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ANALYTIC INTERPOLATION OF CERTAIN
MULTIPLIER SPACES

JAMES D. STAFNEY

Let Wp denote the space of all functions on the circle
which are the uniform limit of a sequence of trigonometric
polynomials which is bounded as a sequence of multipliers for
lp, 1 ̂  V = 2. Let Us be the interpolation space [W2, Wi]β (see
1.1). Our main result, Theorem 2.4, states that for a compact
subset E of the circle, U.\E= C(JE) if and only if Wt\E = C(E).
A major step in the proof is a maximum principle for interpola-
tion, Theorem 1.7. We also give a direct proof that Us Φ Wp

(see Theorem 2.7) for corresponding s and p.

1* Some properties of analytic interpolation*

1.1. Let B° and B1 be two Banach spaces continuously embedded
in a topological vector space V such that B° Π B1 is dense in both B°
and B\ For 0 < s < 1, let g, [B\ Bι]s and B° + Bι denote the spaces
as defined in [1, § 1], For two Banach spaces X and Y we let O(X, Y)
denote the Banach space of bounded linear operators from X into Y
where the norm is the usual operator norm. Let O(X) denote O(X, X).

1.2. Assume the notation and conditions of paragraph 1.1 and for
convenience let Bs denote the space [B\ Bι]s, 0 < s < 1. Let V denote
the Banach space

0(5° Π B\ B° + Bι) .

Let A3- be a closed subspace of 0{Bj), j — 0, 1. By restricting the
elements in A3- to B° Π Bι in the obvious way we may regard Ai as
continuously embedded in the topological vector space F', and it is
with respect to this embedding that we understand [Ao, AJS; in parti-
cular, [Ao, AJS is a subspace of V. We will assume that Ao Π Aι is
dense in A3- with respect to the norm of Aά ,j = 0, 1, when these spaces
are embedded in V as described. Since B° Π B1 is dense in B° and
B\ we know from [1, § 9.3] that B° Π Bι is dense in Bs; thus, since
δ s c δ ° + B\ the restriction of elements of O(BS) to B° f] B1 gives a
continuous embedding of O(BS) in V in the obvious manner. Note
that each element of Ao π A1 is bounded with respect to the norm
|| \\Bs restricted to J5° π Bι and is, therefore, contained in the enbedded
O(BS). Let As denote the closure of Ao Π A, in O(BS) where O(BS) is
regarded as embedded in V in the manner just described. Finally,
we let Ms and Ns denote the norms of the spaces As and [Ao, AJ,,
respectively.
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LEMMA 1.3. Assuming 1.2, [Ao, A,], c As and Ms ^ N8, 0 < s < 1.

This lemma is an immediate consequence of [1, § 11.1].

1.4. Assume the notation and conditions of 1.1. Let / b e a closed
subspace of B° + B1. We will assume that

(1.4.1) Ij = J n BjΊ is closed in Bs, j = 0, 1. Clearly the map a
defined by

a(x + F) = χ + j j = 0, 1

is a continuous one to one linear map from Bj/Ij into VI J. Let

D s = [

LEMMA 1.5. Assuming 1.4, if xe Bs1 0 < s < 1, then x + JeDs

and

(1.5.1) || a + J \\Ds ^\\x+(JΓiB.) \\BJ{J Π Bs) .

Proo/. Let xeBs,heJ n # s and ε > 0. Choose / e g = g(5°, S1)
such that /(s) = x -\- h and

(1.5.2) || / | | g ^ e + ||a? + λ | U t .

Let g(ξ) = f(ξ) + J for 1 ^ | f | ^ ε. Then it is clear that g e gx where

and that

(1.5.3) flr(s) = x + J .

Hence, x + JeDs. Furthermore, since it is clear that

(1.5.4) llflr | |δ l^ H/llg,

(1.5.1) follows from (1.5.2), (1.5.3), (1.5.4) and the fact that h and ε
were chosen arbitrarily.

The following lemma can be proved by the usual method of suc-
cessive approximations.

