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ON GROUPS OF LINEAR RECURRENCES II.
ELEMENTS OF FINITE ORDER

R. R. LAXTON

For each quadratic polynomial f(x)eZ[x], whose ratio of
roots is not ± 1 , a group G(f) of equivalence classes of certain
linear recurrences with companion polynomial f(x) has been
constructed by the author. Its structure was shown to be
connected with the structure of the sets of prime divisors of
the linear recurrences. The group G(f) is infinite but its
torsion subgroup is finite and usually, but not always, con-
sists of just two elements; the class of the Lucas sequence
^ = [0,1] of fix) and the class of the recurrence If = [2, P]
associated with f(x). This subgroup is completely determined
here for each polynomial f(x). In 1961 M. Ward raised the
question whether (^J^) and ( I f ) are the only classes whose
sets of prime divisors can be characterized globally. It is
shown in this article that there are groups G(f) with elements
of finite order, other than CJ^) and ( gf), whose prime divisors
can be similarly characterized.

We shall use the notation and results of [1]. Part of the object
of defining the group structure G(f), where f(x) = x2 — Px + Q e Z[x]
and (P, Q) = 1, is to determine those recurrences among the set of
all recurrences with companion polynomial f(x) which are in some
sense special. Probably the true sense of special would mean those
recurrences which have peculiar arithmetical properties not shared
by the remaining ones.1 For example, the Lucas sequence ^ = [0, 1]
of f(x) is such a recurrence and so to all intents and purposes is the
sequence g7 = [2, P] of f(x). Both {J?) and (gf) are of finite order
in G(f); here we interpret 'special' as meaning of finite order in
<?(/). There are only a finite number of such elements in G(f);
furthermore if (W~) e G(f) and ( Ύ^f = ( ^ ) it would seem that the
arithmetical properties of "W" are fairly closely related to those of
<J\ This is so for (gf) and for the other elements ( j^) and ( ^ )
of order two in G(f) (when they exist); for example see Theorem
4.6 of [1] and the final paragraph of that paper. Also some pro-
perties of recurrences of finite order are readily deducible which,
although they may be true for most or even all recurrences, are not so
easily proved in full generality (see for example [1], 3.9.1). Here we
determine the structure of the subgroup of elements of finite order.
Then we shall show by means of examples that the prime divisors of

1 An article "On groups of Linear Recurrences III. Arithmetic properties" is in
preparation.
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some elements of finite order (other than ^ and g?) can be charac-
terized globally—thus some elements of finite order are even special
in the arithmetical sense. Finally we add a few words concerning
elements of the group which are locally finite everywhere.

!_• The elements of finite order in G(f). We shall carry out
the computations only when f(x) is irreducible over Q; The results
remain valid when f(x) is reducible but involve slightly longer cal-
culations. Let "W e F(f) be given by

(1.1) wn = (Aθϊ - B

for all neZ, with A = wγ — wQθ2J B = wx — wβγ, w0, wte Z and
(w0, Wj) = (Q, w,) = 1. Thus Ύ/^ is a reduced recurrence (see beginning
of § 3 of [1]).

We denote the subgroup of elements of finite order in G(f) by
H(f). Thus (W~)eH(f) if and only if 7/^m = J^ in F(f) for some
positive integer m. But this holds exactly when

(1.2) (w, - w,θ2)
m = dθl

for some n, deZ. We conclude that (AB)m — d2Qn and as Ύ^ is
reduced that (d, Q) = 1. Thus both d2 and Q% are m-th powers in
Z\ put d2 = gm, g eZ, and on squaring both sides of (1.2) obtain

(1.3) (wL - wMm = 9mΘT .

It follows that if tW"m> = <J\ then some m-th root of θf lies in Q(θλ)
and if we denote this root by ^θ\n we get

(1.4) (w, - woθ2γ = gζ "tfθψ

for some n, g eZ and some m-th root of unity ζ e Q{θx).
We remark that if ζ, m, n are fixed, the solutions (W) e G(f)

obtained from (1.4) are independent of g.
Now we do have a solution to (1.4) when n = m and ζ = 1,

namely ( ^ ) and (g7) (see § 4 of [1]). So we may take n/m to be
the least positive number for which (1.4) has a solution with
w0, wlf g e Z and some root of unity ζeQ(θ1). It follows that 0 <
n ^ m and that ^ divides m. The latter is clear since if we put
t — 1 ^ m/w < £, then m = tn — s, 0 ^ s < n and on substituting in
(1.4) with both sides raised to the power t we obtain ((w1 — w0θ2y)2 =
0tζί02^02.β Hence if (1.4) has a solution so does this equation, but
s/m < w/ra so that s — 0. If we put kn — m, k e Z, then 1/k is the
least positive number for which there exists a solution wQ, wt1 g, ζ to
(1.4); if another solution exists for some m = m' and n = nr, then
n'jm' = ί/A; for some teZ, 0 < t ^ k. Therefore all elements of H(f)
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are obtained by solving the k equations

