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AFFINE COMPLEMENTS OF DIVISORS

MARIO BORELLI

Recently Goodman and Hartshorne have considered the
question of characterizing those divisors in a complete linear
equivalence class whose support has an affine complement.
However their characterization is not clearly ‘‘linear’’, and
in fact we have to resort to Serre’s characterization of affine
schemes to prove that, indeed, the condition ‘‘the support of
an effective divisor has an affine complement” is, in the lan-
guage of Italian geometry, expressed by linear conditions,
In the language of Weil this means that the set of effective
divisors, in a complete linear equivalence class, whose sup-
ports have affine complements is a linear system. This is our
first result, Subsequently we study the intersection of all
such affine-complement supports of effective divisors in the
multiples of a given linear equivalence class, and prove the
following: if the ambient scheme is a surface or a threefold,
or if the characteristic of the groundfield is 0, (or assuming
that we can resolve singularities!) then a minimal intersection
cannot have zero-dimensional components, nor irreducible com-
ponents of codimension 1, whose associated sheaf of ideals is
invertible,

In particular we obtain anew Zariski’s result (see [11]) that every
complete nonsingular surface is projective, and that the examples of
nonsingular, nonprojective threefolds given by Nagata and Hironaka
(see [9] and [5]) are optimal, in the sense that no examples can be
given of nonsingular, nonprojective threefolds in which the “bad”
subsets are either closed points or two-dimensional subschemes.

The notation and terminology we use are, unless otherwise spe-
cifically stated, those of [4]. We consider only algebraic schemes,
with an arbitrary, algebraically closed ground field k. For the sake
of convenience we drop the adjective “algebraic”, and speak simply
of schemes.

When we refer to, say, Lemma 2.3 without further identification,
we mean Lemma 2.3 of the present work, to be found as the third
statement of § 2.

1. Let X be a scheme, &© an invertible sheaf over X. A regular
section se I'(X, <) identifies an exact sequence

[/l
0 o 29, o 0

with Supp (2#7) = Supp (s) = {x € X | s(x) € _«#,}, _7, denoting the uni-
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que maximal submodule of the stalk &2 of & at =.

With these notations we quote a result of Goodman and Hartshorne
(see [3], Proposition 3):

X, = X — Supp(s) is affine if, and only if, X, contains no com-
plete curves and the following condition holds:

for every coherent sheaf # over X, where the maps in the inductive
system above are those induced by the injection &2~ %) ..
In this part we shall prove the following

THEOREM l1.1. Let & be an tnvertible sheaf over a scheme X.
Let A(¥) ={sel(X, L) | X, 15 affine}. Then A(Z)U{0} is a
vector space over k.

REMARK. While it is quite easy to show that the set of sections
A(¥) ={sel(X, &¥)| X, contains no complete curve} is a vector
space over k, we were not able to show that those elements of I'(X, &)
which obey (1) also form a vector space. Leaving this open question
aside, to prove Theorem 1.1 we make use instead of Serre’s well
known characterization of affine schemes, (see [10], and following
lemma of Goodman and Hartshorne (see [3], Lemma 4).

LEMMA 1.2. Let &~ be an invertible sheaf over a scheme X, and
let se (X, ). Then, for every coherent sheaf over X, and every
1 =0,

lim H'(X, & Q 7) = H(X,, # | X)) .

n

The following lemma is needed in the proof of Theorem 1.1.

LEMMA 1.8. Let {V,}.20 be vector spaces over k, and let
6,: Vo— Homy(V,, V,.) n >0
be linear tramsformations such that, for all v, we V,,
Onss(W) © 0,(V) = 0,4,() © 0, (w) .

For all p > 0,9 >0, let 0,.,,(v) = 0, ,(v)o++-00,v). Then, for all
p>0,qg>0, and for all v, we V,, and for all \, pek

q+1(q +1

Oprq,,(MV + pw) = g ; )Mm+1~f0,,+q,,,+q_,.“(v)oa,,+q_,.,,,(w).
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Proof. We proceed by induction on ¢. For ¢ =1 we have

0pis(W0 + p10) 0 0,(0M0 + praw)
= [N, (V) + 20,4, (W)]NO(V) + pb,(w)] ,
which gives us our assertion. Now

0prq, (VU + p1w)

= Op4s(W0 + #w)[z (j) NP0, 40 pte—i(V) © 0p+q—j—lm(w)]

j=0

Q

1 . q
= AN pIE [<7, _ 1) Oprapta—iti(V) 0 Opyq s (W)

q
+ ( ’& ) 0P+‘1(w) ° 0p+q—1,p+q—i(v) ° 0p+q—i—1,p(w)]

q+1 - q
= S [(z ¢ 1) Orvomtaisn(®) 0 Opsas.o(W0)

q
+ ( i ) 0p+q,p+q—i+x(v) ° 0p+q—i,p(w)]
and the lemma is proved.

