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THE CLOSED PRIME SUBGROUPS OF CERTAIN
ORDERED PERMUTATION GROUPS

STEPHEN H. MCCLEARY

The group G — A(Ω) of all order-preserving permutations
of a chain Ω becomes a lattice-ordered group when ordered
pointwise, i.e., / ^ g if and only if βf ^ βg for all β e Ω. Lloyd
showed that for each ωeΩ, the stabilizer subgroup Gω =
{geG\ωg = ω} is a closed prime subgroup of G. Our main
result (Theorem 11) states that besides G itself, these subgroups,
together with the stabilizer subgroups of Dedekind cuts of Ω,
comprise all of the closed prime subgroups of G.

Actually, G need not be all of A(Ω). In § 2, we use Lloyd's result
to show that for depressible or complete subgroups G of A(Ω), all
stabilizer subgroups are closed. We find in § 3 that every closed convex
Z-subgroup C of G is of the form C = {g e G \ Δg = 3} for some collection
Δ of points and cuts of Ω. In § 4 we prove the main theorem (stated
above) for depressible groups. Finally, this theorem is applied to the
question of the extent to which the Z-group G determines the chain
Ω, which was first considered by Holland [4]; and to the determination
of the Z-automorphisms of G, considered by Lloyd [5].

2* Stabilizer subgroups* Let Ω be a chain. A permutation g of
Ω is said to preserve order if a <Ξ β implies ag rg βg for all cc, β e Ω.
The group A(Ω) of all order-preserving permutations (o-permutations)
of Ω, ordered pointwise, is a lattice-ordered group (i-group). A(Ω) is
not assumed to be transitive. For elementary information about I-
groups, see [1].

Ω will denote the completion of Ω by Dedekind cuts (without end
points unless these end points belong to Ω). We shall consider Ω to
be a subchain of Ω. Each geA(Ω) can be extended to Ω by defining
ώg (ώ e Ω) to be sup {βg \ β e Ω, β < ώ}. Thus A(Ω) can be considered
to be an i-subgroup of A(Ω), i.e., a subgroup which is also a sublattice.

Let G be an Z-subgroup of A(Ω), and thus also of A(Ω). G, or
more properly the pair (G, Ω), is called an ordered permutation group.
Holland [3, Th. 2] showed that every abstract ϋ-group L is i-isomorphic
to such a G. A subgroup H of G is convex if hγ ^ g <£ h2, with h^ h2e H
and g e G, implies g e H. H is a prime subgroup of G if H is a convex
Z-subgroup of G and if gι Λ g2 = 1, with g19 g2 e G, implies gι e H or
g2 e H. For ώeΩ, we define the stabilizer subgroup G^ to be

{g e GI ώg = ώ] ,
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a prime subgroup of G. Thus we have a stabilizer subgroup for each
Dedekind cut of Ω (not just for points of Ω).

We wish to consider two classes of ^-subgroups G of A(Ω) for
which the stabilizer subgroups G-ω are closed, i.e., if s = sup{s, | i e I},
with seG and S; e G(; for each i in an index set I, then seGΰ-

For g e A(Ω) and 7 e Ω such that Ίg Φ 7, the interval of support
I(g, 7) of g which contains 7 is {β e Ω \ jgm ^ β ^ Ίgn for some integers
m and ri). An ί-subgroup G of A(Ω) will be called depressible [7]
if it shares with A(Ω) the following property: If A is an interval of
support of g e G, so that Jg = J, then there exists heG such that
βh = βg if β e A, but βh = β if /3 g zί. Intuitively, h is obtained by
depressing g outside A. As noted in [7], convex ϊ-subgroups of A(Ω)
are depressible.

G is a complete ^-subgroup of A(£?) if whenever g e G is the sup
in G of a collection {g{ | i e /} of elements of G, then g is also the sup
in A(Ω) of {flrjie/}. By [2, Th. 3.10], an abstract Z-group L is Z-
isomorphic to a complete Z-subgroup G of some A(Ω) if and only if L
is completely distributive, i.e., if AieiVkeκQίk = V/e^ Aiei^i/w for
any collection {#ίA: | i e I, fc e if} of elements of G for which the indicated
sups and infs exist.

THEOREM 1. Suppose G is a depressible or complete l-subgroup
of A(Ω). Then for each ώeΩ, Gΰ is a closed prime subgroup of G.

