SEMI-SQUARE-SUMMABLE FOURIER-STIELTJES TRANSFORMS

I. GLICKSBERG

For G a locally compact abelian group with dual Γ , let μ be a (finite regular Borel) measure on G with Fourier-Stieltjes transform $\hat{\mu}$. Doss has recently shown that when Γ is (algebraically) a totally ordered abelian group and $\hat{\mu}$ is square integrable on the negative half Γ_{-} of Γ then its singular component σ has $\hat{\sigma} = 0$ on Γ_{-} ; in particular $\mu E = 0$ for each common null set E of the analytic measures (those with transforms 0 on Γ_{-}), such E being Haar-null.

In the similar (but usually distinct) case in which Γ is partially ordered by a nonzero homomorphism $\psi: \Gamma \to R$ with $\Gamma_{-} = \phi^{-1}(-\infty, 0]$ the common null sets E are known, and our purpose is to note in this setting how function algebra results apply to show $\mu E = 0$ when $\hat{\mu} \in L^2(\Gamma_{-})$, and when $\hat{\mu}$ satisfies sometimes weaker (but more obscure) hypotheses.

Doss' results appear in [2], and the function algebra results we apply are those in [4, \S 1], [5, \S 2], with which we shall assume the reader familiar. The common null sets mentioned above are given in [1, 5].

THEOREM 1. Let ψ , Γ_{-} be as above and let $\varphi: R \to G$ be the homomorphism dual to ψ . If

(1)
$$\int_{\varGamma_{-}} | \hat{\mu}(\gamma) |^2 d\gamma < \infty$$

then μ vanishes on all Borel $E \subset G$ for which

(2)
$$\{t \in \mathbb{R}: x + \varphi(t) \in E\}$$
 has linear measure 0,

for all $x \in G$, i.e. (by definition [3, §2]) μ is absolutely continuous in the direction of φ .

Proof. Let G^a be the Bohr compactification of G, with dual Γ_d , the discrete version of Γ . Dual to $\psi: \Gamma_d \to R$ we have a map of R into G^a , the composition $R \xrightarrow{\varphi} G \to G^a$, which we still call φ . Note that each Borel E in G is Borel¹ in G^a , and if $E \subset G$ satisfies (2) for $x \in G$ it does for all x in G^a (the set is void for $x \in G^a \setminus G$). As in [5] we are forced to transfer our attention to G^a to apply the function algebra results.

¹ We take the σ -ring generated by compacta as our Borel sets.

I. GLICKSBERG

Let A be the closed span of $\Gamma_+ = \psi^{-1}[0, \infty)$ in $C(G^a)$, a subalgebra of $C(G^a)$. As usual we can shift μ to a measure on G^a carried by its subset G [6] with the same Fourier-Stieltjes transform as before. Let \hat{f} be the element $\hat{\mu}\chi$ of $L^2(\Gamma)$, where χ is the characteristic function of Γ_- , and² f the element of $L^2(G)$ corresponding to \hat{f} .

For any trigonometric polynomial $p = \sum c_i \gamma_i$ in A (i.e., with $\psi(\gamma_i) \ge 0$) we have

$$(p\mu)^{\wedge}(\gamma) = \int \overline{\gamma} p d\mu = \sum c_i \hat{\mu}(\gamma - \gamma_i) = (\sum c_i \delta_{-\gamma_i}) * \hat{\mu}(\gamma) ,$$

and since

$$\sum_{i=1}^{\infty} c_i \hat{\delta}_{-\gamma_i} * \hat{f}(\gamma) = \sum_{i=1}^{\infty} c_i \hat{\mu}(\gamma - \gamma_i) \chi(\gamma - \gamma_i)$$

 $= \sum_{i=1}^{\infty} c_i \hat{\mu}(\gamma - \gamma_i) = (p\mu)^{\wedge}(\gamma)$

if $\psi(\gamma) \leq 0$, we have

$$\int_{|r_{-}|} (p\mu)^{\wedge}|^2 \, d\gamma \leq \int_{|r|} (\sum c_i \delta_{-\gamma_i}) * \widehat{f}|^2 \, d\gamma = \int_{|g|} |pf|^2 \, dx \leq ||p||_{\infty}^2 \, ||f||_{\infty}^2 \, dy$$

or

(3)
$$||(p\mu)^{\wedge}\chi||_{2} \leq ||f||_{2} \cdot ||p||_{\infty}$$
.

