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ON THE THEORY OF UNBOUNDED
TOEPLITZ OPERATORS

JAMES ROVNYAK

Let W{β) be a real valued measurable function on (-co, oo)
which is periodic of period 2π. If W(fi) e L2(0, 2ττ), the associated
Toeplitz operator may be defined as a closed symmetric linear
transformation T — Tw in Hubert space. A generalized
resolvent R(w) for T is constructed, along with the corre-
sponding spectral function P(t). The theory of positive de-
finite functions is used to exhibit a minimal dilation E(t) for
P(t) and to compute its spectral invariants. The main results
of the paper only require that ϊog+ | W(β) \ e L^O, 2π), although
with this hypothesis a Toeplitz operator cannot be defined in
the usual way. However, the operator-valued analytic func-
tion R(w) does exist, and the main results concern its struc-
ture. In certain cases R(w) is the resolvent of a selfadjoint
transformation.

Let U = L2(0, 2π) and let L\ be the subspace of functions whose
negative Fourier coefficients vanish. In both of these spaces, Lebesgue
measure is normalized so that the function identically 1 has norm 1.
Throughout, W(θ) will denote a real valued Borel measurable func-
tion on (— oo, oo), periodic of period 2τr, such that

\og+\W(θ)\eL1(012π) .

We exclude the possibility that W(θ) is equal a.e. to a constant.
If W(θ) is essentially bounded, the associated Toeplitz operator

is a bounded selfadjoint transformation in L\ defined by

Tf(θ) = PW(θ)f{θ)

for each f(θ) in L\, where P is the orthogonal projection mapping
U onto Li. Assume next that W(θ) e L2(0, 2π) and Let £^0 be the
set of trigonometric polynomials in L\. Define a linear transforma-
tion To with domain ^ by

TJ(Θ) = PW(θ)f(θ)

for each f(θ) e &rQ. Set T_ = To and T+ = Tl. Then Γ_ is a closed
symmetric transformation in L\ and T* = T_[5, 6, 7]. The literature
on unbounded Toeplitz operators is concerned in part with conditions
which imply that Γ_ = Γ+, in which case T = Γ_ = T+ is a self-
adjoint transformation. See [4, 5, 6, 7, 13, 14]. M. Rosenblum [11-
13] and R. S. Ismagilov [7] also compute the spectral invariants of
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T in certain cases.
To motivate our main construction it is necessary to recall a

formula of A. Calderon, F. Spitzer, and H. Widom [3] and M. G.
Kreϊn [8]. Assume W(θ) is essentially bounded and let T be the
associated Toeplitz operator. Define

( 1 ) S(w, z) - exp { - - f-Γ e]°θ

 + z log [ Wyθ) - w\dθ)

I 4 π Jo e%θ — z i

for w Φ w, I z \ < 1, where | arg [ W(θ) — w] | < π. Then

( 2 ) <(Γ - w)-\l - βeiθ)~\ (1 - zen-% = S(w, z)S(w, β)/(l - βz)
for %ΌΦW, I z I < 1 (see also M. Rosenblum [11]). We derive an
analogous formula under a weaker hypothesis (cf. J. Pincus and J.
Rovnyak [10]).

THEOREM 1. Assume log+ | W{θ) \ e 1/(0, 2π) and define S(w, z)
for w Φ w, \z\ < 1 by (1). Then for every nonreal number w there
exists an operator R(w) ivhίch is everywhere defined and bounded in
L\ such that

- βeiθ)~\ (1 - ze^-% = S(w, z)S(w, β)/(l - βz)

whenever | 2 | < 1, | /3 ] < 1. There exists a nondecreasing operator
valued function P(t), continuous from the right at every real point,
such that P ( - 00) = 0, P(+ 00) = l, and

+
<R{w)f, / > + = ί + ( ί - tv)-*d(P(t)f, / > + , w Φ w ,

j

for every f in L%.

