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RINGS OF FUNCTIONS WITH CERTAIN
LIPSCHITZ PROPERTIES

C. H. SCANLON

Let (X, d) denote a metric space, Le(X) the ring of real
valued functions on X which are Lipschitz on each compact
subset of X, Lχ(X) the ring of real valued functions on X
which are locally Lipschitz relative to the completion of X,
and LC*(X), Zα*(X) the bounded elements ofLc(X), Li(X). The
relations between equality of these rings and the topological
properties of X are studied. It is shown that a subspace (S, d)
of (X, d) is Lc-embedded (or Lc*-embedded) in (X, d) if and
only if S is closed. Further, every subspace of (X, d) is Lr
and Li*-embedded in (X, d).

Su [3] investigated algebraic properties of the rings LC(X) and

Lΐ(X) similar to those of C(X) and C*(X) by Gillman and Jerrison

[2].

2* Equality of rings* Let / denote a real valued function de-
fined on X. f is Lipschitz on S c X if and only if there is a real
number m, called a Lipschitz constant for / on S, such that if x,
yeS, then \f(x) —f(y)\ ^md(x,y). f is locally Lipschitz on X if
and only if for each x e l , there is a neighborhood N of x such that
/ is Lipschitz on N. If comp X denotes the completion of X, then /
is locally Lipschitz with respect to comp X if and only if for each
x e comp X there is a neighborhood N of x such that / is Lipschitz on
NΠX.

THEOREM 2.1. feLc(X) if and only if f is locally Lipschitz on
X.

Sufficiency. Let / be locally Lipschitz on X and S a compact
subset of X. Then there exists a finite collection N19 N2, , Nm of
open sets covering S, on each of which / is Lipschitz and thus bounded.
Assuming / is not Lipschitz on S implies that there exists a sequence
{xn} from S converging to x e S and a sequence {yn} from S such that
l/(#n) — f(Vn) \/d(xn, yn) > n for each positive integer n. Since / is
bounded on S, it follows that {yn} converges to x. Since x e N3 for
some j = 1, 2, , m, / is not Lipschitz on ΛΓ,- which contradicts the
definition of N3 .

Necessity. Let feLe(X) and a e l Assuming / is not locally
Lipschitz at x implies there exists sequences {xn} and {yn} such that
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d(x, xn) < 1/n, d{x, yn) < 1/n, and \f(xn) - f(yn) \/d(xn, yn) > n. Then
{p: p e {xn}, p e {yn}, or p = x] is a compact subset of X on which / is
not Lipschitz.

COROLLARY 2.2. feL?(x) if and only if f is locally Lipschitz
on X and bounded.

Proof. Follows immediately from the definition of L*(X).

COROLLARY 2.3. L,{X) c LC(X) and Lf(X) c L*(X) .

Proof. If / is locally Lipschitz relative to com!, then / is
locally Lipschitz.

LEMMA 2.4. If K is a uniformly bounded set of Lipschitz func-
tions defined on S c X and there is a real number m which is a
Lipschitz constant for each element of K, then f(x) = sup {g(x): g e K)
for each xe S is Lipschitz on S and m is a Lipschitz constant for
f on S.

Proof, f exists since K is a uniformly bounded set. Assume
xe S, y e S, and

(1) f(y) - f(x) - md(x, y) = e > 0 .

Let g e K such that

( 2 ) f(y) - g(y) < e ,

then

( 3) g(y) - g(x) ̂  md(x, y) .

Combining (2) and (3) yields f(y) — g(x) — md(xf y) < e, which when com-
bined with (1) gives f(x) < g(x). This contradicts the definition of / .

LEMMA 2.5. Suppose each of c and r > 0, pe X, and for

Uc/r){r - d(x, p)} for d(x, p) ^ r,
each xeX, f(x) = .

(0 otherwise
then f is Lipschitz on X and (c/r) is a Lipschitz constant for f on
X.