Now (3) continues to hold for any $a \in A$ in place of $p \in A$: for if $p_n \to a$ in A then $(p_n \mu)^{\wedge} \to (a\mu)^{\wedge}$ uniformly, so that for any compact $K \subset \Gamma_{-}$

$$egin{aligned} &\int_{K} |(a\mu)^{\wedge}|^2 \, d\gamma = \lim \int_{K} |(p_n\mu)^{\wedge}|^2 \, d\gamma \leq ||f||_2^2 \lim ||p_n||_{\infty}^2 \ &= ||f||_2^2 \, ||a||_{\infty}^2 \end{aligned}$$

whence $||(a\mu)^{\wedge}\chi||_{2} \leq ||f||_{2} ||a||_{\infty}$. Indeed this clearly follows whenever $||p_{n}||_{\infty} \leq ||a||_{\infty}$ and $(p_{n}\mu)^{\wedge} \to (a\mu)^{\wedge}$ uniformly.

Let γ be a fixed element of Γ with $\psi(\gamma) > 0$, and let $\mu = \nu + \sigma$ be the Lebesgue decomposition of μ relative to M^{γ} (the probability measures on G^{α} orthogonal to γA , cf. [4, §1]), with $\nu \ll M^{\gamma}, \sigma M^{\gamma}$ singular. By the argument of the last paragraph of [5, §2], ν vanishes on Borel sets in G^{α} satisfying (2), so we can complete our proof by showing $\sigma = 0$. As in [4] σ is carried by $\bigcup K_n$, where K_n is a compact M^{γ} -null set.

By the abstract Forelli Lemma [4, 1.2] (applied to the algebra $C + \gamma A$) and dominated convergence we have $\{a_n\}$ in the unit ball of A for which $a_n \mu \to \sigma$ in norm, so $(a_n a \mu)^{\wedge} \to (a \sigma)^{\wedge}$ uniformly and again we conclude that $||(a \sigma)^{\wedge} \chi||_2 \leq ||f||_2 ||a||_{\infty}$ for $a \in A$.

² It should be noted that when G is compact $f \in L^1(G)$ and the result follows trivially from [1]; for then $\nu(dx) = \mu(dx) - f(x)dx$ defines an analytic measure.

Now by [5, §2] each measure τ on G^{α} orthogonal to A has $\tau_{K_n} = 0$ for each K_n and thus by [3, 4.8] K_n is an intersection of peak sets of A, and an interpolation set for A; using the regularity of σ one then concludes³ there is a sequence $\{a_i\}$ in the unit ball of A for which $a_j \sigma \to |\sigma_{K_n}|$ in norm. So again $|||\sigma_{K_n}|^{\wedge} \cdot \chi||_2 \leq ||f||_2 \cdot 1$, which of course implies $|\sigma_{K_n}|^{\wedge} \in L^2(\Gamma)$ since the absolute value of this function is even. Because μ is carried by the subset G of G^{α} , the same is true of its restrictions σ and σ_{K_n} and so, as a measure on G with square summable transform, $|\sigma_{K_n}|$ is absolutely continuous by the elementary argument given by Doss [2, Th. 1]. Hence σ is absolutely continuous.

To complete our proof we can show $\sigma = 0$ by showing σ is carried by a Haar-null set. And since σ is carried by a σ -compact set, it suffices to show σ_{x_0+V} is carried by a Haar null set for each $x_0 \in G$ and some compact symmetric neighborhood V of the identity. But σ and each $\lambda \in M^{\gamma}$ are mutually singular, so it suffices to show there is a λ in M^{γ} equivalent to Haar measure on $x_0 + V$, and, for example, with m Haar measure

$$\lambda E = \int_{-\infty}^{\infty} \int_{E} \frac{1}{m 2 V} \chi_{x_0+2V}(x - \varphi(t)) dx \rho(t) dt$$

defines such a measure if

$$\widehat{
ho}(s) = egin{cases} 1 - rac{|s|}{\psi(\gamma)}, \, |s| \leq \psi(\gamma) \ 0 \, \, ext{elsewhere} \, \, . \end{cases}$$

Indeed

$$ho(t) = \psi(\gamma) \Big(rac{\sin t \psi(\gamma)/2}{t/2} \Big)^2 \ge 0$$

so $\lambda \geq 0$ and

$$\widehat{\lambda}(\gamma) = rac{1}{m 2 \, V} \widehat{\chi}_{x_0+ z v}(\gamma) \cdot \widehat{
ho}(\psi(\gamma)) \; ,$$

as is easily verified; so $\hat{\lambda}$ vanishes off $\psi^{-1}(-\psi(\gamma), \psi(\gamma))$ whence λ is orthogonal to γA , the span of $\{\beta \in \Gamma : \psi(\beta) \ge \psi(\gamma)\}$. And $\lambda E = 0$ implies

$$\int_{E}\chi_{x_0+2V}(x-\varphi(t_0))dx=0$$

for some t_0 with $\varphi(t_0) \in V$ since $\rho(t) > 0$ a.e., $\varphi(0) \in V$ and φ is con-