We introduce a new Hubert space 3Γ(S), whose elements are
analytic functions of two complex variables. This space is analogous
to one constructed by L. de Branges in connection with the theory
of singular integral operators (unpublished). In everything that
follows we use w, z and a, β for pairs of complex variables such
that w Φ w, I z \ < 1, and a Φ a, \ β \ < 1; s, t are corresponding
dummy variables used when a function appears in an inner product.
Define

K(a, β; w, z) - [S(w, z)S(w, β) - S(a, z)S(a, β)]/[(w - δ)(l - βz)]

for all pairs a, β and w, z as above.

THEOREM 2. There exists a unique Hilbert space J%Γ(S) whose
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elements are analytic functions of the pair w, z such that for each
fixed pair a, β, K(a, β; w, z) belongs to <3Γ(S) as a function of w, z,
and

F(a, β) = <F(s, ί), K(a, β; s, ί)>™>

for every function F(w, z) in Sέ^(S). There exists a selfadjoint
transformation H in 3ίΓ{S) such that for every nonreal number wQ,

(H - wo)-ιF(w, z) = [F(w, z) - F(w0, z)]/(w - wQ)

for every function F(w, z) in

The selfadjoint transformation H is closely connected with the
operator valued function R(w) constructed in Theorem 1.

THEOREM 3. Let E(t) be the resolution of the identity for the
selfadjoint transformation H in Theorem 2, normalized to be con-
tinuous from the right at each real point. Then L\ may be
embedded in the space 3ίΓ{S) in such a way that E(t) appears as a
minimal dilation for the operator valued function P(t) constructed
in Theorem 1.

Precisely, this means that there exists an isometry V mapping
L\ into ^T(S) such that (i) VP(t)V = QE(t)Q for all real t, where
Q is the orthogonal projection mapping J2Γ(S) onto the range of V,
and (ii) there is no nonzero closed subspace of SΓ(S) which is
orthogonal to the range of V and reduces the values of E(t). See
W. Mlak [9] or Akhiezer and Glazman [1].

We use a method of M. Rosenblum [11-13] to compute a pair of
spectral invariants associated with E(t). Consider a measurable
subset Γ of the unit circle | z \ = 1 in the complex plane. Define the
index of Γ to be 0 if Γ is the empty set or the full unit circle
modulo a Lebesgue null set. Define the index of Γ to be r(r = 1,2,3, )
if Γ is the disjoint union of r closed, nondegenerate, proper subarcs
of the unit circle modulo a Lebesgue null set. In all other cases
define the index of Γ to be + oo.

THEOREM 4. A pair of spectral invariants for E(t) is (μ, m(λ)),
where μ is Lebesgue measure on (— oo, oo), and for each real λ, m(λ)
is the index of Γλ = [eiθ \ W{θ) < λ}.

Thus if R(w) is the resolvent of some selfadjoint transformation
T (for example, if W(θ) satisfies the conditions of Theorem 6, or if
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we have the situation in Theorem SA) then (μ, m(λ)) is a pair of
spectral invariants associated with T. Therefore Theorem 4 is a
generalization of the previously cited results of M. Rosenblum [11-13]
and R. S. Ismagilov [7].

We now seek conditions which imply that R(w) = (T — w)~\
w Φ w, for some self ad joint transformation Γ in L2

+. The methods
of J. Pincus and J. Rovnyak [10] could be employed here, but it is
more instructive to argue directly from Theorems 2 and 3. We first
prove the preparatory.

THEOREM 5. In the situation of Theorem 1, R(w) is the resolvent
of some selfadjoint transformation T in L\ if and only if the
identity

S(w, z)S(w, z)-1 - S(w, z)S(w, z)~ι

w — w

= 1 P 1 - i z i2 s(w> eiθ)S(™, β 'V - S(w, eiθ)S(w, ei0)-1

 dθ

2π Jo I ei0 — z |2 w — w

holds for w Φ w, | z | < 1.

The identity in Theorem 5 is always meaningful. In fact, for
each fixed w,

Fw(z) = [S(w, z)S(w, z)-1 - S(w, z)S(w, z)~ι]l(w - w)

is a nonnegative harmonic function of z in the unit disk | z \ < 1.
The inequality Fw(z) ^ 0 follows from the identity

Fw{z) - (1 - I z |2) I S(w, z) \~2K(w, z; w, z) .

