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RINGS OF FUNCTIONS WITH CERTAIN
LIPSCHITZ PROPERTIES

C. H. SCANLON

Let (X, d) denote a metric space, L.(X) the ring of real
valued functions on X which are Lipschitz on each compact
subset of X, L,(X) the ring of real valued functions on X
which are locally Lipschitz relative to the completion of X,
and L.*(X), Li*(X) the bounded elements of L.(X), L,(X). The
relations between equality of these rings and the topological
properties of X are studied. It is shown that a subspace (S, d)
of (X,d) is L.-embedded (or L.*-embedded) in (X, d) if and
only if S is closed. Further, every subspace of (X,d) is L;-
and L,*-embedded in (X, d).

Su [3] investigated algebraic properties of the rings L.(X) and
L¥(X) similar to those of C(X) and C*(X) by Gillman and Jerrison

[2].

2. Equality of rings. Let f denote a real valued function de-
fined on X. f is Lipschitz on Sc X if and only if there is a real
number m, called a Lipschitz constant for f on S, such that if «,
ye 8, then | f(x) — f(y)| < md(x, y). f is locally Lipschitz on X if
and only if for each ¢ X, there is a neighborhood N of x such that
f is Lipschitz on N. If comp X denotes the completion of X, then f
is locally Lipschitz with respeet to comp X if and only if for each
x € comp X there is a neighborhood N of x such that f is Lipschitz on
NN X.

THEOREM 2.1. fe L.(X) tf and only if f is locally Lipschitz on
X.

Sufficiency. Let f be locally Lipschitz on X and S a compact
subset of X. Then there exists a finite collection N, N;, ---, N,, of
open sets covering S, on each of which f is Lipschitz and thus bounded.
Assuming f is not Lipschitz on S implies that there exists a sequence
{x,} from S converging to xe S and a sequence {y,} from S such that
| fx,) — fy,) |/d(x,, y,) > n for each positive integer n. Since f is
bounded on S, it follows that {y,} converges to x. Since xe N, for
some j=1,2, ..., m, f is not Lipschitz on N; which contradicts the
definition of Nj.

Necessity. Let fe L,(X) and xe X. Assuming f is not locally
Lipschitz at « implies there exists sequences {z,} and {y,} such that
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d=, z,) < 1/n, d(x, y,) < 1/n, and |f(z,) — f(.)|/d@,, y,) > n. Then
{p:pei{x,}, pef{y,.}, or p = a} is a compact subset of X on which f is
not Lipschitz.

COROLLARY 2.2. fe LX) tf and only if f 1is locally Lipschitz
on X and bounded.

Proof. Follows immediately from the definition of L}(X).
COROLLARY 2.3. L(X)c L/(X) and L} X)cC L¥}X) .

Proof. If f is locally Lipschitz relative to com X, then f is
locally Lipschitz.

LemMmA 2.4. If K s a uniformly bounded set of Lipschitz func-
tions defined on Sc X and there is a real number m which is a
Lipschitz constant for each element of K, then f(x) = sup {g(x): g€ K}
for each xe S is Lipschitz on S and m is a Lipschitz constant for
fon S.

Proof. f exists since K is a uniformly bounded set. Assume
xeS,yeS, and

(1) f) — f@) — md(x, y) =e>0.
Let g€ K such that

(2) fw) —9y) <e,

then

(3) 9(y) — 9(x) = md(x, y) .

Combining (2) and (3) yields f(y) — g(x) — md(x, y) < e, which when com-
bined with (1) gives f(x) < g(x). This contradicts the definition of f.

LEMMA 2.5. Suppose each of ¢ and r > 0, pe X, and for

(¢/r){r — d(x, p)} for d(x,p) =,

h X, = )
each xe X, f(2) 0 otherwise

then f is Lipschitz on X and (¢/r) is a Lipschitz constant for f on
X.