Proof of Theorem 1.1. For any se (X, &)., and any coherent
sheaf & let

gn(s): HI(X, Goen ® _g‘) - HI(X, GP®(n+1) ® 57)
denote the homomorphism corresponding to the injection

0— 1%,

By Lemma 1.2, and Theorem 1 of [10], it clearly suffices to prove
the following statement: If s;eI'(X, &), 7 =1, 2, are such that

lim [H'(X, % Q@ ), 0,(s)] = 0,1 =1, 2

n

for all coherent sheaves of ideals .# over X, then, for all \, pek,

lim [H'(X, %" @ ), O.(\s, + ps)] = 0.

Now the homomorphisms 6,(s) define a homomorphism
0,: H (X, &) — Hom[H'(X, &< ** Q .7), H(X, &®" Q )]

with the additional property that the following diagram commutes:
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H(X, 7 Q.7) — , gyx, oo ® 7)

(1.3.1) Bn(sz)l low(sa

H\(X, 7% Q) PRSI H\(X, &z Q. 7).

We can therefore apply Lemma 1.3, and obtain, with the same nota-
tions as in the lemma:

2R = N
Oprip(ANS; + p82) = JZ:O( j )NJ#H' IO i priciri(81) 0 Opri g n(S2)
for all p =1, and all 7 > 1.
The theorem now follows from the above equation, the commuta-
tivity of diagram (1.3.1), and the fact that

lim [H(X, £ @ ), 0,(s)] =0 i=1,2

n

implies that, for all ze HY(X, % ® .#), and all p > 0,
0p+'n,:u(si)(z) = O

for n > 0 (depending possibly on z).

REMARKS. Clearly A(¥)cC A.(&°), but the question “does A(.")#
@ imply A.(¥) = A()?” has a negative answer. In fact, if A(°) +
@, and se€ A,(%), X, need not even be quasi-affine. A counterexample
can be found in the birational blow-up of a point on the exceptional
divisor of the blow-up of a point of the projective plane. To the
author’s knowledge, however, there are no counterexamples to the
affirmative answer with Supp(s) irreducible. One might therefore con-
jecture with Goodman that A(<¥) = @, se A,(), Supp(s) irreducible
imply se A(7).

2. We continue with the notations introduced in § 1.

DEFINITION 2.1. Let X be a scheme, < an invertible sheaf over
X, U an open subset of X. We define, for all n > 0,

(@ X(#) = U_X,
(b) X(#) = U X)) -

Furthermore, we say that U is <“projective if Uc X(<¥).

REMARK. If U is _Aprojective, then <~ | U is ample, but the
converse need not be true. In fact H°(X, <°®") may have base points
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for all n > 0, while choosing U sufficiently small will always result
in &# | U being ample. Of course, to say that X is .<“-projective is
to say that & is ample.

We proceed to study <“-projective open subsets. If (F, &) is a
closed subscheme of the scheme X, we say that the invertible sheaf
<~ 1s ample on F' when the invertible sheaf &¥ @ & over F' is ample.

LEMMA 2.2. Let &~ be an invertible sheaf over the scheme X,
let U be an ~-projective open subset, let x,, ---, 2, be a finite sub-
set of U. Then there exists a suitable se A(S7%") such that

X, e, 2, X, CU.

Proof. It clearly suffices to prove the lemma taking U = X(<&°).
Using the quasi-compacity of X(.&°) and a well known argument, we
see that, for a sufficiently high integer n, and a suitable finite number
of elements s, s, -+, s, € A(¥®"), there exists an injection

X(og) e PI‘Oj (k[SO, Spy o0y St]) .

By Theorem 1.1, a homogeneous element of degree d of the ring
k[s,, 81, + -+, 8] is an element of A(&%"%), and the statement of the
lemma is trivially true for Proj (k[s,, s, - -, s;]). The lemma is proved.

PropPoOSITION 2.3. Let X be a scheme proper over k, & an inver-
tible sheaf over X, se€ A (< ®"). If <&~ is ample on F = X — X,, then
£ 1s ample.