(l.δ.t) (w, - w0θ2)
2 = gζ k4θf , ί = 1, 2, , fe

for some w0, w19 g e Z and some root of unity ζ e Q(θj).
The solutions obtained from the equation (1.5.k) are (%Jr) and

(g7) and if (W) is one solution of (l.δ.t), the other is (W&).
Since ζeQ(θ1) it can only take the value ± 1 , ±i and ±w, ±w\
where w is a complex cube root of unity. So we have three cases.

Case 1. Here we assume that Q( x̂) contains no complex root
of unity. We are left with solving (l.δ.t) with ζ = 1. Let

f) e H(f) be the solutions derived from (1.5.1); then
f)2 and so provide one solution of (1.5.2), ( ^ )3 ^ ( ^ if)3 are

the two solutions derived from (1.5.3), and similarly up to the solu-
tions (W~)k and (W^Y obtained from (l.δ.k) the solutions of which
are, as mentioned above, (<J^) and ( 8 ) . If k is odd then (W")& Φ
(CW'^Y and so one of them is (g7), say (2^T = (if). Then clearly
i?(/) = ζ(W~)y = Z2k, a cyclic group of order 2k. If k is even and
(:l^Y = (SO has a solution in G(f) (see § 4 of [1]), then necessarily
(W~)k = (W~&)h = C<f) and again H(f) = <(^ ')> = Z2fe. On the
other hand, if ( j^) 2 = (g7) has no solution in G(/), then ( ^ )& =
(^ίf)k = {^) and it follows that H(f) = <(5^")> x <(έΓ)> ~ Zkx Z2

(direct product).
If /(&) is reducible over Q, then we have to solve simultaneously

(wι - w0θ2)
2m = gmθ\n and (wx - wβγf

m = flrm^w and consequently
(wx - _w0ί2)

2 = / ^ ^ F and (w, - wAY = 9^W or (w, - w,θλ)
2 -

-g^θT. We have proved

THEOREM 1. Let Q{θx) Φ Q(i) or Q(w) and k be the maximal
positive integer such that (wι — w0θ2)

2 = gζ^θ\ and (wλ — WQΘJ2 =
gζ^θl have simultaneous solutions with wu wQ, geZ and ζίy ζ2 = ± 1
(which are identical if Q(θ1) Φ Q). Then the subgroup H(f) of
elements of finite order in G(f) is isomorphic to Z2k when k is odd
or when k is even and (J2^)2 = (&) has a solution in G(f) and is
isomorphic to Zk x Z2 when k is even and (Jέf")2 = (if) has no solu-
tion in G(f).

The condition of the theorem implies that Q is a unit times a
k-ih power in Z. By Theorem 4.5 of [1], (X)2 = (E) has a solution
in G(f) when and only when — (P2 — 4Q) or —Q(P2 — 4Q) is a square
in Z. Since Q(θί) Φ Q(ϊ) this can only happen when Q is the nega-
tive of a square and P 2 — 4Q is a square, i.e., f(x) is reducible
over Q.
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EXAMPLE. f(x) = (x — 4)(x + 9) so that Q = — 62, fc is even and
H(f) ~ Z4. Direct calculation shows that # ( / ) = {[5, -19], [2, -5],
[1, —35], [0, 1]} and is obtained by solving (w, + wo9)2 = /(4) and
(w, — wo4:)2 = — /( — 9) simultaneously.

Case 2. Q^) = Q(ί). The equation (wx — w2θ2)
2 = ei has a solu-

tion WQ, w1? eeZ; let us denote the resulting solution in G(f) by (5O
Then ( ^ ) , (5>/ ), (3O2 and ( ^ ) 3 are all distinct and (5O4 = ( ^ ) .
Furthermore (3O2 is derived from a solution of (^ — ίo#2)

2 = g e Z
and so must be (if). It follows that if we obtain all the solutions
of the equation (1.5.t) with ζ = 1 we get all elements of H(f) com-
bining these with the powers of ( 3 θ

