ANALYTIC INTERPOLATION OF CERTAIN MULTIPLIER SPACES

JAMES D. STAFNEY

Let W_p denote the space of all functions on the circle which are the uniform limit of a sequence of trigonometric polynomials which is bounded as a sequence of multipliers for $l_p, 1 \leq p \leq 2$. Let U_s be the interpolation space $[W_2, W_1]_s$ (see 1.1). Our main result, Theorem 2.4, states that for a compact subset E of the circle, $U_s \mid E = C(E)$ if and only if $W_1 \mid E = C(E)$. A major step in the proof is a maximum principle for interpolation, Theorem 1.7. We also give a direct proof that $U_s \neq W_p$ (see Theorem 2.7) for corresponding s and p.

1. Some properties of analytic interpolation.

- 1.1. Let B° and B° be two Banach spaces continuously embedded in a topological vector space V such that $B^{\circ} \cap B^{\circ}$ is dense in both B° and B° . For 0 < s < 1, let \mathfrak{F} , $[B^{\circ}, B^{\circ}]_s$ and $B^{\circ} + B^{\circ}$ denote the spaces as defined in [1, §1]. For two Banach spaces X and Y we let O(X, Y) denote the Banach space of bounded linear operators from X into Y where the norm is the usual operator norm. Let O(X) denote O(X, X).
- 1.2. Assume the notation and conditions of paragraph 1.1 and for convenience let B_s denote the space $[B^0, B^1]_s$, 0 < s < 1. Let V' denote the Banach space

$$O(B^\circ \cap B^1, B^\circ + B^1)$$
.

Let A_j be a closed subspace of $O(B^j)$, j=0,1. By restricting the elements in A_i to $B^0 \cap B^1$ in the obvious way we may regard A_i as continuously embedded in the topological vector space V', and it is with respect to this embedding that we understand $[A_0, A_1]_s$; in particular, $[A_0, A_1]_s$ is a subspace of V'. We will assume that $A_0 \cap A_1$ is dense in A_j with respect to the norm of A_j , j=0, 1, when these spaces are embedded in V' as described. Since $B^0 \cap B^1$ is dense in B^0 and B^1 , we know from [1, § 9.3] that $B^0 \cap B^1$ is dense in B_s ; thus, since $B_s \subset B^{\scriptscriptstyle 0} + B^{\scriptscriptstyle 1}$, the restriction of elements of $O(B_s)$ to $B^{\scriptscriptstyle 0} \cap B^{\scriptscriptstyle 1}$ gives a continuous embedding of $O(B_s)$ in V' in the obvious manner. Note that each element of $A_0 \cap A_1$ is bounded with respect to the norm $|| \ ||_{B_s}$ restricted to $B^{\scriptscriptstyle 0} \cap B^{\scriptscriptstyle 1}$ and is, therefore, contained in the enbedded $O(B_s)$. Let A_s denote the closure of $A_0 \cap A_1$ in $O(B_s)$ where $O(B_s)$ is regarded as embedded in V' in the manner just described. Finally, we let M_s and N_s denote the norms of the spaces A_s and $[A_0, A_1]_s$, respectively.

LEMMA 1.3. Assuming 1.2, $[A_0, A_1]_s \subset A_s$ and $M_s \leq N_s$, 0 < s < 1.

This lemma is an immediate consequence of [1, § 11.1].

- 1.4. Assume the notation and conditions of 1.1. Let J be a closed subspace of $B^0 + B^1$. We will assume that
- (1.4.1) $I^j=J\cap B_j$, is closed in $B^j,\,j=0,\,1.$ Clearly the map lpha defined by

$$\alpha(x+I^j)=x+J \qquad j=0,1$$

is a continuous one to one linear map from B^{j}/I^{j} into V/J. Let

$$D_s = [\alpha(B^{\scriptscriptstyle 0}/I^{\scriptscriptstyle 0}), \, \alpha(B^{\scriptscriptstyle 1}/I^{\scriptscriptstyle 1})]_s$$
 .

