RINGS IN WHICH EVERY RIGHT IDEAL IS QUASI-INJECTIVE

S. K. JAIN, S. H. MOHAMED AND SURJEET Singh

It is well known that if every right ideal of a ring R is injective, then R is semi simple Artinian. The object of this paper is to initiate the study of a class of rings in which each right ideal is quasi-injective. Such rings will be called q-rings. It is shown by an example that a q-ring need not be even semi prime. A number of important properties of qrings are obtained.

Throughout this paper, unless otherwise stated, we assume that every ring has unity $1 \neq 0$. If M is a right R-module, then \hat{M} will denote the injective hull of M. For any positive integer n, R_n will denote the ring of all $n \times n$ matrices over the ring R. R^4 , J(R) and B(R) will denote the right singular ideal, the Jacobson radical and the prime radical respectively. A ring R is said to be a right duo ring if every right ideal of R is two-sided. Left duo rings are defined symmetrically. By a duo ring we mean a ring which is both right and left duo ring.

It is shown that $R_n(n > 1)$ is a q-ring if and only if R is semisimple Artinian. Some of the main results are: (i) a prime q-ring is simple Artinian, (ii) a semi-prime q-ring is a direct sum of two rings S and T, where S is a complete direct sum of simple Artinian rings, and T is a semi-prime q-ring with zero socle, and (iii) a semi-prime q-ring is a direct sum of two rings A and B, where A is a right self injective duo ring, and B is semi-simple artinian.

2. Let R be a right self injective ring. If B is any right ideal of R, then $\hat{B} = eR$ for some idempotent e of R. Let $K = \operatorname{Hom}_{R}(\hat{B}, \hat{B})$. Then $K \cong eRe$. In fact every element in K can be realized by the left multiplication of some element of eRe. By Johnson and Wong ([3], Theorem 1.1) B is a quasi injective as a right R-module if and only if KB = B. Hence B is quasi injective if and only if B = KB = $(eRe)B = (eR)(eB) = \hat{B}B$. Hence every two-sided ideal in a right self injective ring is quasi-injective. So, the following is immediate.

2.1. Every commutative self injective ring is a q-ring. Now, we give an example of a q-ring which is not semi-prime.

EXAMPLE 2.2. Let Z be the ring of integers. Set R = Z/(4). It is trivial that R is a q-ring. But R is not semi-prime, since its only proper ideal is nilpotent. In fact, Z/(n) is a q-ring for every integer n > 1, since it is self injective (cf. Levy [5]). Also we remark that Z/(n) has nonzero nilpotent ideals if n is not square free.

Next we prove

THEOREM 2.3. The following are equivalent

(1) R is a q-ring

(2) R is right self injective, and every right ideal of R is of the form eI, e is an idempotent in R, I is a two sided ideal in R.

(3) R is right self-injective, and every large right ideal of R is two sided.

Proof. Assume (1). Therefore R is right self injective. Let B be any right ideal of R. Then $\hat{B} = eR$ for some idempotent e. Since B is quasi injective $B = \hat{B}B = eRB = eI$, where I = RB, the smallest two-sided ideal of R containing B. Hence (1) implies (2).

Assume (2). Let A be a large right ideal of R. Then A = eI, $e^2 = e$, I is a two sided ideal. Since $A \cap (1 - e)R = 0$, (1 - e)R = 0. This implies that e = 1. Hence A = I, proving (3).

Now assume (3). Let B be a right ideal of R. If K is a complement of B, then $B \bigoplus K$ is large in R. By assumption $B \bigoplus K$ is a two-sided ideal in R, hence quasi-injective. This implies B is a quasi-injective, completing the proof.

THEOREM 2.4. Let n > 1 be an integer. Then R_n is a q-ring if and only if R is semi-simple Artinian.