Thus the condition in Theorem 5 is that for each w, Fw{z) is the
Poisson integral of its boundary value function. We now give simple
sufficient conditions for this.

THEOREM 6. Assume log+ | W(θ) | e L^O, 2π) and let R{w) be con-
structed as in Theorem 1. Assume that for each real ΘQ there is an
ε > 0 such that W(θ) is essentially semi-bounded in (θ0 — ε, θ0) and
in {ΘQ, θ0 + ε), and

f^o 1 /7/9 Γ^o+ε 1 rJΩ

( 4 ) \ ± a σ -u \ ± a σ ~ _i_ oo

Ĵ G-a max [1, W(θ)\ ΘQ - θ )ΘQ m a x [ l , - W(θ)] θ - ΘQ

and

f̂ +ε 1 dθ

, r v ["o 1 dθ , [β

( 5 ) \ + I
J«o-max[l, - W(θ)\ βt-θ J«m a x [ l , - W(θ)\ βt-θ J«o max [1, W{θ)\ θ
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Then R(w) is the resolvent of some selfadjoint transformation T
in I/+.

An examination of the proof of Theorem 6 shows that conditions
(4) and (5) are necessary for R(w) to be the resolvent of some self-
adjoint transformation. Notice that (4) and (5) hold for any ε > 0
if W{θ) is essentially semi-bounded in a neighborhood of θ0.

We now specialize to the case W(θ) e Z7(0, 2ττ). It is of interest
to relate our constructions to the transformations T_ and T+ defined
earlier. The domains of these transformations are denoted £3L and
£^+ respectively.

THEOREM 7. Assume W{θ) e L2(0, 2π) and let R(w) and P(t) be
constructed as in Theorem 1. Then P(t) is a spectral function for
T_ and R(w) is therefore a generalized resolvent for T_.

See Akhiezer and Glazman [1] for the concepts of spectral func-
tion and generalized resolvent for a symmetric transformation. A
simple consequence of this result is

THEOREM 8. Assume W(θ) belongs to ZΛ
(A) // T_ = T+ then R(w) is the resolvent of the selfadjoint

transformation T = T_ = T+.
(B) // R{w) is the resolvent of some selfadjoint transformation

T, then T_g T^T+.

According to R. S. Ismagilov [7, Th. 6], a sufficient condition
that T_ = T+ is that W(θ) be essentially semibounded in a neighbor-
hood of each real point. (It is essential here that W(θ) be defined
on the whole real line so as to be periodic of period 2π. This is not
made clear in Ismagilov's statement of the theorem.) See also P.
Hartman [5] and D. N. Clark [4], where some more delicate results
along this line can be found.

We conjecture that the inclusions in Theorem 8(B) may actually
be proper.

I am indebted to Marvin Rosenblum for helpful conversations on
Toeplitz operators.

Proof of Theorem 1. We omit a detailed proof of the existence
of R(w) and the following properties: ||JS(w)|| ^ l/ |Imw|, R(w)* —
R(w), and [R(w) - R{w)*]/(w - w) ^ 0, w Φ w. When W(θ) is
essentially bounded these facts are obvious from (2). In the general
case we approximate W{θ) by
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w(θ) = i ) t i f

lθ, otherwise ,

a > 0, and work off the dense subspace of L\ spanned by functions
of the form (1 - βeίθ)~\ \ β \ < 1. See J. Pincus and J. Rovnyak [10]
where a similar argument is carried out in detail.

By the operator generalization of the Poisson representation
theorem there exists an operator Po ^ 0 on L\ and nondecreasing
operator valued function P(t) on (— °°, oo) such that

R(w) = Pow + p l + *» *W + ReR{i)
J-~ t — W 1 + f

for w Φ Wj where the integral is taken in the weak sense. Thus

\R{w) - R(w)*]/(w - w) = Po + ί+C°| t - w \~2dP(t)
J

for w Φ w. Letting w tend to infinity along the imaginary axis we
obtain Po = 0.