Lemma 1.5. Assuming 1.4, if $x \in B_s, \ 0 < s < 1, \ then \ x + J \in D_s$ and

$$(1.5.1) ||x+J||_{D_s} \leq ||x+(J\cap B_s)||_{B_s}/(J\cap B_s).$$

Proof. Let $x \in B_s$, $h \in J \cap B_s$ and $\varepsilon > 0$. Choose $f \in \mathfrak{F} = \mathfrak{F}(B^0, B^1)$ such that f(s) = x + h and

$$(1.5.2) || f ||_{\mathfrak{R}} \leq \varepsilon + || x + h ||_{B_{\mathfrak{R}}}.$$

Let $g(\xi) = f(\xi) + J$ for $1 \le |\xi| \le \varepsilon$. Then it is clear that $g \in \mathfrak{F}_1$ where

$$\mathfrak{F}_1 = \mathfrak{F}(\alpha(B^0/I^0), \alpha(B^1/I^1))$$

and that

$$(1.5.3) g(s) = x + J.$$

Hence, $x + J \in D_s$. Furthermore, since it is clear that

$$||g||_{\mathfrak{F}^{1}} \leq ||f||_{\mathfrak{F}},$$

(1.5.1) follows from (1.5.2), (1.5.3), (1.5.4) and the fact that h and ε were chosen arbitrarily.

The following lemma can be proved by the usual method of successive approximations.

LEMMA 1.6. Suppose that D_1 is a Banach space that is continuously embedded in a Banach space D_0 such that D_1 is dense in D_0 with respect to the norm of D_0 . Suppose that there exist constants $c, c_1, c < 1$, with the property that for each $x \in D_1$ there is a corresponding element z in D_1 such that

$$|z|_1 \leq c_1 |x|_0$$
 and $|x-z|_0 \leq c |x|_0$.

Then $D_1 = D_0$.

We will now establish a "maximum principle" for analytic interpolation.

THEOREM 1.7. If, in addition to the assumptions of paragraph 1.1, $B^0 = [B^0, B^1]_s$ for some s (0 < s < 1), then $B^0 = B^1$.

Proof. From the fact that B^0 and B^1 are continuously embedded in V and the closed graph theorem we conclude that the norms $|\ |_0$ and $|\ |_s$ on B^0 and $[B^0, B^1]_s$, respectively, are equivalent. In particular, there is a constant c such that

(1.7.1)
$$|x|_0 \le c|x|_s$$
 for all x in B^0 .

From [1, 9.4. (ii)] we conclude that

$$|x|_s \le |x|_0^{1-s} |x|_1^s \quad \text{for all } x \text{ in } B^0 \cap B^1.$$

We conclude from (1.7.1) and (1.7.2) that

$$|x|_0 \leq c^{1/s}|x|_1$$
 for all x in $B^0 \cap B^1$.

Thus, B_1 is continuously embedded in B^0 . We shall now prove that (1.7.3) there is a constant c_1 with the property that for each x in B^1 there is a corresponding y in B^1 such that

$$|y|_1 \le c_1 |x|_0$$
 and $|y-x|_0 \le (1/2) |x|_0$.

Let $x \in B^1$. In particular, $x \in [B^0, B^1]_s$ and, therefore, there exists an $f \in \mathfrak{F}(B^0, B^1)$ such that f(s) = x and $|f|_{\mathfrak{F}(B^0, B^1)} \leq 2 |x|_s$. Since the norms $|\cdot|_0$ and $|\cdot|_s$ are equivalent we can choose a real number λ so that $2 |u|_s e^{\lambda s} \leq (1/2) |u|_0$ for every u in B^0 . Let $g(\xi) = f(\xi)e^{-\lambda(\xi-s)}$ where $0 \leq \operatorname{Re} \xi \leq 1$. Then

$$(1.7.4) egin{aligned} x &= g(s) = \int_{-\infty}^{\infty} g(it) \mu_{\scriptscriptstyle 0}(s,\,t) dt \ &+ \int_{-\infty}^{\infty} g(1+\,it) \mu_{\scriptscriptstyle 1}(s,\,t) dt \end{aligned}$$

where μ_0 and μ_1 are the Poisson kernels for the strip $0 \le \operatorname{Re} \xi \le 1$ (see [1, 9.4]). Let y and z denote the first and second integrals, respectively, appearing in (1.7.4). Since $\int_{-\infty}^{\infty} |\mu_i(s,t)| dt \le 1$ (i=0,1), $|g(it)|_0 \le 2 |x|_s e^{\lambda s} \le (1/2) |x|_0$ (all real t), and

$$|g(1+it)|_1 \le 2 |x|_s e^{-\lambda(1-s)} \le (1/2)e^{-\lambda} |x|_0$$

(all real t), it follows that $|x-z|_0 \le (1/2) |x|_0$ and $|z|_1 \le (1/2)e^{-\lambda} |x|_0$. This proves (1.7.3). Since B^1 is continuously embedded as a dense subspace in B^0 and (1.7.3) holds, the conclusion of Theorem 1.7 follows from Lemma 1.6.

