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MEASURE ALGEBRAS ON IDEMPOTENT SEMIGROUPS

STEPHEN E. NEWMAN

Taylor has shown that for every commutative convolution
measure algebra M there is a compact topological semigroup
S, called the structure semigroup of M, and an embedding
μ—> μs of M into M(S) such that every complex homomorphism

of M has the form h/(μ) — \ fdμs for some semicharacter /
JS

on S.
This paper deals with commutative convolution measure

algebras whose structure semigroups are idempotent. The
measure algebra on the interval [0,1], where the interval is
given the semigroup operation of maximum multiplication, is
an algebra of this type. These algebras are studied in this
general setting in the hope of shedding new light on the
known theory of measure algebras on locally compact idempo-
tent semigroups and in the hope of extending attempts to
classify a convolution measure algebra in terms of the algebraic
nature of its structure semigroup.

An example is given of a measure algebra on a compact
idempotent semigroup whose structure semigroup is not idem-
potent.

Our goal in this paper is to apply the structure theory for
commutative convolution measure algebras developed by Taylor [5]
to a special class of algebras which includes those studied by Hewitt
and Zuckerman [3], Ross [4], and Baartz [1]. We will assume that
each convolution measure algebra mentioned in this paper is commu-
tative and, in addition, that each semigroup mentioned is commutative.
We begin by giving the essential features of Taylor's structure theory.

A convolution measure algebra is roughly an ordered Banach space
of measures with a multiplication which makes it a Banach algebra
and which relates appropriately to the norm and the order. For a
precise definition, see [5]. Examples include &{&), the algebra of all
absolutely continuous measures on a locally compact group G; M(G),
the measure algebra on G (all bounded regular Borel measures on G);
and M(S), the measure algebra on a locally compact semigroup S.
Convolution is the multiplication operation in each of these examples.
Both &{G) and M(G) are semisimple algebras as is M(S) under certain
not-too-restrictive conditions. We will therefore focus our attention
only upon semisimple algebras.

Let M denote a semisimple convolution measure algebra. Taylor
has shown in [5] that there is a compact topological semigroup S,
called the structure semigroup of M, and an embedding μ—>μs of M
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into M(S) with the following properties.
(A) μ —> μs is an algebraic isomorphism and an order preserving

isometry.
(B) The image Ms of the map μ—*μs is weak* dense in M(S);

i.e., Ms separates points in C(S).
(C) C(S) is the closed linear span of S; i.e., S separates points

of S. (S is the collection of all continuous semicharacters on S),
(D) Each complex homomorphism of M has the form hf(μ) —

I fdμs for some / in S.
JS

The reader will recall that a semicharacter is a nonzero, bounded,
complex valued function / defined on the semigroup S which satisfies
f(x-y) = f(x)f(y) for all x and y in S. As a result of {D), the set
S of semicharacters with the weak* topology induced by M can be
considered the maximal ideal space of M. We will regard a semi-
character / in S as both a continuous function on S and a complex
homomorphism of M via the indentification given by (D), Thus, we
write f(μ) in place of hf(μ).

We are now in a position to define the type of algebra which
will be our object of study.

DEFINITION 1. A semisimple convolution measure algebra M will
be called a P-algebra provided f(μ) ^ 0 for every positive measure μ
in M and every complex homomorphism / of M.

Examples of P-algebras are the measure algebra M(T), under
convolution, of the compact semigroup T — [a,b] with multiplication
x-y = max {x, y} [3], and more generally, the measure algebra M(T)
of a finite product T of locally compact, totally ordered spaces with
co-ordinate wise maximum multiplication [1]. In both examples, each
complex homomorphism of M(T) has the form

h A(μ)= \ lAdμ μeM(T) ,
JT

for some subsemigroup A of T whose complement T\A is a (prime)
ideal of T (Definition 1.5, [1]). Consequently, M(T) is a P-algebra.
In § 4 we will give an alternate proof the M(T) is a P-algebra, based
on the results of § 3.

We pause to define several terms with which the reader may not
be familiar. The reader is referred to Taylor [5] for terms not defined
here.

Let M be a convolution measure algebra.

DEFINITION 2. A closed subspace (subalgebra, ideal) N of M is



MEASURE ALGEBRAS ON IDEMPOTENT SEMIGROUPS 163

called an L-subspace (subalgebra, ideal) if whenever μeN, then v e N
for all v < μ(y absolutely continuous with respect to μ).

DEFINITION 3. An L-ideal N of M is called a prime L-ideal if
NL = {μe μ\ μiv (μ and v are mutually singular) for all veN} is a
subalgebra of M.