Proof. Lloyd [6, Th. 2] proved that if G = A(Ω), then the stabili-
zer subgroups Gω of points ω e Ω are closed. As noted in [7], Lloyd's
proof also works when G is a depressible ί-subgroup of A(Ω). If (G, Ω)
is depressible, the extension (G, Ω) is also depressible. But G;> is the
stabilizer subgroup of a point for the group (G, Ω), and hence must
be closed. On the other hand, suppose that G is complete. If s =
sup {Si I i G /}, with seG and each SteGύ, then since G is complete, s
is also the sup in A(Ω) of {s{ | i e J}. Since the stabilizer subgroups are
closed for A(Ω), ώs = ώ, and then seGΰ Hence again (?- is closed.
(Incidentally, by [7, Th. 7], if G is transitive on Ω, then G is complete
if and only if the stabilizer subgroups G(; are closed.)

A word of warning: A(Ω), extended to Ω, need not be all of A(Ω).
Thus the above proof, even for G = A(Ω), does not work without the
introduction of the concept of depressible groups.

3* The closed convex i-subgroups of G* In this section we
determine the closed convex ί-subgroups of G, where G is an Z-subgroup
of A(Ω) which is either depressible or complete. If C is a subgroup
of G, we define FxC to be {τ eΩ\τC = τ}, the collection of points
in Ω fixed by C. By the convexification Conv (A) of a subset A of Ω,



SUBGROUPS OF CERTAIN ORDERED PERMUTATION GROUPS 747

we shall mean {βeΩ\7^β^δ for some 7, δ el}. If C is a subgroup
of G and ώ e Ω\FxC> we define the orbital of C containing ώ to be
Conv (ώC).

LEMMA 2. // an orbital Γ of C is bounded above, then
sup Γ e FxC and dually.

Proof. ΓC = Γ, so (sup Γ)C = sup Γ.
If L is any ί-group and C is a convex i-subgroup of L, then the

closure C* of C means the smallest closed convex ^-subgroup of L
which contains C.

THEOREM 3. Suppose that G is a depressible or complete l-sub-
group of A(Ω) and that C is a convex l-subgroup of G. Then C* =
{g e G I ώg = ώ for all ώ e FxC}.

Proof. Let D = {geG\ώg = ώ for all ώ e FxC}. Then D =
Π {Gΰ \ώeFxC}, so D is a closed convex Z-subgroup of G. Certainly
C* S Z λ

Now pick any l^geD and any βeΩ. Conv (βC*) = Conv (J3D),
for otherwise the lemma would imply that either sup (βC*) or inf (βC*)
would be an element of FxC*\FxD. Hence there exists / e C * such
that βg £ βf. Then 1 ^ (g A f) V 1 ^ / V 1 e C*, so (g A f) V 1 e C*;
and β((g A f) V 1) = βg- Thus for each β e f i , there exists an sβ e C*
such that βsβ = βg and ŝ  g #. Hence g = sup {ŝ  I β e Ω}. Since C*
is closed, geC*. Since # was an arbitrary element of D, we have
shown that C* = Zλ

COROLLARY 4. Suppose that G is a depressible or complete l-sub-
group of A(Ω). Then the closed convex l-subgroups of G can be
characterized as those subsets C of G for which there exist Δc £ Ω
such that C = {g eG\ώg = ώ for all ώ e Δc}. Moreover, every closed
convex l-subgroup of G is the intersection of a collection of closed
prime subgroups G^ of G. Hence the maximal closed convex l-sub-
groups of G {if any) must be prime.

COROLLARY 5. Let L be a completely distributive abstract l-group.
Then every closed convex l-subgroup of L is the intersection of a
collection of closed prime subgroups of L; and the maximal closed
convex l-subgroup of L (if any) are prime.

Proof. By [2, Th. 3.10], L is Msomorphic to a complete subgroup
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G of some A(Ω).

4. The closed prime subgroups of G. We now develop the
tools needed to determine (for the depressible case) that of the closed
convex ί-subgroups of G, those which are prime are (besides G itself)
precisely the stabilizer subgroups. First we establish some preliminary
results which apply to any i-subgroup G of A{Ω). Let us define two
binary relations on Ω: ώFτ (read ώ fixes τ) if τ e FxG-ω, and ώMτ
(read ώ moves τ) if τ <£FxG-ω.

As a strong hint that the only closed prime subgroups of G are
the stabilizer subgroups Gω, we have

PROPOSITION 6. If ώMτ and τMώ, then G:Q-τ = G- Π G; is not
prime.

Proof. Since ώMτ, we may pick 1 < g e G~ω such that τg > f
and since τMώ, we may pick 1 < h e GT such that ώh > ώ. Then
g A heGΰ,-τ while neither g nor h lies in G(ϋ,-Γ, so G^-τ is not prime.