We show that — ίvR(iv) —> 1 in the weak operator topology as
I v I —> oo (v real). It is easy to see that for this it is sufficient that

lim<-ίvR(ίv)(l - βeiθ)-\ (1 - zeif))~iy+

= <(ϊ - βeiθ)-\ (1 - *β*V>+ ,

or equivalently

( 6) lim - ivS(ίv, z)S( - iv, β) = 1

for I β I < 1, I z I < 1. If v > 0 then

— ivS(iv, z)S( — iv, β)

= -i exp v - log[W(θ) - iv])dθ\ ,
( 1 — βe%θ)(l — ze~zθ)

where

lim (log v — log [ W(θ) — iv])
17—»OO

= lim (-log I Έ ; - 1 ^ ) - i | - i arg [T7(6>) - iv]) = —πi .

We obtain (6), and hence our assertion, by the dominated convergence
theorem.

Now from

Re[-ίvR(ίv)] = [+O°v2(t2 + v2)-ιdP{t)
J
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and the monotone convergence theorem we obtain

J-oo

for each f in L\. It follows that we may choose P{t) so that

P(_co) = 0 and P(+oo) = l. Then V°°(t - w)~ιdP{t) exists and
J—oo

differs from R(w) by a constant operator. This constant operator is
zero because — ivR(iv) —> 1 in the weak operator topology as | v | —> oo.
The theorem follows.

Proof of Theorem 2. For the existence of SΓ(S) it is sufficient
to show that K{a, β; w, z) is positive definite as a function of the
two pairs a, β and w, z. Let Sa(w, z) and Ka(a, β; w, z) be defined
as before, but with W{θ) replaced by the truncated function Wa(θ),
a > 0, which was introduced in the proof of Theorem 1. Let Ta be
the bounded self ad joint Toeplitz operator associated with Wa(θ).
By (2),

Ka(a, β; w, z) = <(Ta- α ) - ^ - βei0)~\ (Ta - w)~\l - zeiθ)-ι>+

for all pairs a, β and w, z. This formula can be used to show that
Ka(a, β; w, z) is positive definite as a function of the pairs a, β and
w, z for each a > 0. Letting a —» co we see that K{a, β; w, z) is also
positive definite. Therefore there exists a unique space Sf(S) with
the stated properties.

Let w0 be a fixed nonreal number. We show that

( 7 ) U(wQ): F(w, z) -> F(w, z) + (wQ - wQ)[F(w, z) - F(wQ, z)]/(w - w0)

is an everywhere defined isometry in J%Γ(S). Let £&(w0) be the span
of all functions in ^Γ(S) of the form F(w3 z) = K(a, β; w, z) where
a, β is a pair such that a Φ woy w0. Note that &(w0) is dense in

If F(w, z) = K(a, β; w, z) is in £^(w0), we obtain

[F(w, z) - F(w0, z)]/(w - Wo)

= [K(a, β; w, z) - K(w0, β; w, z)]/(ά - w0)

by a direct calculation. This identity shows that &(w0) is contained
in the domain of U(w0). A straightforward calculation will show
that U(w0) is isometric on £&(wQ). In fact, suppose Fά(w, z) =
K{a5, βj] w, z) belongs to ^(wo)> 3 = 1, 2. Using (8) we reduce the
relation

, t), U(wo)F2(s, t)y^{s) = ^ ( s , ί), Ft(8, /JT(S)
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to a kernel function identity which is verified by a direct calculation.
Therefore there exists a unique isometry in SΓ(S) which agrees with
U(w0) on £&(w0). This isometry is given analytically by (7) through-
out SΓ(S) because the isometry agrees with (7) on a dense subspace
of SΓ(S), and convergence in the metric of jyΓ{S) implies pointwise
convergence for any sequence of functions in the space.