2. Some characterizations of P-algebras* Our first theorem
gives six equivalent conditions for a semisimple convolution measure
algebra M to be a P-algebra. The identity e mentioned in statements
(5) and (6) of the theorem is the identity in M if M has an identity
and is the identity adjoined to M in the usual manner if M does not
have an identity. Similarly, the inversion mentioned in statement (6)
takes place in the algebra M if M has an identity, and in the algebra
"M with identity adjoined" if M does not have an identity.

THEOREM 1. Let M be a semisimple convolution measure algebra.
Then the following statements are equivalent.

(1) M is a P-algebra.
( 2 ) S is an idempotent semigroup.
(3) S is an idempotent semigroup.
(4) For each feS,M = Nf + Nj where Nf is a prime L-ideal

such that if μ = μL + μ2(μL 6 Nf, μ2 G Nj), then f(μ) — (μ2)s(S).
(5) The spectral radius ofμ — e is less than or equal to one

for every positive measure μ of norm one.
( 6 ) μ + e is invertible for every positive measure μ of norm one.

Proof. The order of proof will be (1) => (2) <=> (3) ==> (4) ==> (1) and
(1) => (5) ==> (6) =* (1). (1) => (2). Since the integral of each semicharacter
in S with respect to any positive measure in M is nonnegative, each
semicharacter in S is a nonnegative function by (B). Let / be in S.
Then / is nonnegative and hence for fixed z, fz is in S if Re z > 0.
Now gs(z) = fz(s) is analytic in Re z > 0 for fixed s e S. But then
gs(z) is a nonnegative analytic function and is therefore constant. If
we evaluate gs(z) at z = 1, we obtain f2(s) — f(s) for all Re z > 0.
If we let z = 2 in the above equality, we obtain /2(s) = f(s) for each
se S and hence f2 — f. Therefore S is an idempotent semigroup.

( 2) <=> ( 3). Let fe S and s e S. We conclude that f(s) = f2(s) =
f(s)f(s) — f(s-s) since f2 = /. Thus s s = s by (C), and hence S is
idempotent. Obviously, (3) ==> (2).

(3)=>(4). If S is idempotent, so is S. Given feS, let / =
{seS\f(s) = 0}, We note that / is a prime ideal in S. If we let
Nf = {μe M\ μs is concentrated on /}, then Nf is a prime L-ideal
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(Theorem 3.2, [5]) with orthogonal complement N}. Thus if μ =
μ2 where μλ e Nf and μ2e Nj, then

f(μ) = ^fdμ. = j β /d( A + μ2)s = j^/d^) . + ^fd(a2)s = (μ2)s(S) .

( 4 ) =* (1). Obvious.
(1) => ( 5 ). Recall that the spectral radius of an element χ is a

Banach algebra (written \\χ\\sp) is given by || χ \\sp = l i m ^ || χn \\lln.
If the algebra is commutative, then the spectral radius of χ is also
the supremum norm of the Gelfand transform of χ. If (1) holds, then,
by definition, each complex homomorphism takes positive measures to
nonnegative numbers. Let μ be a positive measure in M of norm
one. Then 0 ^ f(μ) = μ(f) ^ 1 for every feS. Therefore,

1 ^ s u p I (μ - eΠf) | - || (μ - β ) Λ | U = || μ - e\\sp .
feS

( 5 ) ==> ( 6 ). Let μ be a positive measure in M. Then μ/\\μ\\ is

a positive measure of norm one and hence

Clearly μ can never assume the value — 1 . Thus — l^σ(μ)1 and
hence μ + β is invertible.

( 6 ) => (1). Let μ be a positive measure in M. If λ > 0, then
μ/X + e is invertible. Hence μ + Xe is invertible and —X£σ(μ).
Therefore, the spectrum of any positive measure in M contains no
negative members. We claim that this fact ensures us that every
positive measure will have real, nonnegative spectrum. For suppose
μ is a positive measure whose spectrum is not real. Then there is
an / G S such that μ(f) = λ = \ + iX2 where \ and λ2 are real and
A,2 φ o. We can choose a number t > 0 such that exp (tx) < 0. Thus
exp (tμ) is a positive measure with a negative number in its spectrum,
a contradiction. The proof of the theorem is complete.

An L-subalgebra of a convolution measure algebra is again a
convolution measure algebra. Since the spectral radius of a measure
depends only upon the norms of the measure and its powers, statement
(5) together with the above observation yields the following corollary.

COROLLARY. Every L-subalgebra of a P-algebra is a P-algebra.

3. A sufficient condition* Our next theorem gives a sufficient
condition for an algebra to be a P-algebra. We suspect that the
condition is also necessary but have not been able to prove it.