PROPOSITION 7. ώFτ if and only if G- C G-τ. Hence G- = G- if
and only if ώFτ and τFώ.

LEMMA 8. Suppose Γ is an orbital of G-, τ e Ω. Then for g e G,
Γg is an orbital of G-τg.

Proof. Γ — Conv (ώGz) for some ώ e Ω, so Γg — Conv (ώGzg) =

Conv ((ωg)(g-'Gzg)) = Conv ((ώg)Gτg).

LEMMA 9. Suppose Γ is an orbital of G-, τ e Ω. If τg — τh,
with g, heG, then Γg = Γh.

Proof. If τg = τh, then gh~ι e Gτ, so Γgh~ι = Γ (since Γ is an orbital
of Gτ), and thus Γg = Γh.

By an o-block of G, or more properly of (G, Ω), we mean a non-
empty convex subset Δ of Ω such that for any g e G, either Ig = I
or Jgr n 4" = •• (D denotes the empty set.) An o-block is trivial if
it contains only one point.

LEMMA 10. // ώFτ, δ^ί f ilία), £/^% the orbital Γ = Conv (ώG~)
of G-τ is a nontrivial o-block of G. For geG, Γg = Γ if and only
if ge G-r.

Proof. If g e Gτ, then Γg = Γl = Γ by Lemma 9. We now show
that if f < τg, then Γ# Π Γ = •• If not, we use Lemma 8 to pick
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h 6 G-τg such that (ώg)h eΓg f] Γ, and then we pick k e Gτ such that
(ώgh)k <J ώ. Then ώ(ghk V 1) = ώ, but τ < τg = τgh, so τ = τk <
fghk <£ τ(#fefc V 1). This contradicts the assumption that ώFτ. Simi-
larly, if τ >τg,Γgf)Γ = Π

MAIN THEOREM 11. Suppose G is a depressίble l-subgroup of
A(Ω). Then the closed prime subgroups of G (besides G itself) are
precisely the stabilizer subgroups Gz, ώ eΩ.

Proof. By Theorem 1, the G '̂s are closed prime subgroups of G.
Now let C be any closed prime subgroup of G. By Corollary 4, C —
{geG\ώg = ώ for all ώ e FxC}. If FxC = [J,C = G. Now suppose
FxC Φ [J. For each ώ e FxC,C CGς;. In any Z-group, the collection
of convex Z-subgroups containing a given prime subgroup is a chain
under inclusion [3, Lemma 3], so £^ — {Gΰ \ <*> β FxC} is a chain.
Moreover f\£^ — C.

If for Gΰ,G-τe^ we have G^cG; (i.e., if ώFτ, but τjfcfώ), then
by Lemma 10, I(ώ, τ) = Conv (ώG^) is a nontrivial o-block of G. We
show next that J(ώ, τ) is independent of α). For suppose that also
G-^eS^ and G^^G-g. Then σeJ(ώ, r), for otherwise we could pick
A- e Gr such that ώh Φ ώ and depress A outside /(ώ, τ) to obtain an
element of G~σ which moves ά), contradicting the fact that σFώ. Since
σ e Δ(ώ, τ), J(σ, τ) = Conv (JGr) = Conv (ώG-τ) = J(α), τ). Hence we may
write Δ(ώ,τ) simply as J(r); and {Δ(τ)\G-fe <9*} forms a tower under
inclusion. Let δ(τ) = sup J(r) and let f = inf {δ(f) \ GT e S^}. Since C
fixes each f such that G; e 9̂f it fixes each Δ(τ) (by Lemma 10) and thus
each δ{τ), so it fixes ξ. Conversely, since σ e 2{τ) whenever G^cG;, we
have I e Δ{τ). Since also Δ(τ) is an o-block of G, Gj fixes each Δ(j).
Hence by Lemma 10, Gj fixes each τ. Therefore Ĝ  = {g e G \ ώg — ώ
for all ώ e FxC} = C. This concludes the proof.

Theorem 11 fails when completeness is substituted for depressibility,
even under the additional assumption that G is transitive. However,
examples of this phenomenon are too complicated to be presented here.
The author is presently trying to find additional hypotheses under
which the modified theorem will hold.

By Zorn's lemma, every closed prime subgroup of G contains a
minimal closed prime subgroup of G, which is characterized by

COROLLARY 12. G^ is a minimal closed prime subgroup of G if
and only if for all τ eΩ, ώMτ implies τMώ.