Proof. We shall apply the Nakai-Moishezon-Kleiman criterion for
ampleness. (See [6] or [7]). We may clearly assume that X is in-
tegral (see [4], Ch. III, 2.6.2), and proceed by induction on r=dim X.
The case r = 1 is trivial. Now let Y be an integral closed subscheme
of X, and let dimY =1¢. If ¢ =7, ie., if Y = X, then (&¥"-X) =
n(Z"'-F) >0, since &~ is ample on F. Here (-) denotes the inter-
section pairing, as defined in [6]. If t < », then either YC F' or
YN X, # @. In the latter case the canonical image of s in

He(Y, &% Q )

is an element of A.(<%"Q ), and therefore, by the induction as-
sumption, (&*-Y) > 0. In the former case, since & is ample on F
by hypothesis, it is a fortiori ample on Y, and (&*-Y) > 0 follows.
The proposition is proved.

REMARK. The hypothesis s € A,(®") is essential, in fact Y N X, =
@ does not imply (&t-Y) > 0 in general. An easy counterexample
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to the proposition can be given, where & is not ample, but it is
ample on X — X, for some section se H°(X, ). Take, for instance,
X = the blow-up of P,(k) at a point, f: X— P,(k) the associated sur-
jection, ¥ = f*[Zp,um(D)].

COROLLARY 2.4. If U 1is an open, ~-projective subset of the
scheme X, and ¥ is ample on F = X — U, then <~ is ample.

Proof. We may assume that X is integral, and proceed by induec-
tion on » = dim X. The case r = 1 is trivial. Let now se H°(X, &%)
be such that X, U is affine. Such s exists by Lemma 2.2. Let

0_);:/@——11. 0(8) ﬁX ﬁl) 0

be the exact sequence associated to s. Let D,, D,, ---, D, be the ir-
reducible components of the subscheme D. If D;N U is empty, then
% is ample on D, by hypothesis. If D, N U+ @, then & is ample
on D; by the induction assumption. In fact D,N U is clearly &¥ ®
Opprojective. In either case <~ is ample on D;, and therefore, by
2.6.2 of Ch. III of [4], &~ is ample on D. Since X, is affine we can
apply Proposition 2.3. The corollary is proved.

COROLLARY 2.5. If U s an open, F-projective subset of the
scheme X, and dim (X — U) = 0, then & is ample.

Proof. < is locally free of rank 1, hence trivially ample on
X — U. Apply the previous corollary.

We proceed to study the behavior of &“-projective open subsets
under certain types of morphisms.

PROPOSITION 2.6. Let f: X— Y be a proper surjective morphism
of integral schemes, UC Y an open subscheme, and assume that:

@) f«(%) is locally free over Y.

® £l O): f/(U)—U is a finite morphism.
Let Z be an invertible sheaf over Y. Then U is & -projective if,
and only if, f~(U) is f*(¥)-projective.

Proof. The necessity follows from the fact that f| f~'(U) is an
affine morphism, and 1.3.2 of Ch. II of [4].

To prove the sufficiency, let y ¢ U be a given closed point. Since
f~YU) is f*(<)-projective, and f~'(y) is a finite set of closed points
by hypothesis (b) above, for some 7 > 0 there exists, by Lemma 2.2,
a section se H°(X, f*(<¥%") such that X, is affine and f'(y)C
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X, c FXU).

Let now N: f.(Zx) — &’ denote the norm mapping, as defined in
[4], Ch. II, 6.5.1 and ff. By 5.4.10 of Ch. O, of [4] we see that s
corresponds to a section t'e H°(Y, fu(%) @ #®"). Let

t=(NQQI))e H (Y, &¥¢) .

By 6.5.7 of Ch. II of [4], t is such that ye Y, and f~Y(Y,) c X,.
Since f| f~'(U) is a finite morphism, it follows from a theorem of
Chevalley’s (see [4], Ch. II, 6.7.1) that Y, is affine. Clearly Y,c U.
Therefore the proposition is proved.

The following proposition, which will enable us to obtain our main
results, is a generalization of Theorem 1 of [2]. We shall say that
a morphism of integral schemes f: X — Y is dominating (and also say,
less precisely, that X dominates Y) if the morphism is proper, bira-
tional and surjective.