Let {W) and (cW$ί) be solutions of (1.5.1) with ζ = 1; then all
solutions of (1.5.1) for all ζ are (Ύ/^\ (Ύ/^tf), (2^3Π and
Then two solutions of (1.5.2) are ( ^ )2 = ( ^ ^ ) 2 and (

V'&y = (WT(&), all four solutions of (1.5.3) are (5^ )3,
yy and ( F ' ^ ^ ) 3 and similarly up to the solutions (^"*)*,

(WrS?)k (W^y and (W~<?'~%')k obtained for (1.5.k) (the solutions
of which are ( ^ ) , (if), (5 "̂) and (^"g3), for all possible values of
ζ). If & is odd then the four solutions obtained are all distinct and
so one is ( ^ ) - s a y ( ^ T = ( ^ ) Then H(f) = φp-)> x <(3O> =
Zfc x Z4 (direct product). If fc = 2 (mod 4), then the distinct solutions
obtained are (7/y and (Ύ/y{W) one of which must be ( ^ ) . So
we have the same result. If k = 0 (mod 4) all our solutions in G(f)
obtained for (l.δ.k) are identical to (W~)k. Now we already have
two solutions of the equations ( ^ ) 2 = (£?), namely {<%?') = ("¥") and
(Ύy~ίf). Such an equation can have no, two or four solutions in
G(f) (see [1] 4.5). If then only two solutions exist, (Ύ/:')k = {J^)
and again our group H{f) = ζ(W )y x <(5 "̂)> =^Λ X Z4; if four solutions
exist we have (W~)k = (if) and Jϊ(/) = <(c^^)> x <(c^ 3O> = ZA x ZA.
Thus

THEOREM 2. Le£ θ(^i) = Q(ί) and k be the maximal positive
integer such that (wL — wQθ2)

2 = gζ k^θ\ has a solution wίf w0, g e Z
and ζ a fourth root of unity. Then H(f) is isomorphic to Z4k if
k is odd, to Zk x Z4 if k — 2 (mod 4) or if k — 0 (mod 4) when
( j^γ = (g) has only two solutions in G(f) and to Zk x Zk when
Jc = 0 (mod 4) and (J^Y = (g7) has four solutions in G(f).

Again the condition of the theorem implies that Q is a unit
times a k-th power in Z. Since P2 — 4Q is the negative of a square,
the invariant Δ(^) = — (P2 — 4Q) is a square and so {<%?)2 = (if) has
four solutions in G(/) only when Q is also a square in Z and then
G(f) has three elements of order two (see [1], 4.6).
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Case 3. Q{θx) = Q(w). The equation (w1 — w0θ2f = ew has a
solution w0, w19 e e Z; denote the resulting solution in G(f) by (3^)
Then ( ^ ) , (T), (T)\ {T)\ (T)\ (Tf are all distinct and (T)6 =
{J?"), Furthermore (Tf = (g7); the equation (JT)2 = (gf) has no
solution in G(f) (since — (P2 — 4Q) = 3 times a square in Z and so
is not a square, and —Q(P2 — 4Q) cannot be a square in Z also). If
CW) is one solution in G(f) derived from (1.5.1) with ζ = 1, then
all solutions derived from (1.5.1) for all ζ are (5^), {WT\ {Ύf~T\

^), O^Tr£), (Ύ^Tlr<g). Among the solutions derived from
) are {Ύ/^)\ {Ύ^T)\ {W~T2)\ (^gf)fe, {WT&)k and

T^f. If k is odd, then {Ύ/^f and ( ^ gf)& provide the two
distinct solutions obtained from (1.5.k) with ζ = 1 and so at least
one of them is ( ^ ) ; say {Ύ^)k = P Π , then H{f) = <(^^)> x <(3 )̂> -
Zk x Z6. If fe is even, neither (W~)k nor (WcgY can be (g7) (since
otherwise (<^)2 = (g7) would have a solution in G(/)) and so both
must be ( ^ ) , Hence again iί(/) = <(^^)> x <(3 )̂> = ZΛ x Z6.
Therefore

THEOREM 3. Let Q(θ^) — Q(w) and k be the maximal positive
integer such that (wι — w0θ2)

2 = gζ ^θl has a solution wl9 w0, g e Z
and ζ a cube root of unity. Then H{f) ~ Zk x Z6.