We show that U{w,Y = U(w0). If F3{w, z) = K(ajΊ β,.; w, z)
belongs to &(wQ), j = 1, 2, then

ζ U ( w o ) F 1 ( 8 9 t), F 2 ( s , φ , {s) - < F 2 ( s , t), U(wo)F2(s, φ , z {S)

by a direct calculation. The assertion follows.
We show that 1 — U(wd) has zero kernel. Suppose that F(w, z)

belongs to ,9Γ{S) and U(wo)F(w, z) = F(w, z). Then F(w, z) = F(wϋ, z)
identically in w, z. Now

( 9 ) I F(w, z)\2^\\ F(s, t) I\\ {S)K(w, z; w, z)

where

K(ιv, z; w, z) = [S(w, z)S(w, z) — S(w, z)S(w, z)]/[(w — ϊϋ)(l — zz)\

f o r a l l p a i r s w, z. B u t

S(w, z)S(w, z) j 2 = e x p j - - ί - Γ T 1 ~ l ^ 1 ' l o g | W(θ) -w\c
2τr Jo \ei0 - z\

as ! Im w ί —> c>o ? and so Im wK(w, z\ w, z) —> 0 as j Im w j —> co. There-
fore from (9) and the fact that F(ιv, z) actually does not depend on
w we see that F(w, z) = 0 identically.

By the theory of Cayley transforms there exists a unique self-
adjoint transformation H(w0) in J%Γ(S) such that

U(w0) = [H(w0) - wo][H(wo) - ^ o ] - 1 .

By construction the resolvents of H(w0) are given by

[H(w0) - w,]-1: F(w, z) -> [F(w, z) - F(w0, z)]/(w - w0) .

By the resolvent identity for the difference quotient transformation,
H — H(wQ) is independent of the choice of wQ. The theorem follows.

Proof of Theorem 3. Let us note that

(10) lim a2K(ίa, βt; ίa, β2) = (1 - ββ2)~ι

whenever | β1 \ < 1, | β2 \ < 1. In fact,
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(1 - βJ3Ja*K(ia, A; ia, β2)

{ 1 Γ2 τ 1 — P /? Ί

— I — ^ — ^ a r g [ μr(^) _j_ ̂ 0 I .
2TΓ Jo (eiβ - β2){e~iθ - ft) * l w J J

As α ^ o o the exponential factor tends to 1 and the sine factor tends
to sin π/2 = 1 by the dominated convergence theorem. This proves
(10).

We show that the transformation

(11) V: f(θ) - F(w, z) = </(#), R(w)(l - sβ* V > +

is an isometry mapping L\ into SίΓ(S). Set f(θ) — (1 — βeiθ)~ι where
iδ is fixed, I β I < 1, and let F(w, z) be defined as in (11). Then

(12) F(w, z) = S(w, z)S(w, β)/(l - βz)

by the definition of R(w). For each pair w, z,

(13) lim iaK{ia, β; w, z) = F(w, z) .
a—><χ>

This follows from the definition of the kernel function and the fact
that Sf(w, Z)—>0 as |Im^|—>oo. We show that (13) actually holds
in the metric of 3tΓ(β). We find by direct calculation that

|| ia.Kiia,, β; s, t) — ia2, K(ia2, β; s, t) ||^-(ίS)

= alKiia^ β; ίaίy β) — a^Kiia^ β; ia2j β)

- aLa2K(ia21 β; ia19 β) + a\K{ia2, β; ia2, β)

= [1 — 2a2/(a1 + a2)]a2

λK(ialf β; ialf β)

+ [1 — 2α1/(α1 + a2)]a]K(ίa2, β; ia2y β) .

By (10) this tends to zero as a19 α2—• ©o. Therefore (13) holds in the
metric of JΓ(S), and in particular (12) belongs to J£%S). Now let
1 A I < 1 , | / 5 2 | < 1 , and define ftf), f2{θ) and F^w, z), F2(w, z) as
before, but with β replaced by ft and β2. By what was just proved
and (10),

8, ί), F2(8, φ^M5)

(ia, ft; s, ί), iaK(ίay β2; s, i)>^-(5)

- lTm α2iΓ(m, ft; m, ft) = (1 - ftA)-1

Standard kernel function arguments will now show that (11) is an
everywhere defined isometry mapping L% into J%Γ(S).