³ By regularity there is a peak set (an intersection of countably many such) $F_n \supset K_n$ for which $\sigma_{F_n} = \sigma_{K_n}$, and if f peaks on F_n then $f^k \to 1$ a.e. $|\sigma_{K_n}|, \to 0$ a.e. $|\sigma_{K'_n}|$. If $\sigma_{K_n} = \rho |\sigma_{K_n}|, |\rho| \equiv 1$, then we have f_k in the unit ball of $C(K_n)$ for which $f_k \to \rho$ a.e. $|\sigma_{K_n}|$, hence b_k in the $(1 + \varepsilon)$ -ball of A for which $b_k = f_k$ on K_n , whence $b_k f^k \sigma \to |\sigma_{K_n}|$ by dominated convergence.

tinuous, so if $E \subset x_0 + V$ we have $E - \varphi(t_0) \subset x_0 + 2V$, and therefore

$$0 = \int_{E} \chi_{x_0+2
u}(x - arphi(t_0)) dx = \int_{E} 1 dx = mE \; .$$

Hence $m_{x_0+2\nu} \ll \lambda_{x_0+2\nu}$; the reverse is obvious (and actually unnecessary) and our proof complete.

Variants of theorem 1 can be obtained from the same argument, but seem to require more artificial hypotheses. For example

THEOREM 2. With ψ , Γ_{-} as before, suppose the continuous function $f = f^* \in L^1(G) \cap L^1(\Gamma)^{\wedge}$ never vanishes on⁴ G, and μ is a measure for which for some k

$$(4) \qquad \qquad \int_{\Gamma} \left| \int_{\Gamma_{-}} (p\mu)^{\wedge}(\gamma) \widehat{f}(\beta - \gamma) d\gamma \right|^{2} d\beta \leq k ||p||_{\infty}$$

for all trigonometric polynomials $p = \sum_{i=1}^{n} c_i \gamma_i$ with $\psi(\gamma_i) \ge 0$. Then $\mu E = 0$ for each Borel $E \subset G$ satisfing (2).

We argue exactly as before that if $p_n\mu \to a\mu$ and $||p_n||_{\infty} \leq ||a||_{\infty}$, $a \in A$, one has

$$\int_{\kappa} \left| \int_{\Gamma_{-}} (a\mu)^{\wedge}(\gamma) \widehat{f}(\beta - \gamma) d\gamma \right|^{2} d\beta \leq k ||a||_{\infty}$$

for K compact, so (4) holds for p an arbitrary element of A.

With $\mu = \nu + \sigma$ as before we again obtain (4) for $p \in A$ and σ in place of μ , and then for $1 = p \in A$ and $|\sigma_{\kappa_n}| = \tau$ in place of σ . But since $\overline{\hat{\tau}}(-\gamma) = \hat{\tau}(\gamma)$ the finite integral

(5)
$$\int_{\Gamma} \left| \int_{\Gamma_{-}} \hat{\tau}(\gamma) \hat{f}(\beta - \gamma) d\gamma \right|^{2} d\beta$$

coincides with

$$(6) \qquad \int_{\Gamma} \left| \int_{\Gamma_{-}} \overline{\hat{\tau}}(-\gamma) \widehat{f}(\beta - \gamma) d\gamma \right|^{2} d\beta = \int_{\Gamma} \left| \int_{\Gamma_{-}} \overline{\hat{\tau}}(-\gamma) \overline{\hat{f}}(\gamma - \beta) d\gamma \right|^{2} d\beta \\ = \int_{\Gamma} \left| \int_{\Gamma_{+}} \widehat{\tau}(\gamma) \widehat{f}(-\gamma - \beta) d\gamma \right|^{2} d\beta \\ = \int_{\Gamma} \left| \int_{\Gamma_{+}} \widehat{\tau}(\gamma) \widehat{f}(\beta - \gamma) d\gamma \right|^{2} d\beta$$

so that, by Minkowski, $\hat{\tau} * \hat{f} \in L^2(\Gamma)$. Trivially one verifies that the transform of the finite measure $f\tau$ on G is $\hat{\tau} * \hat{f}$: thus $f\tau$ is absolutely

370

⁴ When such an f exists this contains the preceding result. For when $\hat{\mu}\chi \in L^2(\Gamma)$ so is $(p\mu)^{\gamma}\chi$ and always of norm $\leq k ||p||_{\infty}$ as we saw in the proof of Theorem 1. But then $||(p\mu)^{\gamma}\chi * \hat{f}||_2 \leq ||(p\mu)^{\gamma}\chi ||_2 ||\hat{f}||_1 \leq k ||p||_{\infty} ||\hat{f}||_1$ which is (4).

continuous, so $\tau = |\sigma_{K_n}|$ is since f never vanishes; again σ is singular with respect to Haar measure, and $\sigma = 0$ follows.