ProposSITION 2.7. Let Y be a mnormal, integral scheme, & an
invertible sheaf over Y, U an open subscheme of Y. Then U is -
projective tf, and only if, the following condition holds:

There exists an integral scheme X dominating Y, an open sub-
scheme VC X with V ~ U, and tnvertible sheaves of ideals 7, S of
Ty with support off V such that, for t>0, f*(F*)QQ _F¥ QT 1is
ample on X, f being the morphism f: X — Y.

Furthermore the scheme X can be obtained from Y by blowing up a
suitable sheaf of ideals of 7 with support off U.

Proof. We essentially follow the argument given by Goodman
in [2]. The sufficiency is obvious from Proposition 2.6. In fact, since
the support of _£*'® .7 is off V, the fact that f*(¥**)RQ _F*QR 7"
is ample clearly implies that V' is f*(.&2®")-projective. Now, f.(Zx) =T,
since Y is normal, and Proposition 2.6 applies.

To prove the necessity, choose ¢ > 0 so that the scheme

7 = Proj| @ H*(Y, 7=
is birational to Y and contains an open subscheme W ~ U. Note
that, if 57 = 2,(1), 5~ is very ample for Z. As in [2], we can ob-
tain a scheme X which dominates both Z and Y by successively blow-
ing up sheaves of ideals of #7, with support off W and taking joins
(see theorems 3.2, 3.3 of [8]).

Let Zl—g—r Z be obtained by blowing up a sheaf of ideals .7 C 7,
with support off W. Then the following three statements hold:
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(i) Z, contains an open subscheme W,~ W~ U.

(ii) 77, is an invertible sheaf of ideals of <7, with support
off W..

(iii) for = > 0 the invertible sheaf g*(2£%") Q A7, is ample
on Z, (see [4], Ch.1I, 4.6.13).

The join X of a finite number of such blow-ups has therefore
the following three properties:

(a) X dominates Z. Let h: X— Z denote the corresponding sur-
jective, birational, proper morphism.

(b) X contains an open subscheme V~ Wa U.

(c) There exists an invertible sheaf of ideals _# of ¢, with
support off V such that, for # > 0, the invertible sheaf A*(5#%") ®
_# is ample on X.

Let now se H°(Y, <7%"), and let

00— o o) %% T 0

be the corresponding sequence of sheaves. We have se H°(Z, 5£°%"),
and therefore we have an exact sequence of sheaves

0/
0— spe 29, Ou 0.

Let f: X — Y denote the surjective, birational, proper morphism
which has been constructed. Since the equations of D, H at corre-
sponding points P, @ differ by an element of O, . for some invertible
sheaf of ideals _/ with support off f~(U)

(LK F =h"(F) .

The above proves the first statement of the proposition. To prove
the second we observe that, once more as in [2], we can obtain an
integral scheme X,, which dominates X, by blowing up a suitable sheaf
of .7 of ideals ¢, with support off U. That X, has the desired pro-
perties follows from 8.1.7 and 4.6.18 of Ch. II of [4]. The proposition
is proved.

We are now in the position of proving our main result, namely:

THEOREM 2.8. Let Y be a normal, integral scheme, proper over
k. Let ¥ be an invertible sheaf over Y, let U be an < -projective
open subscheme of Y, and let P be the generic point of an irreducible
component of Y — U.
(I) If P is a closed point, then Pe Y(&).
(II) Let P= D, and assume that either dim Y < 8 or that char
=0. If codimD =1, and if the sheaf of ideals & which defines
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the reduced scheme structure on D 1is invertible, then, for some r =
0 and >0, Pe Y(&F®"Q £).

Proof of (I). Let Y—U= F U {P}, where P¢ F, and let f: X—Y
be the blow-up morphism constructed in Proposition 2.7. Now, f~(P)
is the “antiregular total transform” of the closed point P (see [9]
for the definition of antiregular total transforms, and for the existence
of the scheme X’ below), therefore we can construct a scheme X’

with the following properties:

x—" . x

(a) The diagram \ /" commutes, and the morphisms ¢
NN Y
Y
and & are surjections.

(b) The morphism ¢ |g~(Y — F') is an isomorphism.

(¢) The morphism #|[X — f~(P)] is an isomorphism.

Let U,=Y - F,U,=X— f(P), Ul =9¢7(U,), and let .7 be
the sheaf of ideals of <%, constructed in Proposition 2.7, such that
f is the blow-up morphism of Y at .~

We then have that, for a suitable invertible sheaf of ideals _#
of &, for all » > 0, and all ¢ » 0, the invertible sheaf

L Q QI

is ample. We proceed in steps.