Proof. Suppose that R is not semi-simple Artinian. By Lambek ([4], Proposition 2, p. 61), there exists a large right ideal B of R such that $B \neq R$. Let $e_{ij}, 1 \leq i, j \leq n$ be the matrix units of R_n and let $E = \{\sum a_{ij}e_{ij}: a_{1j} \in B, 1 \leq j \leq n \text{ and } a_{ij} \in R, 1 \leq i, j \leq n\}$. It is clear that E is a right ideal in R_n . But E is not two-sided, for $e_{nn} \in E$ and $e_{1n}e_{nn} = e_{1n} \notin E$. Now, we prove that E is a large right ideal in R_n . Let $0 \neq x = \sum_{i,j=1}^n b_{ij}e_{ij}$. If $b_{1j} = 0, 1 \leq j \leq n$, then $x \in E$. So, let $b_{1k} \neq 0$ for some k. Since B is large in R, there exists $a \in R$ such that $0 \neq b_{1k}a \in B$. Then,

$$x(ae_{kk}) = (\sum_{i,j=1}^{n} b_{ij}e_{ij})(ae_{kk}) = \sum_{i=1}^{n} b_{ik}ae_{ik} \in E.$$

Hence, $0 \neq x(ae_{kk}) \in E$. Therefore E is a large right ideal in R_n which is not two-sided, and by Theorem 2.3, R_n is not a q-ring. This proves "only if" part. Other part is obvious.

We are now ready to show the existence of right self injective rings which are not q-rings.

EXAMPLE 2.5. Let R be a right self injective ring which is not semi-simple (we can take R = Z/(4)). Let n > 1 be an integer. By Utumi ([6], Th. 8.3) R_n is right self injective. But R_n is not a q-ring, by the above theorem.

Next we prove

THEOREM 2.6. A simple ring is a q-ring if and only if it is Artinian.

Proof. Let R be a simple q-ring. Let B be a large right ideal in R. Then B is two-sided, and hence B = R. This proves that R does not contain any proper large right ideal. Hence R is Artinian. The converse is trivial.

Now, we give an example of a right self injective simple ring which is not a q-ring.

EXAMPLE 2.7. Let S be a noncommutative integral domain which is not a right Öre domain (cf. Goldie [1]). Let $R = \hat{S}$. Then R is a right self injective simple regular ring which is not Artinian. By the above theorem R is not a q-ring.

LEMMA 2.8. Let R be a q-ring. Then B(R) is essential in J(R) as a right R-module.

Proof. Since R is self injective, $J(R) = R^d$, by Utumi ([6], Lemma 4.1). Let $0 \neq x \in J(R)$. There exist a large right ideal E of R such that xE = 0. Then $xE \subset P$ for every prime ideal P of R. Since R is a q-ring, E is two-sided. This implies that either $x \in P$ or $E \subset P$.

Let $\{P_i\}_{i\in I}$ be the set of all prime ideals of R such that $x \in P_i$ for every $i \in I$, and $\{P_j\}_{j\in J}$ be the set of all prime ideals of R such that $x \notin P_j$ for every $j \in J$. Let $X = \bigcap_{i\in I} P_i$, and $Y = \bigcap_{j\in J} P_j$. $X \neq 0$, since $0 \neq x \in X$. On the other hand, $E \subset P_j$ for every $j \in J$. Thus $E \subset Y$, which implies that Y is large in R. Therefore B(R) = $X \cap Y \neq (0)$. Moreover, there exists $a \in R$ such that $0 \neq xa \in Y$. This implies that $0 \neq xa \in X \cap Y = B(R)$, completing the proof.

Hence, we have the following

THEOREM 2.9. A q-ring is regular if and only if it is semiprime. *Proof.* The result follows by the above lemma, and Utumi ([6], Corollary 4.2).

THEOREM 2.10. Let V be a vector space over a division ring D, and let $R = \text{Hom}_D(V, V)$. Then R is a q-ring if and only if V is of finite dimension over D.

