3 (ii)
following Lemma 3. Now if a e R, fe H, then supp (af) = Ωa Π supp (/)
implies that afeH. Hence H is an iϋ-submodule of T[PesMP and
it contains ®PeSMP since every nonvoid subset of a finite set is dis-
crete. Now let 0 ΦfeH, then supp(/) is nonempty and hence con-
tains an isolated point P so that for some

aeR, supp (af) = Ωa Π supp (/) = {p} .

Thus 0 Φ afe QPeS MP. Hence H is an essential extension of
®PesMP.

As to the injectivity of H assume by way of contradiction that
H has a proper essential extension E. Then Ha E gΞ Y[P£S MP.
Take feE,f$H. Then there exists a nonvoid subset of supp (/)
without isolated points. Denote by X, the union of all those subsets
of supp (/) which have no isolated points. By Lemma 4, X has no
isolated point. Let Y — supp (/) Π Xf where Xf is the complement
of X in S. Then Y is nonvoid since by Remark 2, Lemma 1, supp (/)
contains an isolated point which cannot belong to X. Thus supp (/) =
X U Y is a decomposition of supp (/) into disjoint nonempty subsets
X and Y. Moreover every nonvoid subset of Y contains an isolated
point for otherwise it will have to be contained in X which is not
possible. Now for any subset A £ supp(/), define fA to be the func-
tion such that

UP)=\f{P) i ΐ P e A

( 0 if PeS - A

we can then write / = FA + / r . Since supp(/Γ) = Y, one has fγ e H
and hence from fx=f — fγ, it follows that fx e E. The fact that
fx is a nonzero element in an essential extension E of (&PesMP, then
implies that X — supp (fx) has an isolated point. We thus arrive at
a contradiction. Hence H is injective. This completes the proof.

COROLLARY 1. ΐ[PesMP is an injective hull of (BpesMP if and
only if every nonvoid subset of S has an isolated point. In particular
if S is discrete in Ω, then T[PesMP = H(M).

Proof. If S has the property that each of its nonvoid subsets
has an isolated point, then for every fe ΐ[Pes MP, supp (/) has the same
property. Hence by Theorem 2, ΐlPeS MP = H(®PeS MP). On the other
hand let ΐlPeS MP = H(®PeS MP). Suppose that some non-empty subset
A of S has no isolated point. Then A must be an infinite set. We can
find a function fe ΐlPeS MP with supp (/) = A. Then /g φPeS MP and
hence fφO. Since ΐ[PesMP is an essential extension of ®FesMP, by
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Remark 2, supp(/) has an isolated point contrary to the assumption
that A has no isolated point. Hence every nonvoid subset of S has an
isolated point. The last part of the corollary follows immediately from
the fact that every element in a discrete set is an isolated point.

COROLLARY 2. // S contains only principal ideals, then

Proof. Let Ra be any maximal ideal in S. If P in S is dif-
ferent from Ra, then α g P since aeP would mean Ra £ P, hence
Ra = P, a contradiction. Regularity of R implies that a = a2x for
some xeR. Since 0 = α(l — ax) belongs to every P in S, 1 — ax be-
longs to every element in S different from Ra. Also 1 — ax g Ra
since other wise 1 e Ra. It follows that Ω1^ax ί l S = {Ra}. Thus every
element in S is an isolated point. By Corollary 1, we have JJPes MP —
H(φPeSMP).

REMARK 5. For any module M over a regular and Noetherian
ring R, ΐ[PesMP = H(@PeSMP) = ®PeSMP since every ideal of R is
a principal ideal [9] and every i?-module is injective [10, 11].

COROLLARY 3. There exist semi-simple modules over a regular
ring which are not injective.

Proof. Let RQ be the two-element Boolean ring {0, e0), I an in-
finite index set and R, the set of all functions f:I-^>R0. Then R is
a complete Boolean ring and hence a commutative regular ring. For
each a el, define Pa by Pa — {/ 6 R \ f{ά) = 0}. It is easily seen that
Pa is a maximal ideal of R[Ί]. Let M — ®aBIRjPa. Then M is a
semi-simple module with Supp (M) — {Pa \ a e I). Take any Pao e Supp(M)
and define / by

if a = a0

if a Φ a,

then feR - Pao and fePβ for all βel with β Φ a,. Thus

which implies that Supp(M) is discrete. Hence by Corollary 1,
Uaei(R/Pa) = H(@aQτ (R/Pa). The fact that / is infinite then shows
that (Baei(R/Pa) is not injective.