THEOREM 2. Let M be a semisίmple convolution measure algebra
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with structure semigroup S. If for every positive (nonzero) measure
μ in M there exist sequences {μn}, {vn} of positive measures in M such
that

(1) μn->μ,
(2) μn*vf = μn(S)vf for all vr < vn and each n,
( 3 ) vn< Σ ; , o μmβm for all n

then M is a P-algebra.

Proof. Throughout this proof, M is considered a subalgebra of
M(S). Let λ be a positive measure in M, let / be in S, and let J =
{seS\f(s) = 0}. Then J is a prime ideal in S, and hence

Mj — {v e MI v is concentrated on J}

is a prime L-ideal of M with orthogonal complement Mj. Define μ,
μ' by μ'(E) = X(E Π / ) , for Borel sets E, and μ = X- μ'. Then
μeMj and μ'eMj.

If μ — Q, then /(λ) = 0. If ^ =£ 0, then choose sequences {̂ %}
and {v%} guaranteed by the hypothesis of the theorem. We claim
that there is a measure v'n < vn such that f{v'n) Φ 0 for each n. If
not, then for some n, f(v'n) = \/ώv'% = 0 for all v\ < yTO and / = 0 a.e.
[yn]. Thus there is a Borel set EaS of ^-measure zero such that
/ = 0 on E. Hence vneMj. But since μ e Mj and M> is an L-sub-
algebra, Σ : = o / ^ T is in Mj. Since ^ < Σ ; = o Γ / 2 m , v , is in Mj.
Therefore, vn j_ yΛ and so vw = 0, a contradiction. This establishes
our claim.

Choose measures v'n < vn such that /(v'w) Φ 0. Note that since
μ»*»n = μΛS)K and /(v;) Φ 0, then, /(^n) - μn(S) ̂  0. But ̂ n — /*;
thus, f(μn)-+f(μ). Therefore, f(μ) = μ(S) ^ 0 and /(λ) = /(// + μ>) -
/(//) + /(^') - /(//) ^ 0. Hence M is a P-algebra.

4. An application o£ Theorem 2. If T is an idempotent semi-
group we can introduce a partial ordering "<;" in T by defining E ̂  y
if and only if x>y — y for all x any |/ in Γ. A totally ordered
idempotent semigroup is one in which the above partial ordering is a
total ordering. Our goal in this section is to show that the measure
algebra on a finite product of totally ordered, locally compact, idem-
potent semigroups is a P-algebra. This result follows trivially from
a theorem of Baartz (Theorem 3.5, [1]); however, we shall give an
independent development using Theorem 2. We will need the three
lemmas that follow.

LEMMA 1. Let T be a locally compact idempotent semigroup and
let μ and v be in M(T). Suppose suppμ ^ supp v in the sense that
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for any sesuppμ and t esuppy, s ^ t(s t — t). Then μ*v = μ(T)v.

Proof. Supp μ denotes the support of the measure μ. Let A =
supp μ, B = supp v, and E be a Borel subset of T. Then

μ*v{E) = ^χE(x y)dμ(x)dv(y) =

[μ(Ey)dv(y) where Ey = {x e T\ x-ye E} .

But \ μ(Ey)dv(y) — \ μ{Ey)dv{y) since v is concentrated on B. Further-
JT Jβ

more,

_ ίO yeB\E
μ{ y ~ \μ(T) yeB Π E

since for yeBΠE,A(zEy and for y e B\E, Af]Ey = φ. Thus

ί μ(Ey)dv(y) = M?>(#)

and hence //*v = μ(T)v.

LEMMA 2. Lei T be a totally ordered, locally compact, idempotent
semigroup and let μ be a positive measure in M(T). Then given e > 0,
there is anxeT such that μ({y eT\y^x})>0 and μ({y eT\y>x})<e.

Proof. Since μ is a bounded regular measure, there is a compact
set If c supp μ such that μ(T\K) < ε. Let z — sup{?/| yeK}. If
μ({y I y ^ z}) > 0, then the choice of x = z completes the proof. If
μ({y I y ;> 2}) = 0, we again apply the regularity of μ to obtain an
x<z such that μ({y \ y > x})< s. The choice of z forces μ({y \y^x})>0.
The proof of the lemma is complete.

LEMMA 3. Let T — P^Ti be a finite product of totally ordered,
locally compact, idempotent semigroups 2V Let μ be a positive
measure in M(T). Then given ε > 0, there is an x = (xί9 xm) in
T such that μm({y e T\ y ;> x}) > 0 and μ(T\{y e T\ y ^ x}) < ε.

Proof. Let π{ be the projection map of T onto T* for

i = 1, 2, m .

The measure /^ = μoπ^1 is a positive measure in M(Ti), Therefore,
by Lemma 2, there is an xt in Ti such that μ^ye Tt\y > a?J) < ε/m
and ^̂ {7/ e Tt \ y ^ ^J) > 0. For notational convenience, let
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Ji = {yeTi\y>xi) and K, = {ye T< \ y ^ α?J .