Case 1. Pe¢Supp (7). Then X — f~(F)~ U, and Supp (_#)C
f~YF). (We omit here the case dim Y = 1, the theorem being trivial-
ly true in this case). Therefore Supp (2 Q@ _#)c f~(F), and
hence X — f~%(F') is f*(<®")-projective. By Proposition 2.6 U, is
-projective, and we are done in this case.

Case 2. PeSupp(.#). We then have

/ =_AQ_4
where .7, 7 are invertible sheaves of ideals of &, with

Supp (4) U Supp (_A) < f(F),

and Supp (%) U Supp (_Z) C f~(P).

Since f*(F®*)Q S Q £ is ample, we see that U, is
L) QA Q L% -projective. Now U,~ X' — g~'(P), and g~'(P)
is a closed point. Furthermore the morphism k| X — f~(P) is an iso-
morphism of X — f~'(P) onto X’ — ¢g~'(P); this, together with the
fact that Y is normal, shows that h,(c%y) = & . Therefore we see
that 2,(.%) and h.(_#) are invertible sheaves of ideals of <7, with
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supports on g~(F'). Also, we can now apply Proposition 2.6, and ob-
tain that X' — g7'(P) is ¢g*(Z®*") ® h(A) Q h.(_A%)-projective.
Therefore, by Corollary 2.5, the invertible sheaf g*(.<®") R h. (7 )X
h.(_#%" is ample on X’. Now X’ — ¢g7'(F) is isomorphic to Y — F,
and X’ — ¢g7'(F') is clearly g¢g*(<~%")-projective, since Supp (k.(_%))
and Supp (h.(_#)) are both contained in g='(¥’). Therefore, by Pro-
position 2.6, applied to the morphism g, we see that ¥ — F is &~-
projective, i.e., Pe Y(&°). Statement (I) of the theorem is proved.

Proof of (II). We let X,._7 _Z f be as in the previous proof.
First of all, we observe that we may assume that P¢ Supp(~”). In
fact, if P e Supp (7 ), then a simple application of Theorem 14, p. 154,
and Corollary, p. 277 of [12] shows that, for some » > 0, the sheaf
' = 7<% is a sheaf of ideals of 7 with P¢Supp(2”’). Now,
by 8.1.3 of Ch. II of [4], the blow-ups of Y at <’ and .# respective-
ly are isomorphic. So we can indeed assume P ¢ Supp (_7).

Note that we now have that f—'(P) is a point of X, which we
denote by @, and we have that &%, ~ &, . Suppose first that
Q¢ Supp (_F) either. (Clearly @ ¢ Supp (7). For ¢> 0 take a
section pe H°[X, f*(®) Q A7 ® _#®] which has the following
properties:

(a) Qe X, and X, is affine.

(b) X, N [Supp (F7;) N Supp (_H)] = @.

The section o exists since the invertible sheaf f*(& %) Q 27y Q
_# ¥ is ample. By 5.4.10 of Ch O, of [4], the section o corresponds
to a section 7’ of the (not necessarily invertible) sheaf

LR L (SR I

Since Y is normal, the sheaf f, (77", & _# ') is a sheaf of ideals of
7, hence we have an injection

00— ZF R (S @ FF) — FE

Applying (b) we see that the section ze H°(Y, &%), which cor-
responds to 7' under the above injection, has the property that Y.~
X,. Clearly Pe Y., and statement (II) is proved in this case, simply
by taking » = 0.

Let now Q@€ Supp (_#). Let g: X' — X be a desingularization of
X, and let & = fog. Since Y is normal and P ¢ Supp(_#) we see that
Q is simple on X, and therefore ¢g=(Q) is a point Q" of X’ such that
O v ™ Tp,x. We denote by 57 the invertible sheaf of ideals of
7y which defines the reduced scheme structure on Q’. 57 is indeed
invertible, since X’ is nonsingular.

We observe that, first of all, for all m > 0
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(2.8.1) h(2F%™) = <%,

To see the above it suffices to assume that Y is affine, and in this
case it becomes an easy verification, using the facts that Y is normal,
that & is principal and selfradical, and that ~7,, is a discrete valua-
tion ring.

Let S, and Sy denote the singular loci of Y and X respectively.
Then Q' ¢ h~'(Sy) U 97(Sy), since both P and @ are simple on Y and
X respectively. Since the invertible sheaf f*(¥%*")Q 7 Q _F
is ample, the open subscheme X’ — g=* (Sy) is A*(F®") ® g*(77%) ®
g*(_#Z®)-projective, and therefore we can find an open subscheme V"’
of X', containing @’, and having the following two properties:

(i) V'N[Supp(g*( A7) Uh™(Sy) Ug(Sy)] = @

(i) V' is kY *) Q 9%( A7) R g*(_F ®")-projective.