Let 3^^{S) be the range of V and let Q be the orthogonal pro-
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jection mapping J2Γ(S) onto J%£(S). To complete the proof it is
sufficient to show that (i') VR(wQ) V* = Q(H — w^Q for w0 Φ wOJ

and (ii') if G(w, z) is in J%Γ(j$) and orthogonal to (H — wo)~ιF(w, z)
for every F(w, z) in J%^(S) and every nonreal number w0, then
G(w, z) = 0 identically.

Proof of (i') Let Fγ(w, z), F2(w, z) be defined as above corre-
sponding to numbers β19 β2, \ βL | < 1, | β2 \ < 1. Then

(β, ί),

= S(w0,

- F ^ o , /52)

But

K(ϊd0, β2; w, z) = [F2(w, z) - F2(w0, z)]/(w - w0)

= (H- w,)-ιQF*(w, z) ,

and therefore

^ ( s , ί), VR{w,)V*Fι{8, t)>*{S)

= <^(s, ί), (H -

This implies (i')

Proof of (ii'). Suppose G(w,«) is in Jy£Γ(S) and orthogonal to
(H — w^~ιF(w, z) for every i^(w, 2;) in J%£(S) and every nonreal
number tt;0. By (14), G(w, z) is then orthogonal to K{a, β; w, z) for
each pair a, β> and so G(w, z) = 0 identically. The theorem follows.

Proof of Theorem 4. This proof follows closely arguments in
Rosenblum [11-13]. Therefore we only sketch the key ideas.

By the proof of Theorem 3,

(15) F(w, z) = S(w, z)S(w, β)/(l - βz)

belongs to J%Γ(S) as a function of w, z for each fixed β, | β | < 1.
Moreover, elements of SΓ(S) of the form

(H - wQ)~ιF{w, z) = K(w0, β\ w, z) 1

where w0 Φ woy | β \ < 1, span a dense subspace of J%Γ(S). A short
calculation gives

< (, ί), F(s, ί»Λ- ( S ί
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for wQ Φ w0, I β I < 1. One consequence is t h a t

(17) Γ " | log 117(0) -X\\dθ < oo

Jo

for almost all real λ. In fact, take β = 0 in (16) and note that the
left hand side is analytic and has a nonnegative imaginary part for
Im w0 > 0. The existence of boundary values a.e. implies (17).
Rosenblum [12, p. 593] proves (17) in a different way.

We show that H has absolutely continuous spectrum. Fix β,
β I < 1. The left hand side of (16) admits an exponential repre-

sentation

wQ)^F{s, t), F(s, φ,r{S)

=exp {α

Im w0 > 0, where a is a real constant and Ẑ (λ) is a real valued
measurable function, both depending on β, such that 0 fg
a.e. Comparing (16) and (18) we find

= JLί
)

2π)rλ \e'<° - β \ 2

a.e. As in Rosenblum [11, p. 991] we use a theorem of N. Aronszajn
and W. F. Donoghue [2] to conclude that the absolutely continuous
subspace of H contains F(w, z). Since the absolutely continuous sub-
space of H reduces H, it is all J?Γ(S).

Suppose now that | β, | < 1, | β2 \ < 1, and define F^w, z), F2(w, z)
by (15), but with β replaced by βl9 β2 respectively. Following
Rosenblum [12, pp. 592-593] and [13, p. 714] we obtain

jLζEQ^Fάs, t), F2(s, ί)>Λ Ί 5 )
CLAJ

L s , ί), [(H-X + iε)-1 - (H - λ -ielin

= ξ(βίt X)ξ(βu λ)Γ(l - A«V(1 - βjr^dμjiβ)
JO

for almost all real λ, where for each λ in the set such that (17)
holds, μλ is a singular measure on [0, 2π] such that dim U(μ?) —
index (Λ) (see [13, p. 712]), and

ξ(β, λ) = exp \—λ_\2πel + ί3 log I W(θ) - λ I dθ +
I 4ττ J eτϋ β

l log I W(θ) λ I dθ + 4 ( I ^

for |/5 I < 1. Now exactly as in [13, pp. 714-715] we may construct
the direct integral space
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J-co

and an isometry U mapping 3ίΓ(S) onto & which diagonalizes H.