COROLLARY 4. // S = A u A U D2 U U Dn where A has an
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isolated point and D^i = 1,2, , n) are discrete sets, then JJPeS MP =
H(M).

Proof. It follows immediately from Lemma 3 and Corollary 1.

In Corollary 3 we have a concrete example showing that not every
semi-simple 12-module is injective. It is therefore worthwhile to ask
under what conditions a semi-simple iί-module is injective. The fol-
lowing theorem gives a characterisation for the injectivity of a semi-
simple module.

THEOREM 3. M is injective if and only if S has only finite dis-
crete subsets.

Proof. Let M be injective. Assume that D £Ξ S is an infinite
discrete subset. We can find fe]JPes MP with supp(/) = D. Since
D is infinite, f£(&PeSMP. The fact that supp(/) is discrete implies
by Theorem 2, that fe H(φPeS MP) = 0 P e S M P and so we get a con-
tradiction. Hence S contains only finite discrete subsets.

Conversely suppose that S has only finite discrete subsets. Assume
that If is not injective. Then (&PeSMP has a proper essential ex-
tension E inside ΐ[PeSMP. Hence for any feE — φ P e s M P , supp(/)
contains an infinite discrete subset by Lemma 2. This contradiction
then proves that M is injective.

Added in Proof.

REMARK 6. Under the assumptions of Theorem 3, S is a compact
subset of Ω.

Proof. Let S^Ui&IΩH so that S = Ui&I(S Γ\ Ωa.) where we
assume without loss of generality that each S Π Ωa. is nonvoid. For
each ί in /, pick one P{ from S Π Ωa. and let A be the set of all such
P^ Then Ωa. Π A = {PJ for each i in /. This implies that A is a
discrete subset of S and hence by Theorem 3, A is finite. Consequently
S is compact.

As a consequence of the above remark, we obtain as a corollary
of Theorem 3, the following result of J. Levine, announced in an
abstract in the Notices:

COROLLARY. (Levine) If an injective module M over a com-
mutative regular ring R is a direct sum of simple submodules, then
there are only finitely many nonisomorphic simples in the sum.

Proof. Let M* — Σ P Xp be the sum of nonisomorphic simple
submodules in the direct sum decomposition of M. Then for each XP1
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there exists exactly one P in S with XP isomorphic to RjP and hence
the iί/P-monotypic component of M* is XP. Moreover, M* being a
direct summand of M, is injective and, therefore, by Remark 6, its
support S* is compact. Any nonvoid subset of S* also has this pro-
perty since it is injective. We propose to show that S* is discrete.
Take any P in S* and let {P}' be the complement of {P} in S*. Then
{Py being open and compact, we have {P}' = U*elSei, where Sc. =
Ωe. Π S*. Now, Ci in R implies that there exists x4 in R with c{ = c\x{

i = 1,2, * ,n. Put di = 1 — c ^ . Then from c ^ = 0, it follows that
d = d ^ dn belongs to every Q in S*, different from P and does
not belong to P. Hence {P} = Sd. Thus every point in S* is an
isolated point as was required. By Theorem 3 we have S* finite.

REMARK 7. Theorem 1 is a special case of a more general Pro-
position of C. Faith [Proposition 3, Rings with ascending condition on
annihilators, Nagoya Math. J. 27 (1966), 179-181]. Let a module M
be called Σ-ίnjectίve if it is injective and every direct sum of copies
of M is also injective. Then Proposition 3 of Faith has the following
corollaries:

COROLLARY 1. Let R be any ring, and let M be any injective
simple module. Then if M is finite dimensional over the field K =
End MR, then M is Σ-injective.

COROLLARY 2. // R is any commutative ring, and M is an
injective simple module, then M is Σ-injective.

Theorem 1 is a special case of Corollary 2 when R is a regular
ring.

REMARK 8. Corollary 3 of Theorem 2 provides an example of a
semisimple module over a commutative regular ring which is not in-
jective. C. Faith has sketched an example of a simple module over
a noncommutative regular ring which is not injective [Chapter 15,
"Lectures on Injective Modules and Quotient Rings" Springer Verlag,
New York 1967].

I should like to express my grateful thanks to the referee for
suggesting the addition of Remarks 6, 7 and 8 in proof.

This paper is a part of a doctoral dissertation submitted to
McMaster University in 1966. I should like to express my indebted-
ness and grateful thanks to Professor B. Banaschewski under whose
guidance this work was done.
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