THEOREM 3. Suppose there are $\gamma_n \in \Gamma$ for which $\varepsilon_n = ||\overline{\gamma}_n \mu||_{A^*} \rightarrow 0$, where the norm is that of $\overline{\gamma}_n \mu$ as a functional on $A = \operatorname{span} \Gamma_+$. Then $\mu E = 0$ for every Borel E in G satisfying (2).

We are supposing that $|(a\mu)^{\wedge}(\gamma_n)| \leq \varepsilon_n ||a||_{\infty}$ for each $a \in A$, where $\varepsilon_n \to 0$. As before we have $a_j \in A$, $||a_j|| \leq 1$, with $a_j\mu \to \sigma$, where σ is the M^{τ} -singular component of μ , so

$$|(a\sigma)^{\wedge}(\gamma_n)| \leq \varepsilon_n ||a||_{\infty}$$

follows since $(a_j \cdot a\mu)^{\wedge} \to (a\sigma)^{\wedge}$ uniformly. Now we have σ carried by $\cup K_j$, K_j a compact M^{γ} -null set, and as before an intersection of peak sets of A and an interpolation set for A. So exactly as before (cf. footnote 3) we have $\{a_k\}$ in the unit ball of A for which $a_k \sigma \to \gamma_n |\sigma_{K_j}|$, whence by (7)

$$|\langle \gamma_n | \sigma_{\kappa_j} | \rangle^{\wedge} (\gamma_n)| = |\sigma_{\kappa_j}| (1) = ||\sigma_{\kappa_j}|| \leq \varepsilon_n$$

for all n, so $\sigma_{\kappa_i} = 0$, $\sigma = 0$, completing our proof as before.

As a final remark, we note that for any measure μ vanishing on all *E* satisfying (2), i.e., for μ absolutely continuous in the direction of φ , if $|\psi(\gamma_n)| \to \infty$, we (at least) have $\overline{\gamma}_n \mu \to 0$ weakly.⁵ Indeed since $\Gamma \mu = \{\gamma \mu: \gamma \in \Gamma\}$ is conditionally weakly compact we need only see any weak cluster point of $\{\overline{\gamma}_n \mu\}$ must be 0, so it suffices to show

$$(\bar{\gamma}_n \mu)^{\wedge}(\gamma) = \hat{\mu}(\gamma + \gamma_n) \rightarrow 0$$
.

But this follows directly from the following easy "Riemann-Lebesgue lemma": If μ is absolutely continuous in the direction of φ then for any $\varepsilon > 0$ there is an N for which $|\hat{\mu}(\gamma)| < \varepsilon$ if $|\psi(\gamma)| > N$.

By [3, 2.4] μ translates continuously in the direction of φ , i.e., $||\mu - \mu_t|| < \varepsilon$ if $|t| < \delta$, where $\mu_t E = \mu(\varphi(t) + E)$. Thus for an appropriate continuous f on R vanishing off $(-\delta, \delta)$ we have

$$\|\mu*f-\mu\| ,$$

where

$$\mu * f = \int \mu_t f(t) dt$$

⁵ Thus for any measure μ on G one has an analogue of a well known lemma of Helson: if $|\psi(\gamma_n)| \to \infty$, any weak cluster point ν of $\{\gamma_n \mu\}$ is carried by a subset E of G satisfying (2), i.e., null in the direction of φ in the terminology of [3]. (For ν is necessarily a weak cluster point of $\{\gamma_n \sigma\}$, where σ is the M^{γ} -singular component of μ , as always.)

can be interpreted as, say, a Riemann integral. But

$$\begin{split} (\mu*f)^{\wedge}(\gamma) &= \iint \overline{(x,\gamma)} \mu_t(dx) f(t) dt \\ &= \iint \overline{(x-\varphi(t),\gamma)} \mu(dx) f(t) dt \\ &= \widehat{\mu}(\gamma) \int (\varphi(t),\gamma) f(t) dt \\ &= \widehat{\mu}(\gamma) \int (t,\psi(\gamma)) f(t) dt = \widehat{\mu}(\gamma) \widehat{f}(-\psi(\gamma)) \end{split}$$

which shows $(\mu * f)^{\wedge}$ has the desired property by the Riemann-Lebesgue lemma applied to f. As a uniform limit of such functions $\hat{\mu}$ of course has the same property.

References

- 1. K. deLeeuw and I. Glicksberg, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963) 179-205.
- R. Doss, On measures with small transforms, Pacific J. Math. 26 (1968), 257-263.
 I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415-435.
- 4. ____, The abstract F. and M. Riesz theorem, J. Funct. Anal. 1 (1967), 109-122.
- 5. ____, Extensions of the F. and M. Riesz theorem, J. Funct. Anal. (to appear).
- 6. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

Received December 23, 1968. Work supported in part by the National Science Foundation.

UNIVERSITY OF WASHINGTON