We define Min (Ω) to be {ώ e Ω | G- is a minimal closed prime sub-
group of G}.

THEOREM 13. Suppose that G is a depressible l-subgroup of A(Ω)
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and that for each a e Ω, Ga has no fixed points in Ω except a. Then
{(?- I ώ e Min (Ω)} are distinct and include all Ga's, ae Ω. Moreover,
ώ e Min (Ω) if and only if τMώ for every ώ Φ τ e Ω.

Proof. Suppose that G« £ Gα, with aeΩ and a Φ ώ eΩ. If ώ eΩ,
then ώFa contradicts our hypothesis. Hence ώ e Ω\Ω, so we may pick
β e Ω lying strictly between a and ώ. Then by hypothesis, we may
pick h eGβ such that ah Φ a. By depressing h outside the interval of
support I(h, a), we obtain an element of G which moves a, but fixes
ώ; contradicting the assumption that Gz^Ga. This shows that Ga is
minimal, and moreover that Ga Φ G- for a Φ ώ e Ω.

Now let ώ < τ, with ά>, τ e Min (Ω), and suppose that G- = G-τ.
Pick aeΩ such that ώ < a ^ τ. Since G^ is minimal, Ga ςt G5, and
by the previous paragraph, Gα ̂  G .̂ Hence we may pick keGa such
that ω& ^ ώ. By depressing A: outside I(&, α>), we obtain an element
of G which moves ώ, but fixes τ; contradicting the assumption that
G^ = Gr. Hence {Gz; | ώ e Min (β)} are distinct. The last part of the
theorem now follows from Corollary 12.

5* The relation between the Z-group G and the chain β*
Suppose now that the hypotheses of the last theorem are satisfied. We
wish to determine how the chain Min (Ω) is reflected in the i-group
structure of G. The theorem gives us a one-to-one correspondence
ώ <-» Gz between Min (Ω) and the collection of minimal closed prime
subgroups of G. Ideally, we would like to use the ϊ-group structure of
G to order these minimal closed prime subgroups so as to make this
correspondence be an o-isomorphism (preserve order both ways). In
general, this program will only partially succeed.

(G, Ω) and (if, Σ) are said to be isomorphic as o-permutation groups
if there is an o-isomorphism θ from Ω onto Σ and a map ψ from G
onto H such that (ag)θ = (aθ)(gψ) for all aeΩ, g e G. (It then follows
that ψ is an ί-isomorphism.) By the characteristic chains of (G, Ω)
we shall mean the orbits ώG of G (no convexification this time), for
which ώe~M.m(Ω). Of course, if o)eMin(i2), then ώGϋMin(β) since
G-g = g~~ιGz9 The characteristic chains of (G, Ω) partition Min (Ω),
and a subcollection of them partitions Ω. In particular, (Min (Ω))G =
Min (42), and G is faithful on Min (Ω) since βgMin(β) . The closure
of a characteristic chain will refer to the order topology of Min (Ω);
or equivalently, since Min(β) is dense in Ω, to the order topology of
Ω. The closure of any one characteristic chain is of course a union
of characteristic chains.

THEOREM 14. Suppose that (G, Ω) and (H, Σ) both satisfy the
hypotheses of Theorem 13, and that ψ is an l-group isomorphism
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from G onto H. Then there is an o-isomorphism Θ from Min (Ω)
onto Min (Σ) such that Θ and ψ provide an o-permutation group
isomorphism from (G, Ω) onto (H, Σ). (Exception: The order of σ
and τ need not be preserved unless there is some characteristic chain
of (G, Ω) whose closure contains them both.) θ preserves characteristic
chains and closures of characteristic chains. With the above exception,
Σ is o-isomorphic to the union Γ of a collection of characteristic chains
of (G, Ω), and (H, Σ) is isomorphic as an o-permutation group to (G, Γ).

Proof. We wish to (almost) determine the order of Min (Ω) from
the Z-group structure of G. Since G^ (ώ e Min (Ω)) is a prime subgroup
of G, we can totally order the set R{G^) of cosets G^g (g e G) by defining
G^g <Z Gΰk if and only if there exist s e G^g and t e Gz k such that s ^ t
[3, Lemma 4], It is easily checked that the correspondence G-g^ώg
is an o-isomorphism between R(Gΰ) and the characteristic chain ώG.
Moreover, (Gzg)k = Ch (gk) — ώ(gk) = (ώg)k, keG.