LEMMA 1.6. Suppose that Dλ is a Banach space that is continu-
ously embedded in a Banach space DQ such that Dx is dense in DQ

with respect to the norm of Do. Suppose that there exist constants
c, c19 c < 1, with the property that for each x e Dx there is a corres-
ponding element z in Dx such that
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I x — 2 |0 <̂  c\ x |

We will now establish a "maximum principle" for analytic inter-
polation.

THEOREM 1.7. //, in addition to the assumptions of paragraph
1.1, B° = [B°, B']s for some s (0 < s < 1), ίfcen J5° - B\

Proof. From the fact that B° and I?1 are continuously embedded
in V and the closed graph theorem we conclude that the norms | |0
and I I, on B° and [B\ Bι]s, respectively, are equivalent. In particular,
there is a constant c such that

(1.7.1) I x |o ^ c\ x |β for all x in B° .

From [1, 9.4. (ii)] we conclude that

(1.7.2) I x |β ^ I x \l-s I a; | for all x in B° Π B1 .

We conclude from (1.7.1) and (1.7.2) that

I x |o g c1/s| x |x for all x in B° f] B1 .

Thus, Bι is continuously embedded in B\ We shall now prove that

(1.7.3) there is a constant c1 with the property that for each x
in B1 there is a corresponding y in I?1 such that

1 2 / | i ^ Ci | α |o a n d l l / - α | o ^ ( l / 2 ) | α | o .

Let a? G 2?\ In particular, x e [B\ Bι]s and, therefore, there exists
an / e g(J5°, S1) such that f(s) = x and | / |̂ (Bo,Bi) g 2 | x | s. Since the
norms | |0 and | |β are equivalent we can choose a real number λ so
t h a t 2\u\se

λs ^(l/2)\u\0 for every u in B°. Let #(f) - f(ζ)e~λ{ζ-s)

where 0 ^ Re ξ ^ 1. Then

= g(s) = I g(it)μo(s, t)dt

where μ0 and μλ are the Poisson kernels for the strip 0 ^ Re ί g 1
(see [1, 9.4]). Let y and z denote the first and second integrals,

S CO

I μi(s, t) \dt ^ 1 (i = 0, 1),
g(it) |o ^ 2 I x \s e

ls ^ (1/2) | a? |0 (all real ί), and

- 66J |j_ ^ Δ X | s e 2.
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(all real t), it follows that | x - z |0 ^ (1/2) | x |0 and | z |L
This proves (1.7.3). Since B1 is continuously embedded as a dense
subspace in B° and (1.7.3) holds, the conclusion of Theorem 1.7 follows
from Lemma 1.6.

2. The spaces Wp and Us. Let lp, l<,p< co? denote the Banach
space of complex valued functions x on the integers such that

where the sum is over all integers n. Each function a on the integers
which vanishes outside some finite set determines a linear transforma-
tion Ta on lp defined by

Tax(n) = Σ x(n - k)a(k) .
-oo</ι<oo

Let Wp denote the closure of the operators Ta in O(lp). Since lι is a
dense subspace of each space lp, 1 <^ p < oo, the restriction of elements
in O(lp), 1 ^ p <̂  2, to the subspace ίL gives a one-to-one continuous
linear embedding of O(lp), 1 <̂  p ^ 2, into the space

i t = C/^i, 62/

Throughout this section we will identify O(lp) with its image under
this embedding without further comment. Let Ur

s denote the space
[W2, W[]8 where V in 1.1 is, in this case, R.

Our immediate purpose is to define a "Fourier transform" on Wp

and to prove Lemmas 2.2 and 2.3.
If x is a complex valued function on the integers Z, let τnx(k) =

x(k — n). Let δn denote the function on Z such that δn(n) = 1 and
δn(k) — 0, k Φ n. If x and y are two complex valued function on Z let

x*y(m) = X x(m — n)y(n)
neZ

define the function x*y provided the sum converges absolutely for each
me Z. For each H in Wp let H~ denote the function H(δ0) in lp. The
following lemma states the needed properties of the map H —> H~. Note
that τnx — δn*x for each n e Z and for each complex valued function
x on z.

LEMMA 2.1.