Proof of Theorem 5. Let Q be the projection of SΓ(S) onto
the range J%£(S) of the isometry V constructed in the proof of
Theorem 3. If F(w, z) = K(ά, β; w, z) for some pair a, β, then
QF(w, z) = G(w, z) is given by G(w, z) = VR(a)(l - βeiθ)~\ by the
definition of V. Clearly, R(w) is the resolvent of some selfadjoint
transformation if and only if Q is the identity transformation,
equivalently || F(s, t) \\*-is) = || G(s, t) \\,_?r{S) for all pairs a, β, or
equivalently

(19) K(a, β; a, β) = \\R(a)(l - βe'Ύ1 \\\

for all pairs α, β. By the identity (3) in Theorem 1,

P(1 - ze-i0)~ι[R(a)(l - βe*θ)~ι\dθ = S(a, z)S(ά, β)/(l - βz)
2π Jo

for I z I < 1 and any fixed pair a, β. Passing to the boundary of the
disk I z I < 1 we obtain

R(a)(l - βeiθ)~ι = S(a, eiG)S(a, β)/(l - βe%0) .

Therefore (19) is equivalent to

[S(a, β)S(a, β) ~ S(a, β)S(a, β]/[(a - ά)(l - ββ)\

We complete the proof by showing that

I S(cc, eί0) |2 = [S(a, eiθ)S(a, e%θ)~ι - S(a, eiθ)S(a, eiθ)-ι\l(a - a) .

In fact,

S(ά, »)-JS(α, z)-1 - S(a, z)~ιS(a, z)~ι

log[W(θ) - a]dθ\ ,
.2π Jo I eiθ — z

so

S(a, ei0)-ιS(a, eiθ)~ι - S(a, el°)-lS(a, ei0)~]

= exp (log [W(θ) - a]) - exp (log [W(θ) - a]) = a - a ,
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which is an equivalent identity. The theorem follows.

Proof of Theorem 6. Set

S(w, z)S(w, z)-1 , if Im w > 0 ,

— S(w, z)S(w, z)"1 , if Im w < 0 ,

for I z I < 1. By Theorem 5 it is sufficient to show that for every
nonreal number w,

(20) I m Ψw(z) = -±-\ ' ' " ' I m φv(eiβ)dθ
2π Jo I &* — z\2

for I z I < 1. For every nonreal number w, φw(z) is analytic and has
a nonnegative imaginary part for \z\ <1. Therefore there exists a
nondecreasing function vw(θ), 0 ^ θ ^ 2ττ, such that

1 f2τr 1 _ I z 12

Im<z?w(^) = \ !—!—dvJΘ)
2π Jo

for z < 1. It is known that

a.e. on [0, 2π], so to prove the theorem we need only show that
vw(θ) is absolutely continuous on [0,2ττ]. Now φw(z) has the ex-
ponential representation

for I z I < 1, where

_ rarg [ J7(0) - w] , Im w > 0 ,
Λ ~ \π _ arg [T7(^) - w] , Im w < 0 .

By a theorem of N. Aronszajn and W. F. Donoghue [2], in order
that vw(θ) be absolutely continuous in an interval (α, δ), 0 < a < b < 27Γ,
it is sufficient that #w(#) be bounded away from 0 or bounded away
from π in the interval (α, 6). (Aronszajn and Donoghue state their
result for a half-plane, but this form of the theorem is obviously
equivalent.) Our hypotheses now imply that vw{θ) is absolutely con-
tinuous in [0, 2τr], except for the possibility of a finite number of
discontinuities. Let us consider gw(θ) as a periodic function of period
2π defined on the real axis. In order that vw(θ) be continuous at ΘQ1

where ΘQ is in the interior of [0, 2π], it is necessary and sufficient
that there exist an ε > 0 such that
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S 0o df) f#o+ε rJ/9

9ΛΘ)-^— + \ [re- gκ(θ))-™— = + oo
in order that vw(θ) be continuous at both endpoints θ0 = 0, 2π of the
interval [0, 2π] it is necessary and sufficient that there exist an ε > 0
such that (21) holds for β0 — 0. (Again, this result is equivalent to
a half-plane theorem of N. Aronszajn and W. P. Donoghue [2]. See
also J. Pincus and J. Rovnyak [10, Lemma 2].) It is necessary to
consider the two cases Im w > 0, Im w < 0 separately. In these
cases, conditions (4) and (5) turn out to be equivalent to (21). Thus
our hypotheses imply that vw(θ) is absolutely continuous on [0, 2π]
for every nonreal number w. Therefore (20) holds for | z \ < 1 for
every nonreal number w, and the result follows from Theorem 5.