Then the above statement becomes ^(J*) < e/m and ̂ ( I Q > 0.
Let x = (xuxif ••• xm). We first note that

T\y£x = U ττrV<) .
i

Thus μ(T\{y e T \ y <a;}) - μ{ u f=1 πr'(J;)) ^ Σ«"ι j " ° *7X(Jt) < ΣΓ-i e/m = e.
We next note that

π-\Km) = n Tcr'iKi) = {yeT\y^x} .
t=l

Since μ has mass on each of the sets πτx(K^, μm has mass on

πτ\Kd^\K2) . . . π-\Km); i.e., ^«({ye Γ |» ^ a?}) > 0 .

This establishes the lemma.

THEOREM 3. Let T = P^LiTi be a finite product of totally ordered,
locally compact, idempotent semigroups T^ Then the measure algebra
M(T) is a P-algebra.

Proof. Let /ibea positive measure in M(T). Lemma 3 guarantees
the existence of a sequence {xn}n=i in T such that

μ(T\{yeT\y^xn] < 1/n

and μm({yeT\y^xn} > 0.
Let μn = μ \ {y e T \ y ^ xn} and let vn = μm\{y e T\y ^ xn}. Here

we denote the measure μ restricted to a set A by μ | A(μ \ A(E) —
μ(A Π E) for any Borel set E). We claim that the sequences {μn}
and {vn} satisfy the hypothesis of Theorem 2. Clearly, μn —* μ. Since
supp jtfn ^ supp vΛ, and since supp v'n c supp yΛ for any v'n <vn, Lemma
1 assures us that μn*K = μn{T)v'n. Finally, vn is a nonzero measure
such that vn< μm < ΣΓ=0μ72\ Since M(T) is semisimple [1], M{T)
is a P-algebra by Theorem 2.

5* A counterexample* Theorem 1 shows that any P-algebra
may be considered as an L-subalgebra of the measure algebra on a
compact idempotent semigroup. Each of the examples given in § 1
is a measure algebra on a locally compact idempotent semigroup (not
the structure semigroup). It is therefore natural to ask whether or
not the measure algebra on any locally compact, idempotent semigroup
is a P-algebra. The answer to this question is "no" as the counter-
example of this section will show. We first make the following
definition.
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DEFINITION 4. A subset Q of an idempotent semigroup S will be
called independent if whenever x^x2 xn = y1-y2 ym for {ίcJ U U

JJLi c Q and m < n, then ^ = 7/y for some i and i (1 ^ ΐ ^ w and

Let C denote the Cantor set on the interval [0,1]. Let S denote the
collection of all finite subsets of C and let union be the semigroup
operation in S. Note that the one point sets form an independent subset
of S in the sense of Definition 4. For an open-compact subset UaC,
XeS, define

if XaU

if xzu.

Give S the weak topology generated by the functions {χ̂ } (U open-
compact). Observe that each χ^ is a continuous semicharacter on S.
Let V be a countable open-compact base for C and let V — {U\ Ue V}.
Finally, let {E/JSU = V [J V and note that the family {χ̂ .jΓ̂ i separates
points in S.

Let T be the countable topological product of the two-point semi-
group {0,1}, under multiplication. Thus T is a compact idempotent
semigroup. We now define a map a: S—> T by [tf(X)]i = lu^X) for
any XeS. Note that a is a continuous one-to-one homomorphism
from S into T. We further observe that C is embedded in an obvious
way in S, and hence in T, as an independent set.

The concluding argument is similar to the one given in the Hewitt-
Kakutani paper on M(G) [2]. There is a positive continuous measure
μ of norm one concentrated on C. Using Fubini's theorem and the
fact that C is independent, it can be shown that μ and all its powers
are mutually singular [2]. Now let σ = δe — μ (e is the identity in
T). Then || σ || = || ΣJU C H f t (- l)kμk || - Σϊ=o CΛf* = 2\ Hence

Thus there is a complex homomorphism h of Jlf(T) such that | h(σ) \ = 2.
This forces fe(^) = — 1. Therefore, M(T) is not a P-algebra.

The countable product of the two point semigroup, with the
operation of coordinatewise multiplication, is a sub-semigroup of the
countable product of unit intervals, with the operation of coordinate-
wise minimum. Thus although the measure algebra on a finite product
of intervals with coordinatewise maximum multiplication is a P-algebra,
this is not the case for an infinite product of intervals. We are
therefore led to conjecture that a measure algebra M(T) is a P-algebra
if and only if T is an idempotent semigroup which satisfies a certain
"finite dimensionality" condition.
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