(2.1.1) H—>H~ is a one-to-one linear transformation from Wp into lp»
(2.1.2) Hx = H~*x, He Wf

p, x e lp.
(2.1.3) (HK)- = H~*K~, H

Proof. The map H—+H~ is clearly linear. Evidently, each H in
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Wp commutes with all operators rm, me Z, since the operators of the
form Ta commute with the operators τM9 me Z. Thus for He Wp and
me Z, we see that

(2.1.4) H(δJ = H(τJ0) = τmH(δ0) = τmH- = H^δm .

From this we see that since the linear span of the elements δm is
dense in lp, the map H—+H^ is one-to-one. Obviously, Er is in lp.
To establish (2.1.2) we first note that since H~ is in lq{q~ι + p~γ = 1)
the map x —• H~*x is a continuous linear map from lp into c0, the space
of complex valued functions on Z which tend to 0 at ±oo, The map
x —* Hx is also a continuous linear map from lp into cQ. These obser-
vations together with (2.1.4) and the density property of the δm's noted
above complete the proof of (2.1.2). To prove (2.1.3) we note that
for H and K in Wϊ, K~elp1 so by (2.1.2) we have

H~*K~ = JHΓ(2Π =-- H(Kδ0) = (HK)δ0 =

This completes the proof of the lemma.

Let Lp(l <̂  p < oo) denote the Banach space of measurable functions

g(θ) on the circle (reals mod2π ) whose norm \\g\\L• ,

is finite. Let L^ denote the space of essentially bounded measurable
functions g with H ÎU ,̂ denoting the essential supremum of g.

Since each function H~, H e Wp, is in lp, which is contained in
l2, there is a unique function HA in L2 such that Y,H^{n)ein0 is the
Fourier series of HA*

LEMMA 2.2. For 1 <L p <^2 the map H —> HA is a norm decreasing
algebraic isomorphism from Wp into L^.

Proof. The fact that H-+HA is a one-to-one linear map from
Wp into L2 is clear from (2.1.1) and the fact that each function in L2

is uniquely determined by its Fourier coefficients. For each / e Lly let
λ(/) denote the function on Z defined by:

\(f)(n) = (1/27Γ)

It is clear from the Schwarz inequality that the map (/, g)—»Mf g)(n)
is a continuous bilinear functional on L2 φ L2 for each integer n. On
the other hand, the map

(/, g) -
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is also a continuous bilinear functional on L2Q)L2. Since these func-
tionals (for each n) clearly agree when / and g are trigonometric
polynomials, they must agree on L2 φ L2. Since λ is a one-to-one
map, the multiplicative property of H—+HA now follows from (2.1.3).
To prove that the map is norm decreasing we first note the following
inequalities:

It is well known that (|| Hn \\WpY
ln converges to the spectral radius of

H, which is dominated by | | £ Γ | | n , and that (\\ (HA)n \\L2)
lln converges

to HίZ^II^ as n-+oo. This proves the lemma.
Let Wp and Us denote the functions on the circle of the form HA

where H e Wp, U's1 respectively. The following lemma is an immediate
consequence of Lemma 2.2.

LEMMA 2.3. Wp consists precisely of the functions on the circle
which are the uniform limits of sequences HA of trigonometric poly-
nomials such that Hn is a Cuachy sequence in Wp.

For any subset E of the circle group Us \ E denotes the functions
on E obtained by restricting the functions of Us to E and C(E) denotes
the continuous complex valued functions on E.

THEOREM 2.4. Suppose that E is a compact subset of the circle
group and 0 < s < 1. Then Us | E = C(E) if and only if W,\E = C(E).

Proof. First assume that W1\E= C(E). By Lemma 1.3, U[ c W'v\
consequently, UsaWp. We conclude from Lemma 2.3 that WpaC(T).
Thus, Us\EaC(E). Since WI~DWΪ, it is clear from the definition
of interpolation that U[ 3 W[. Thus, Us\Ez)C(E).

Consider the converse and assume that £/s | E = C(E). In 1.4 we
let B° = Wi, Bι = W[, V = R and

J = {a e Wζ: a{θ) = 0, θ e E] .