2. The spaces W_p and U_s . Let l_p , $1 \le p < \infty$, denote the Banach space of complex valued functions x on the integers such that

$$||x||_{l_n} = (\sum |x(n)|^p)^{1/p} < \infty$$

where the sum is over all integers n. Each function α on the integers which vanishes outside some finite set determines a linear transformation T_{α} on l_{n} defined by

$$T_{\alpha}x(n) = \sum_{-\infty < k < \infty} x(n-k)\alpha(k)$$
.

Let W_p' denote the closure of the operators T_α in $O(l_p)$. Since l_1 is a dense subspace of each space $l_p, 1 \leq p < \infty$, the restriction of elements in $O(l_p)$, $1 \leq p \leq 2$, to the subspace l_1 gives a one-to-one continuous linear embedding of $O(l_p)$, $1 \leq p \leq 2$, into the space

$$R = O(l_1, l_2)$$
.

Throughout this section we will identify $O(l_p)$ with its image under this embedding without further comment. Let U'_s denote the space $[W'_2, W'_1]_s$ where V in 1.1 is, in this case, R.

Our immediate purpose is to define a "Fourier transform" on W_p and to prove Lemmas 2.2 and 2.3.

If x is a complex valued function on the integers Z, let $\tau_n x(k) = x(k-n)$. Let δ_n denote the function on Z such that $\delta_n(n) = 1$ and $\delta_n(k) = 0$, $k \neq n$. If x and y are two complex valued function on Z let

$$x*y(m) = \sum_{n \in \mathcal{I}} x(m-n)y(n)$$

define the function x*y provided the sum converges absolutely for each $m \in Z$. For each H in W_p' let H^{\sim} denote the function $H(\delta_0)$ in l_p . The following lemma states the needed properties of the map $H \to H^{\sim}$. Note that $\tau_n x = \delta_n *x$ for each $n \in Z$ and for each complex valued function x on z.

LEMMA 2.1.

- (2.1.1) $H \rightarrow H^{\sim}$ is a one-to-one linear transformation from W'_p into l_p .
- $(2.1.2) \quad Hx = H^* * x, H \in W'_p, x \in l_p.$
- $(2.1.3) (HK)^{\sim} = H^{\sim} *K^{\sim}, H, K \in W'_{\circ}.$

Proof. The map $H \rightarrow H^{\sim}$ is clearly linear. Evidently, each H in

 W_p' commutes with all operators τ_m , $m \in \mathbb{Z}$, since the operators of the form T_α commute with the operators τ_m , $m \in \mathbb{Z}$. Thus for $H \in W_p'$ and $m \in \mathbb{Z}$, we see that

(2.1.4)
$$H(\delta_m) = H(\tau_m \delta_0) = \tau_m H(\delta_0) = \tau_m H^{\sim} = H^{\sim} * \delta_m$$
.

From this we see that since the linear span of the elements δ_m is dense in l_p , the map $H \to H^-$ is one-to-one. Obviously, H^- is in l_p . To establish (2.1.2) we first note that since H^- is in $l_q(q^{-1}+p^{-1}=1)$ the map $x \to H^-*x$ is a continuous linear map from l_p into c_0 , the space of complex valued functions on Z which tend to 0 at $\pm \infty$. The map $x \to Hx$ is also a continuous linear map from l_p into c_0 . These observations together with (2.1.4) and the density property of the δ_m 's noted above complete the proof of (2.1.2). To prove (2.1.3) we note that for H and K in W'_p , $K^- \in l_p$, so by (2.1.2) we have

$$H^{\sim}*K^{\sim} = H(K^{\sim}) = H(K\delta_0) = (HK)\delta_0 = (HK)^{\sim}$$
 .

This completes the proof of the lemma.

Let $L_p(1 \le p < \infty)$ denote the Banach space of measurable functions $g(\theta)$ on the circle (reals mod 2π) whose norm $||g||_{L_p}$,

$$||\,g\,||_{L_p} = \Big((1/2\pi)\!\int_0^{2\pi}\!|\,g(heta)\,|^{1/p}\,d heta\,|\Big)^{1/p}$$
 ,

is finite. Let L_{∞} denote the space of essentially bounded measurable functions g with $||g||_{L_{\infty}}$ denoting the essential supremum of g.

Since each function H^{\sim} , $H \in W'_p$, is in l_p , which is contained in l_2 , there is a unique function H^{\wedge} in L_2 such that $\sum H^{\sim}(n)e^{in\theta}$ is the Fourier series of H^{\wedge} .