Proof. Let g(z) = (¢/r){r — d(x, p)} for each x € X. Then for =,
ye X,
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9(x) — 9(y) = 9(®) — 9(p) + 9(») — 9(v) ,
9(@) — g(y) = —(¢/r)d(x, p) + (¢/r)d(y, p) ,

and g(x) — 9(¥) = (¢/r)d(zx, y) by the triangle property. Since sup {g, 0}
is Lipschitz with a Lipschitz constant sup {(¢/r), 0} by Lemma 2.4, the
conclusion follows.

THEOREM 2.6. FEach of the following is equivalent to each of
the others:

(1) LX) = L),
(2) L¥X)=LXX), and
(38) X 1is complete.

Proof. (1) = (2) obviously. The remaining order is (2) = (3) = (1).

Assume (2) and that X is not complete. Then there exists an
x€(comp X) — X and a sequence {x,} of distinct points in X such
that {x,} converges to 2. For each odd integer n, let

r, = _é_inf {y:y = d(x,,x,) for m=n or y=1/n)},

C@,, r,) = {te X: d(t, x,) < 7.},
and

A/r){r, — d(x,, t)} for teC(w,,r,)
0 otherwise

Sau(t) =

for each te X. Let f(t) = sup {f.(¢)} for each te X. If S is a compact
subset of X, then S can intersect at most a finite number of the
elements of {C(x,, r,)} and since only a finite number of elements of
{f.} are nonzero on S, by Lemma 2.4 f is Lipschitz on S and f e L}*(X).
For each neighborhood N in comp X of x, there is a point te N and
a point y € N such that f(¢) =1 and f(y) = 0. Thus f¢ L(X) and by
contradiction, (2) = (3).

If 3) is true, fe L(X) if and only if f is locally Lipschitz.
Thus by Theorem 2.1, L(X) = L,(X) and (3) = (1).

THEOREM 2.7. LX) = LX) if and only if X 1s compact.

Proof. If X is compact, then each element of L, (X) is bounded.

Assume L. (X) = L¥(X) and X is not compact. Then there exists
a sequence {x,} of distinet points in X which has no convergent sub-
sequence. Let

rn=%inf{y:y:d(:cn,xm) for n=+m or y:i},
n
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and

_ (fr){r, — d(x,, )} for d(@,,z) =T,

f@) = 0 otherwise

for each xe€ X. By an argument similar to the one for Theorem 2.6,
feL,(X). Since f(x,) = n for each n, fe L,(X) — L*(X) which contra-
dicts the assumption.

THEOREM 2.8. L,(X) = L¥}X) if and only if comp X 1s compact.

Proof. Each element of L,(X), L¥(X) can be uniquely extended
to an element of L ,(comp X) = L.,(comp X), L¥(comp X) = L}(comp X).
Since L,(comp X) = L¥(comp X) if and only if comp X is compact by
Theorem 2.7, the conclusion follows.

3. If A denotes one of L, L}, L,, L} and S C X, then the state-
ment that S is A-embedded in X means that if fe A(S), there is a
g€ A(X) such that g|S = f where g|S = {(z,y)cg: 2 S}.

THEOREM 3.1. If S is a subset of X, then each of the following
18 equivalent to each of the others:

(1) S is L,-embedded in X,
(2) S is Lf-embedded in X, and
(3) S s closed.

Proof. Czipszer and Geher [1] proved that if S is a closed subset
of X and f is a real valued locally Lipschitz function with domain S,
then there is a real valued locally Lipschitz function g with domain
X such that g|S = f. Furthermore, they proved that if f is bounded,
then there exists a bounded such g. Consequently, by Theorem 2.1,
(8)= (1) and (3) = (2).

Assume (2) and S is not closed. Then there exists a sequence
{x,} of distinct points in S and a point x€ X — S such that {x,} con-
verges to x. Construct f as in Theorem 2.6. Then fe L*(S) which
has no extension to X in L,X). Thus (2) = (3). Note that this also
shows (1) = (3).

COROLLARY 3.2. Ewery subset of X is Li-embedded and Lj}-em-
bedded wn X.

Proof. If Sc X, then every element of L,(S) has a unique ex-
tension to the closure of S in comp X and by Theorems 2.6 and 3.1
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an extension in L,(comp X) which when restricted to X is an element
of L,(X).
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