Proof. The "if" part is obvious. Conversely, suppose that Vis of infinite dimension over D. Let $X = \{x_1, x_2, \dots\}$ be a denumerable set of linearly independent elements of V. X can be extended to a basis $X \cup Y$ of V. Let F be the ideal in R consisting of all elements of finite rank. Let $\sigma \in R$ be defined by $\sigma(x_{2i}) = x_{2i}, \sigma(x_{2i-1}) = 0$ for every *i*, and $\sigma(y) = 0$ for every $y \in Y$. Let $E = \sigma R + F$. Then $F \subset E$. Since F is a two-sided ideal in R, F is large. Therefore E is a large right ideal in R. We proceed to prove that E is not twosided. Let $\lambda_1, \lambda_2 \in R$ be defined by: $\lambda_1(x_i) = x_{2i}$ for every *i*, and $\lambda_1(y) =$ 0 for every $y \in Y$, $\lambda_2(x_{2i}) = x_i$, $\lambda_2(x_{2i-1}) = 0$, for every *i*, and $\lambda_2(y) = 0$ for every $y \in Y$. Let $\lambda = \lambda_2 \sigma \lambda_1$. Then $\lambda(x_i) = x_i$ for every *i*. Hence $X \subset \lambda(V)$. We assert that $\lambda \notin E$; for otherwise, let $\lambda = \sigma r + f, r \in R$, $f \in F$. Then $X \subset \lambda(V) = (\sigma r + f)(V) \subset \sigma(V) + f(V)$. But since f is of finite rank, there exists an integer n such that $x_{2n-1} \in f(V)$. Also, by definition of σ , $x_{2n-1} \notin \sigma(V)$. Hence $x_{2n-1} \notin \sigma(V) + f(V)$, which is a contradiction. Thus $\lambda \notin E$, as desired. However $\lambda \in R\sigma R \subset RE$. Hence E is not a two-sided ideal. Therefore, by Theorem 2.3, R is not a q-ring. This completes the proof.

We remark that the above theorem is also a consequence of Theorem 2.4.

The right (left) socle of a ring R is defined to be the sum of all minimal right (left) ideals of R. It is well known that in a semiprime ring R, the right and left socles of R coincide, and we denote any of them by soc R.

LEMMA 2.11. A semi-prime q-ring R with zero socle is strongly regular.

Proof. Let M be a maximal right ideal in R. Either M is a direct summand of R or M is large in R. If M is a direct summand of R, then its complement is a minimal right ideal. This implies that soc $R \neq 0$, a contradiction. Therefore, every maximal right ideal is large, hence two-sided. By Lemma 2.8, J(R) = 0. Thus R is isomorphic to a subdirect sum of division rings, which implies that R has no nonzero nilpotent elements. Since R is regular, by Theorem 2.9, R is strongly regular.

LEMMA 2.12. A prime q-ring has nonzero socle.

Proof. Let R be a prime q-ring. If possible, let $\operatorname{soc} R = 0$. By the above lemma, R is strongly regular. Hence R is a division ring, and $\operatorname{soc} R = R$ contradicting our assumption. Therefore $\operatorname{soc} R \neq (0)$.

THEOREM 2.13. A prime ring R is a q-ring if and only if R is simple Artinian.

Proof. By Theorem 2.9, and the above lemma, R is a prime regular ring with nonzero socle. Hence, by Johnson ([2], Th. 3.1), $\hat{R} = \operatorname{Hom}_{D}(V, V)$, where V is some vector space over a division ring D. But then $R = \operatorname{Hom}_{D}(V, V)$, since R is right self injective. By Theorem 2.10, V has finite dimension over D. Let (V:D) = n. Then $R \cong D_n$, completing the proof.

LEMMA 2.14. Let $\{R_{\alpha}\}_{\alpha \in I}$ be a finite set of rings. Then the direct sum $\sum_{\alpha \in I} \bigoplus R_{\alpha}$ is a q-ring if and only if each R_{α} is a q-ring.

The proof is obvious.