From (i) we see that 2| V' is an isomorphism of V'’ onto an open
subscheme V of Y, with the property that Pc V.

Since g*(_#) is an invertible sheaf of ideals over the nonsingular
scheme X', and since Q' € Supplg*(_#)], we see that we have g*(_~)=
7% Q) 97, where r is some positive integer, and %  is an invertible
sheaf of ideals of 7, with @ ¢ Supp(2%).

By property (ii) of V'’ we have that the open subscheme

W =V — [Supp(h.(227)) U Supp(h.(9*(F)))]

is &#® QR h, (27 %")-projective. Since Pe W we are done, by (2.8.1).
The theorem is proved.

Let X be a scheme. We shall say that the open subscheme U
of X is divisorially quasi-projective in X if, for some invertible sheaf
<~ over X, U is “-projective. With this terminology we state

COROLLARY 2.9. Let Y be a mormal, integral scheme, proper
over k. Let U be a maximal divisorially quasi-projective open sub-
scheme of Y. Then Y — U has no irreducible components of codi-
mension 1 whose associated sheaf of ideals is invertible. (Under the
assumption made in (II) of Theorem 2.8).

Proof. By assumption U is _<~-projective, for some invertible
sheaf <& over Y. Assume that P is the generic point of an irreducible
component of Y — U, such that the associated sheaf of ideals Z of
P in 7 is invertible. Let » be fixed as in the proof of (II) of
Theorem 2.8. Then, for n >0, U = Y(&¥) & Y(&F®* R £%). In fact,
the first equality follows from the fact that U is maximal divisorial-
ly quasi-projective, and the inequality from the fact that P¢ U, while,
by Theorem 2.8, P does belong to the open subscheme Y (.&F%" Q) < ).
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This contradicts the maximality of U. The corollary is proved.

COROLLARY 2.10. Let Y be a normal, integral scheme, proper
over k. Let U be a maximal, quasi-projective open subscheme of Y
which contains all the singularities of Y. Then codim (Y — U)>1.

Proof. Under the basic assumption made in (II) of the statement
of Theorem 2.8, this corollary is an immediate consequence of the
previous one. In fact, it suffices to observe that, if 7 denotes an
ample, invertible sheaf over U, then, since Y is nonsingular off U,
there exists at least one invertible sheaf &~ over Y which extends
57, Therefore U is & -projective, and hence maximal divisorially
quasi-projective. Since Y is nonsingular off U, the corollary follows
from Corollary 2.9.

However, as the Editor has pointed out to the author, the corol-
lary is valid without the basic assumption made in (II) of the state-
ment of Theorem 2.8. In fact, since, as before, U is &“-projective
for some suitable invertible sheaf &~ over Y, by Proposition 2.7 there
exists an integral scheme X which dominates Y, and such that the
fundamental locus of the morphism f: X— Y in Y is, by the maxima-
lity of U, precisely Y — U. However, since Y is normal, such funda-
mental locus is of codimension >1. The corollary is proved.

In particular, every nonsingular, nonprojective threefold (with no
assumptions on the field %, other than it be algebraically closed) must
have quasi-projective open subschemes whose complements are of pure
dimension 1. (See the examples of nonsingular, nonprojective three-
folds given by Hironaka and Nagata in [5] and [9] respectively).

To say that the singularities of a normal surface Y are contain-
ed in an open affine subscheme is equivalent, by Proposition 1 of [2],
to saying that the singularities of Y are contained in an open .&~-
projective subscheme, for a suitable invertible sheaf &~ over Y. This
observation, combined with Corollaries 2.9 and 2.5, give us another
proof of the well known result of Zariski (see [11]) that every normal
surface, whose singularities are contained in an open affine subscheme
is quasi-projective.

In [1] the author has studied divisorial schemes, i.e., schemes
which admit a finite open cover of the form {X(<4)}i-,,...,.. Corollary
2.10 implies that, if Y is a normal, divisorial scheme, then the inver-
tible sheaves &4 can be chosen so that no zero-dimensional subscheme
of Y, nor integral subschemes of codimension 1, whose associated
sheaves of ideals are invertible, appear as components of the closed
subsets Y — Y (7).
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