Proof of Theorem 7. Assume W(θ) belongs to L2. We show
that for any fixed pair w, z, S(w, eiθ)S(w, z)/(l — zei0) belongs to ^ 1
as a function of θ, and

(22) (Γ+ - w){S(w, ei0)S(w, s)/(l - zeι0)} = (1 - zei0)~ι .

Fix w, z and set f(θ) = S(w, ei0)S(w, s)/(l - zei0). By the proof of
Theorem 5,

(23) f{fi) - R(w)(l - ze*0)-1 ,

so f(θ) and g(θ) = wf(θ) + (1 - zei0)~ι belong to L\. To prove our
assertion we must show that

(24) \W(θ)f{θ) - g(θ)]e-"°dθ = 0

for every n = 0, 1, 2, •••. Define SG(w, z), fa(θ), ga(θ), and ^ ( w ) as
before, but with W(θ) replaced by the truncated function Wa(θ) con-
sidered in the proof of Theorem 1 (α > 0). In addition let Ta be
the bounded self ad joint Toeplitz operator associated with Wa(θ).
Then Ra(w) = (Ta - w)-1, so

hence Tafa(θ) = ga(θ). By the definition of Ta this gives

(25) [*\wa(θ)fa(θ) - ^(^Iβ-^W = 0
JO

for every n = 0, 1,2, •••. Theorem 1 can be used to show that
R(w) = lim iία(ίi?) as α ~> co in the weak operator topology. Hence
f(θ) = \imfa(θ), g(θ) = \imga(θ) in the weak topology of L\. Since

= lim Wa(θ) in the metric of L2, we may pass to the limit in
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(25) to obtain (24), and, hence, our assertion.
By (22) and (23), the product (T+ - w)R(w) is defined and coin-

cides with the identity on the subspace of L\ spanned by functions
of the form (1 — zeiθ)~ι where | z | < 1. Since T+ is closed and R(w)
is continuous, it follows that R{w) maps L\ into &+ and

(26) (Γ+ - w)R(w) = 1

whenever w Φ w.
To show that P(t) is a spectral function for T_ we must show

that for each fe £2L, g e L\.

(27) 11 Γ_/ I \\ = ^_fd<P(t)f, />+

and

(28) <TL/, g>+ = Γ tcKP(t)f, g>+ .
J-oo

Convergence of the first integral implies absolute convergence of the
second integral . Fix fe*3L, g e L2

+, and let w b e a nonreal number.
From (26) and Theorem 1 we have

Γ t(t - w)~ιdP{t) = 1 + wR(w) = T+R(w)

so

(29) Γ ί(ί - w)~ιd<JP(t)g, />+ = <β, R(w)T_f>+ .

Write this equation with w — ±iv, v > 0, and add the resulting

equations. Then choosing g = / we get

ί (ί

= <f,R(-i

= <(iv)-ιR(iv)T_f, T_/>+

Multiply by v2 and let v —> co. Using the fact that — ivR{ίv) —> 1 in
the weak operator topology (see the proof of Theorem 1) and the
Lebesgue monotone convergence theorem, we get (27). In a similar
way we get (28) from (29) and the Lebesgue dominated convergence
theorem.

Proof of Theorem 8. The result follows quickly from Theorem
7. Indeed since R{w) is a generalized resolvent for T_ we have
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(T+ — w)R(w) = 1 (actually this was obtained directly in the proof
of Theoren 7), and hence also R(w)(T_ — w) = 1 on £^L. Assertions
(A) and (B) are immediate from these relations.
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