That Lemma 2.14 is not true for an infinite number of rings is shown by the following example which is due to Storrer.

EXAMPLE 2.15. Let R be a 2×2 -matrix ring over a field F. Let $\{R_{\alpha}\}_{\alpha \in I}$ be an infinite family of copies of R and let $S = \pi R_{\alpha}, \alpha \in I$. Let E be the right ideal of S consisting of those elements $[x_{\alpha}]$ of S such that all but finite x'_{α} s are matrices with first row zero. Since $R_{\alpha} \subset E$ for all $\alpha \in I$, E is a large right ideal of S. To show that E is not two-sided, consider $[x_{\alpha}] \in E$ where $x_{\alpha} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ for all $\alpha \in I$. Let $[y_{\alpha}] \in S$ be such that $y_{\alpha} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ for all $\alpha \in I$. Then $[y_{\alpha}][x_{\alpha}] = [z_{\alpha}]$, where $z_{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. But then $[z_{\alpha}] \notin E$, and E is not two-sided. Hence, by Theorem 2.3, S is not a q-ring.

Example 2.15 also suggests the following.

THEOREM 2.16. Let $\{R_{\alpha}\}_{\alpha \in I}$ be a family of simple Artinian rings and let R be their complete direct sum. Then R is a q-ring if and only if all R'_{α} s excepting a finite number of them are division rings.

The above theorem shows, in particular, that a regular q-ring may not be Artinian.

LEMMA 2.17. Let R be a semi-prime q-ring such that $\operatorname{soc} R$ is

large in R. Then R is a complete direct sum of simple Artinian rings.

Proof. Since soc R is large, every nonzero right ideal of R contains a minimal right ideal. Also R is regular, by Theorem 2.9. Hence by Johnson ([2], Th. 3.1), R is a complete direct sum of rings R_i , where each R_i is the ring of all linear transformations of some vector space V_i [over a division ring D_i . But then by Lemma 2.14 and Theorem 2.10, each R_i is a simple Artinian ring. This completes the proof.

In the following two theorems we assume that every ring has a unity element which may be equal to zero.

THEOREM 2.18. Let R be a semi-prime q-ring. Then $R = S \oplus T$, where S is a complete direct sum of simple Artinian rings and T is a semi-prime q-ring with zero socle.

Proof. Let $F = \operatorname{soc} R$. Since $R^d = 0$, $\hat{F} = \{x \in R : xE \subset F \text{ for some large right ideal <math>E$ of $R\}$. Then it is immediate that \hat{F} is a two-sided ideal in R. Since R is self injective, $\hat{F} = eR$ for some idempotent e. Then e is central, since R is regular. Let S = eR and T = (1 - e)R. Hence $R = S \bigoplus T$. By Lemma 2.14, both S and T are q-rings. Further, it can be easily verified that (i) S is a semi-prime ring, soc S = F, and F is large in S, and (ii) T is a semi-prime ring with zero socle. By the above lemma S is a complete direct sum of simple Artinian rings, completing the proof.

As a consequence of Lemma 2.11, Theorem 2.16 and Theorem 2.18 we have the following.

THEOREM 2.19. A semi-prime ring R is a q-ring if and only if $R = A \bigoplus B$, where A is a right self injective duo ring and B is semi-simple Artinian.

References

- 1. A. W. Goldie, Semi prime rings with maximum condition, Proc. London Math. Soc. 10 (1960)
- 2. R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11, (1961).
- 3. R. E. Johnson and E. T. Wong, Quasi injective module and irreducible rings, J. London Math. Soc. **36** (1961).
- 4. J. Lambek, Lectures on rings and modules.

78

5. L. S. Levy, Commutative rings whose homomorphic images are self-injective, Pacific J. Math. 18 (1966).

6. Y. Utumi, On continuous rings and self injective rings, Trans. Amer. Math. Soc. 118 (1965).

Received March 5, 1969.

UNIVERSITY OF DELHI INDIA