Proof. Let g(x) = (c/r){r — d(x, p)} for each xe X. Then for x,
yeX,
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- g(v) = 9(χ) - g(p) + Q(P) - g(v),
- g(v) = -(φ)d(x, p) + (c/r)d(y, p) ,

and g(x) — g(y) ^ (φ)d(x, y) by the triangle property. Since sup {g, 0}
is Lipschitz with a Lipschitz constant sup {(c/r), 0} by Lemma 2.4, the
conclusion follows.

THEOREM 2.6. ^αcλ 0/ £Λ,e following is equivalent to each of
the others:

(1)

(2) Lΐ(X) = L*(JSΓ),

( 3 ) X is complete.

Proof. (1) => (2) obviously. The remaining order is (2) => (3) => (1).
Assume (2) and that X is not complete. Then there exists an

x e (comp X) — X and a sequence {£„} of distinct points in X such
that {xn} converges to x. For each odd integer n, let

rn = — inf {$/: y = d(xn, xm) for m Φ n or 7/ =
o

C(ίc., r.) = {ί e X: d(t, xj ^ rn} ,

and

WK-Φ,,«)) for teC(xn,rn)

(0 otherwise

for each ί e X. Let /(£) = sup {fn{t)} for each ί e l . If S is a compact
subset of X, then S can intersect at most a finite number of the
elements of {C(xn, rn)} and since only a finite number of elements of
{fn} are nonzero on S, by Lemma 2.4 / is Lipschitz on S and / e Lf(X).
For each neighborhood N in comp X of a?, there is a point £ e iV and
a point 2/ e N such that /(£) = 1 and f(y) = 0. Thus fί L,{X) and by
contradiction, (2) => (3).

If (3) is true, feL^X) if and only if / is locally Lipschitz.
Thus by Theorem 2.1, L,(X) = LC(X) and (3) ==> (1).

THEOREM 2.7. LC(X) = L*(X) if and only if X is compact.

Proof. If X is compact, then each element of LC(X) is bounded.
Assume Le(X) = Lf(X) and X is not compact. Then there exists

a sequence {xn} of distinct points in X which has no convergent sub-
sequence. Let

rn = — inf \y: y = d(xn, xm) for w Φ m or 7/ = — 1 ,
3 I n)
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and

\(n/rn){rn - d(xn, x)} for d(xn, x)

(0 otherwise

for each xeX. By an argument similar to the one for Theorem 2.6,
fe LC(X). Since f(xn) = n for each n, fe LC(X) - Lf(X) which contra-
dicts the assumption.

THEOREM 2.8. LL(X) = Lf(X) if and only if compX is compact.

Proof. Each element of L^X), L?(X) can be uniquely extended
to an element of L^comp X) = Lc(comp X), Lf (comp X) — L*(comp X).
Since Lc(compX) = L*(compX) if and only if compX is compact by
Theorem 2.7, the conclusion follows.

3. If A denotes one of Lίy Lf, Lc, L* and S c l , then the state-
ment that S is A-embedded in X means that if feA(S), there is a
g e A(X) such t h a t g\S = / where g\S = {(x, y)eg:xe S}.

T H E O R E M 3.1. If S is a subset of X, then each of the following
is equivalent to each of the others:

( 1 ) S is Lc-embedded in X,

( 2 ) S is Lc* -embedded in Xf and

( 3 ) S is closed.

Proof. Czipszer and Geher [1] proved that if S is a closed subset
of X and / is a real valued locally Lipschitz function with domain S,
then there is a real valued locally Lipschitz function g with domain
X such that g | S = / . Furthermore, they proved that if / is bounded,
then there exists a bounded such g. Consequently, by Theorem 2.1,
(3) « (1) and (3) => (2).

Assume (2) and S is not closed. Then there exists a sequence
{xn} of distinct points in S and a point x e X — S such that {xn} con-
verges to x. Construct / as in Theorem 2.6. Then feL*(S) which
has no extension to X in LC(X). Thus (2) => (3). Note that this also
shows (1) => (3).

COROLLARY 3.2. Every subset of X is Lrembedded and Lf-em-
bedded in X.

Proof. If SaX, then every element of L^S) has a unique ex-
tension to the closure of S in compX and by Theorems 2.6 and 3.1
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an extension in L^comp X) which when restricted to X is an element
of L^X).
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