The assumptions on J in 1.4 are clearly satisfied since by Lemma 2.2,
the maps a-+ά are continuous on W[ and Wl. By Theorem 1.5, if
x e Us, then x + J is in the space

(2.4.1) [a(Wί/J), a(W!/(J ΓΊ W[))l .

However, by hypothesis, the cosets in V of the form x + J,, xe U's1

are the same as the cosets y + J, y e Wi. Therefore, the space in
(2.4.1) is a(Wi/J). Since Wf

2 3 Wl,

a(Wi/J)ZDa(Wl/(JΠ Wl))
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therefore, we conclude from 1.7 that

a(Wi/J) = a(W!/(J Γi Wl))

or, what is the same thing, that Wγ \ E = C(E). This completes the
proof.

COMMENT 2.5. It is natural to compare Us and Wp where [l2, l^, =
lp, i.e., (1 — s)/2 + 8 = 1/p. In [3] we showed that Theorem 2.4 is
not valid for Wp. To be exact, there is a compact subset E of the
circle such that Wp Eφ C(E) = Wφ E,l<,p<4/3. We had originally
used this result to show that Wp Φ Us; however, the referee has sug-
gested a direct proof which we will now give.

LEMMA 2.6. Let hn be a sequence in Us1 0 < s < 1, such that
|| hn | | s <̂  M (here || ||β is the norm in Us) and hn-+h almost everywhere.
Then h agrees with some continuous function almost everywhere.

Proof. Since \\hn\\s <* M there exist functions fn(θ, f), analytic in
ξ for 0 < B(ζ) < 1 and continuouns in 0 ^ B(ζ) g 1, such that for any
real number ί, || fn(θ, it) ||0 ^ 2Λf, || Λ(ί, 1 + iί) Ik ^ 2M and Λ(^, s) =
hn(θ) Let flrw(ί, ί) = fn(θ, ξ)e+™-\ Then

Λ («) = fn(θ, s) = flrn(β, s) = \+~gn(θ, it)μo(s, t)dt
J-oo

+ \+"g.(θ, 1 + iOjw^β, t)dt

= wH(β) + vn(θ)

where μ0 and ^! are the Poisson Kernels for the strip (see [1, 9.4]).
Evidently || un ||0 ^ 2β~;sikί, || vΛ ||x ^ 2e;(1-s)ilf. Since the vn are uniformly
bounded, by taking a subsequence if necessary, we may assume that
vn converges weakly to a bounded function v(θ), that is

lim \vn(θ)<p(θ)dθ = \v(θ)φ(θ)dθ

for every integrable φ. Furthermore, as is readily seen, v(θ) belongs
to Uί and therefore is continuous. Since hn is uniformly bounded and
converges almost everywhere, hn converges weakly. Since hn and vn

converge weakly, un converges weakly to some function u. From
the fact that \un(θ) | ^ | | ^ n | | 0 ^ 2e~λ8M, it follows that \u{θ) \ ̂  2e~λs

almost everywhere. Since h = u + v almost everywhere and λ can be
taken arbitrarily large, h agrees almost everywhere with the uniform
limit of continuous functions. This completes the proof of the lemma.
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THEOREM 2.7. Us is properly contained in Wp for 1 < p < 2.

Proof. To prove the theorem it suffices to exhibit a sequence of
functions in Us whose norms in Us tend to infinity and whose norms
in Wp remain bounded. Let h(eιt) = 1 for 0 <; t ^ π and h{eH) = 0 for
π < t < 2π. Then h is a multiplier for Zp (see [2]), which does not
agree almost everywhere with any continuous function. Let φn be
defined by: φn(eu) = n for 11 \ ̂  l/2π, φn{e%t) = 0 otherwise, ^ = 1,2, .

I /^(e") \dt = 1, it follows that the
0

Wp norm of hn is the same as the Wp norm of h; thus, Aw is bounded
in Wp. Since both Λ, and <pn belong to L2(0, 2π), hne W^a Us. Obviously,
hn converges to h almost everywhere. Since h does not agree almost
everywhere with any continuous function, it follows from Lemma 2.6
that hn is not bounded in Us.
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