LEMMA 2.2. For $1 \leq p \leq 2$ the map $H \to H^{\wedge}$ is a norm decreasing algebraic isomorphism from W'_p into L_{∞} .

Proof. The fact that $H \to H^{\wedge}$ is a one-to-one linear map from W'_p into L_2 is clear from (2.1.1) and the fact that each function in L_2 is uniquely determined by its Fourier coefficients. For each $f \in L_1$, let $\lambda(f)$ denote the function on Z defined by:

$$\lambda(f)(n) = (1/2\pi) \int_0^{2\pi} f(\theta) e^{-in\theta} d\theta$$
 .

It is clear from the Schwarz inequality that the map $(f,g) \to \lambda(f \cdot g)(n)$ is a continuous bilinear functional on $L_2 \oplus L_2$ for each integer n. On the other hand, the map

$$(f, g) \rightarrow (\lambda(f) * \lambda(g))(n)$$

is also a continuous bilinear functional on $L_2 \oplus L_2$. Since these functionals (for each n) clearly agree when f and g are trigonometric polynomials, they must agree on $L_2 \oplus L_2$. Since λ is a one-to-one map, the multiplicative property of $H \to H^{\wedge}$ now follows from (2.1.3). To prove that the map is norm decreasing we first note the following inequalities:

$$||H^n||_{W_p'} \geq ||H^n \delta_0||_{l_p} = ||(H^n)^\sim||_{l_p} \geq ||(H^n)^\sim||_{l_2} = ||(H^n)^\wedge||_{L_2} = ||(H^\wedge)^n||_{L_2} \ .$$

It is well known that $(||H^n||_{W'_p})^{1/n}$ converges to the spectral radius of H, which is dominated by $||H||_{W'_p}$, and that $(||(H^{\wedge})^n||_{L_2})^{1/n}$ converges to $||H^{\wedge}||_{L_{\infty}}$ as $n \to \infty$. This proves the lemma.

Let W_p and U_s denote the functions on the circle of the form H^{\wedge} where $H \in W'_p$, U'_s , respectively. The following lemma is an immediate consequence of Lemma 2.2.

LEMMA 2.3. W_p consists precisely of the functions on the circle which are the uniform limits of sequences H_n^{\wedge} of trigonometric polynomials such that H_n is a Cuachy sequence in W_p' .

For any subset E of the circle group $U_s \mid E$ denotes the functions on E obtained by restricting the functions of U_s to E and C(E) denotes the continuous complex valued functions on E.

THEOREM 2.4. Suppose that E is a compact subset of the circle group and 0 < s < 1. Then $U_s \mid E = C(E)$ if and only if $W_1 \mid E = C(E)$.

Proof. First assume that $W_1 | E = C(E)$. By Lemma 1.3, $U_s' \subset W_p'$; consequently, $U_s \subset W_p$. We conclude from Lemma 2.3 that $W_p \subset C(T)$. Thus, $U_s | E \subset C(E)$. Since $W_2' \supset W_1'$, it is clear from the definition of interpolation that $U_s' \supset W_1'$. Thus, $U_s | E \supset C(E)$.

Consider the converse and assume that $U_s \mid E = C(E)$. In 1.4 we let $B^{\scriptscriptstyle 0} = W_{\scriptscriptstyle 2}', \, B^{\scriptscriptstyle 1} = W_{\scriptscriptstyle 1}', \, V = R$ and

$$J = \{a \in W_2': \hat{a}(\theta) = 0, \theta \in E\}$$
.

The assumptions on J in 1.4 are clearly satisfied since by Lemma 2.2, the maps $a \to \hat{a}$ are continuous on W_1' and W_2' . By Theorem 1.5, if $x \in U_s'$, then x + J is in the space

$$[\alpha(W_2'/J), \, \alpha(W_1'/(J\cap W_1'))]_s .$$

However, by hypothesis, the cosets in V of the form x+J, $x \in U'_s$, are the same as the cosets y+J, $y \in W'_2$. Therefore, the space in (2.4.1) is $\alpha(W'_2/J)$. Since $W'_2 \supset W'_1$,

$$\alpha(W_2'/J) \supset \alpha(W_1'/(J \cap W_1'))$$
:

therefore, we conclude from 1.7 that

$$\alpha(W_2'/J) = \alpha(W_1'/(J \cap W_1'))$$
;

or, what is the same thing, that $W_{\scriptscriptstyle 1} \, | \, E = C(E)$. This completes the proof.