Now let Δ be a characteristic chain of (G, Ω) and let (Ily Δ2) be a
Dedekind cut of Δ such that Δι has no greatest element and Δ2 no least
element. Let δλ be the sup in Ω of Δx and δ2 the inf in Ω of Δ2. Let
G' = {geG\Z1g = Δ1 and Δ2g = Δ2). Then Gh = G' = Gh. Hence G'
is a minimal closed prime subgroup of G if and only if there exists
τ G Min (Ω) lying in the closure of Δ and satisfying Δγ < τ < Δ2. (If
there exists such a τ, then τ = δ1 or δ2, say δ^ so that G' = G~h = G7
is minimal.) Moreover, if G' is minimal, then since G-h ~ G~h1 Theorem
13 guarantees that δ1 — δ2 and thus that τ is unique. Thus the closure
of Δ in Min (Ω) is determined by the i-group structure of G. (Of course,
neither the sup nor the inf in Ω of a nontrivial Δ can lie in Min (£?).)
Similar considerations apply to (H, Σ). For ώeWm(Ω), define ώθ to
be the point in Min (Σ) stabilized by G^ψ. The theorem follows.

The limitations of the theorem are illustrated by the following
example. Let Σa be an α-set, a = 0,1, 2. (An α-set is a chain Σ of
cardinality #a in which for any two subsets Γ < A of cardinality
less than \ξa, there exists σeΣ such that Γ < σ < Δ.) Let 77! be
the ordinal sum ΣQ 0 2\ 0 Σ2, and 772 the ordinal sum Σo 0 ^ 0 Σx.

Let i?i, i = 1, 2, be the lexicographic product 77̂  x J, ordered from the
right, where J denotes the integers. Each copy of each Σa is an
o-block of each A(Ωi), whence it is easily seen that A(Ωj) and A(Ω2)
are isomorphic as ί-groups, despite the fact that Min (Ω,) and Min (Ω2)
are not o-isomorphic.

COROLLARY 15. // the l-group G has at least one transitive
representation (K, 77) of the sort described in the theorem, then the
exception in the theorem can be removed.
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Proof. Since K is transitive, Π is a characteristic chain of (if, 77).
The closure of /Z in Min (77) is the entire chain Min (77). The theorem
yields genuine o-isomorphisms from Min (77) onto Min (Ω), and also from
Min (77) onto Min (I).

For the special case in which G and H are themselves transitive
and have minimal nontrivial o-blocks, this corollary is precisely Holland's
main result in [4, Th. 7], applied to the depressible case. (Holland's
result does not assume depressibility and is proved without the use of
closed subgroups.) Further exploration of the transitive case takes on
rather a different flavor and will be pursued in a later paper.

In [3, Th. 2], Holland represents an arbitrary Z-group L as an
J-subgroup G of an appropriate A(Ω), where the chain Ω is partitioned
into convex subsets Ωt such that for each Ω^ Ωβ = Ωt and G is transitive
on Ωι. If one such representation (G, Ω) satisfies the hypotheses of
Theorem 13 (equivalently, if for each Ωiy the restriction (G \ Ωiy β̂ )
satisfies the hypotheses of Theorem 13), then up to o-isomorphism,
every such representation satisfying those hypotheses involves the
same chains Min (Ωi).

COROLLARY 16. Suppose that (G, Ω) satisfies the hypotheses of
Theorem 13. Then every l-automorphism ψ of G is induced by an
o-permutation θ of Min(β), i.e., gψ = θ~ιgθ for all geG. Moreover, θ
permutes the collection of characteristic chains of (G, Ω) and preserves
their closures, θ is subject to the exception of Theorem 14. This
exception can be removed under the additional assumption of Corollary
15, and then the present result states that every l-automorphism of
G is induced by an inner automorphism of A(Min (Ω)).

Proof. (G, Ω) and (Gφ, Ω) satisfy the hypotheses of Theorem 14.
Let θ be the o-permutation of Min (Ω) provided by that theorem. Then
(ώθ){gψ) = (ώg)θ for all ώ e Min (Ω), g e G, i.e., θgψ = gθ, and thus
gψ = θ-ιgθ.

Lloyd [5, Th. 1.10] proved Corollary 16 for the case in which G
is all of A(Ω) and is transitive, except that θ was an o-permutation
of Ω, rather than of the smaller chain Min (Ω). Lloyd's proof did not
make use of closed subgroups. In many specific cases (e.g., if Ω is
Dedekind complete or is the chain of rational numbers), the last state-
ment in the corollary permits one to deduce (following Lloyd) that
every ^-automorphism of A(Ω) is inner.
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