COMMENT 2.5. It is natural to compare U_s and W_p where $[l_2, l_1]_s = l_p$, i.e., (1-s)/2 + s = 1/p. In [3] we showed that Theorem 2.4 is not valid for W_p . To be exact, there is a compact subset E of the circle such that $W_p \mid E \neq C(E) = W_{4/3} \mid E$, $1 \leq p < 4/3$. We had originally used this result to show that $W_p \neq U_s$; however, the referee has suggested a direct proof which we will now give.

LEMMA 2.6. Let h_n be a sequence in U_s , 0 < s < 1, such that $||h_n||_s \le M$ (here $|| ||_s$ is the norm in U_s) and $h_n \rightarrow h$ almost everywhere. Then h agrees with some continuous function almost everywhere.

Proof. Since $||h_n||_s \leq M$ there exist functions $f_n(\theta, \xi)$, analytic in ξ for $0 < B(\xi) < 1$ and continuous in $0 \leq B(\xi) \leq 1$, such that for any real number t, $||f_n(\theta, it)||_0 \leq 2M$, $||f_n(\theta, 1 + it)||_1 \leq 2M$ and $f_n(\theta, s) = h_n(\theta)$. Let $g_n(\theta, \xi) = f_n(\theta, \xi)e^{+\lambda(\xi-s)}$. Then

$$egin{aligned} h_n(heta) &= f_n(heta,s) = g_n(heta,s) = \int_{-\infty}^{+\infty} & g_n(heta,\,it) \mu_0(s,\,t) dt \ &+ \int_{-\infty}^{+\infty} & g_n(heta,\,1+\,it) \mu_1(s,\,t) dt \ &= u_n(heta) + v_n(heta) \end{aligned}$$

where μ_0 and μ_1 are the Poisson Kernels for the strip (see [1, 9.4]). Evidently $||u_n||_0 \leq 2e^{-\lambda s}M$, $||v_n||_1 \leq 2e^{\lambda(1-s)}M$. Since the v_n are uniformly bounded, by taking a subsequence if necessary, we may assume that v_n converges weakly to a bounded function $v(\theta)$, that is

$$\lim_{n\to\infty}\int v_n(\theta)\varphi(\theta)d\theta = \int v(\theta)\varphi(\theta)d\theta$$

for every integrable φ . Furthermore, as is readily seen, $v(\theta)$ belongs to U_1 and therefore is continuous. Since h_n is uniformly bounded and converges almost everywhere, h_n converges weakly. Since h_n and v_n converge weakly, u_n converges weakly to some function u. From the fact that $|u_n(\theta)| \leq ||u_n||_0 \leq 2e^{-\lambda s}M$, it follows that $|u(\theta)| \leq 2e^{-\lambda s}$ almost everywhere. Since h = u + v almost everywhere and λ can be taken arbitrarily large, h agrees almost everywhere with the uniform limit of continuous functions. This completes the proof of the lemma.

Theorem 2.7. U_s is properly contained in W_p for 1 .

Proof. To prove the theorem it suffices to exhibit a sequence of functions in U_s whose norms in U_s tend to infinity and whose norms in W_p remain bounded. Let $h(e^{it})=1$ for $0 \le t \le \pi$ and $h(e^{it})=0$ for $\pi < t < 2\pi$. Then h is a multiplier for l_p (see [2]), which does not agree almost everywhere with any continuous function. Let φ_n be defined by: $\varphi_n(e^{it})=n$ for $|t| \le 1/2n$, $\varphi_n(e^{it})=0$ otherwise, $n=1,2,\cdots$. Let $h_n=h*\varphi_n$, $n=1,2,\cdots$. Since $\int_0^{2\pi}|h_n(e^{it})|dt=1$, it follows that the W_p norm of h_n is the same as the W_p norm of h_n ; thus, h_n is bounded in W_p . Since both h and φ_n belong to $L_2(0,2\pi)$, $h_n\in W_1\subset U_s$. Obviously, h_n converges to h almost everywhere. Since h does not agree almost everywhere with any continuous function, it follows from Lemma 2.6 that h_n is not bounded in U_s .

BIBLIOGRAPHY

- 1. A. P. Caldrón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- I. I. Hirshmann, On multiplier transformations, Duke Math. J. 26 (1959), 221-242.
 James D. Stafney, Approximation of W_p-continuity sets by p-Sidon sets, Michigan Math. J. 16 (1969), 161-176.

Received August 26, 1968.

UNIVERSITY OF CALIFORNIA, RIVERSIDE