2* Prime divisors of elements of finite order* At present
the only known way to determine if a prime p, (p, Q) = 1, divides a
general linear recurrence Ύ/^ is to examine any p + 1 consecutive
terms of Ύ/λ~\ p is a divisor of Ύ/^ if and only if it divides one of
these terms. Such a characterization we shall call local. On the
other hand every prime divides (^f) and a prime divides the element
(g7) of order two in G(f) if and only if its rank of apparition in ^
is even. M. Ward in [3] termed this a global characterization of the
prime divisors of («J )̂ and (g7) and raised the question whether these
are the only two recurrences (for a given companion polynomial f(x),
or in our terminology, in G{f)) for which the prime divisors can be
so characterized. Here we show that there are other elements of
finite order besides {^) and (g7) where prime divisors can be globally
characterized. Although we have not made an exhaustive study we
suspect that there are other elements of finite order whose prime
divisors are globally characterized. But it is not clear that every
element of finite order has this property, for example, we know that
an odd prime of odd rank of apparition in <J^ is a divisor of one
and only one of the two linear recurrences (jy), ( ^ ) of order two
in G(f) (when they exist) but we cannot at present say which re-
currence of the two such a prime divides. Nevertheless, we are
tempted to conjecture that if an element of G(f) has its prime



178 R. R. LAXTON

divisors globally characterized, then it is of finite order.
We consider the example of an element of order four considered

previously; here H(f) = {(T), (Tf = (gf), {Tf = (T&), (T)A =
where T = [5, -19] and Tcg = [1, -35]. Since both (T) and
generate H(f) they have precisely the same prime divisors; by
Theorem 4.3 of [1] there is a labelling of the terms of 5^ and cy^' =
5^gf, say vn and wn, such that vnwn = de2n+k for all neZ, some
de Z and k = 0 or 1. Comparing the first two products we see that
vnwn = — β2n+1, where v0 = 5, vx= — 19, w0 = 1, w1= —35, eQ = 2 and
ex = —5. Since i2w = iΛβΛ for nonnegative integers, where ^ — [0, 1],
iQ = 0, ii = 1 is the Lucas sequence of G(f), it follows that the odd
prime divisors of both (T%) and {W) are precisely those of rank
An + 2, w = 0, 1, . Thus the prime divisors of {T) and (S^g7) have
been characterized globally.

Now consider the group (?(/), where /(a;) = α;2 — 5α; + 7. The
group has two elements (T) = ([1, 3]) and (FT) = (F2) = ([1, 2]) of
order three. Since these two elements generate the same subgroup
of G(f) they have the same prime divisors. If we put v0 = 1, vι = 3,
w0 = 1, ^i = 2, ΐ0 = 0, ii = 1, then we deduce that Svnwnin = i3n for
all n and consequently it follows that the prime divisors of (Y*) are
precisely those of rank 3n, n = 1, 2, . Again the prime divisors of
ijΓ) and (Ύ)2 have been characterized globally.

Both these examples admit of some generalization.

3* Elements which are locally finite everywhere* To say
that an element ("W) of G(f) is locally finite everywhere means that

is of finite order modulo G(f,p) for all primes p, i.e.,
eH(f,p) for all p (see after Corollary 3.4.1 of [1]). Now

H(f, p) 2 K(f, p) with equality for all p, which are coprime to
Q(P2 — AQ). Here we discuss only the case when Q = ± 1 . Then
(W)eK{f) = Γ[pK(f,p) if and only if the reduced elements of (W)
have invariant ± 1 . It can be shown that Δ(W~) = ± 1 implies
(^~) = (/) except in the following two situations: when f(x) =
x2 - Sx + 1 with <W = [1, 1] and f(x) = x2 + 3x + 1 with ^ ^ =
[ — 1,1]. Referring to the remark after Theorem 4.4 of [1], we see
that both these exceptional sequences are of order two; K(x2 — Zx + 1) =
( ( ^ ) ) , K(x2 + Sx + 1) = ((J*0) and K(x2 - Px ± 1) = ((^^)) in all
other cases. Now if (e%^)eΓiPH(f,p), when (^^)fc e K(f) for some
UΓGZ and so we may conclude by means of Theorem 3.7 of [1] that
the elements which are locally finite everywhere are precisely the
elements of finite order in G(f).

REMARKS, (a) The sequence & given above is a sequence of
alternate terms of the Fibonacci sequence, the sequence J ^ is similarly
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related apart from signs, and the two exceptional groups G(x2 — Sx + 1)
and G(x2 + Sx + 1) are isomorphic.

(b) If Q is not a unit the situation is quite different. To begin
with things are complicated by the fact that one cannot use reduced
elements alone in discussing the subgroup K. The above result that
an element which is locally finite everywhere is of finite order is not
true in general.

(c) We can generalize a result of A. Schinzel given in [2] to
show that if (5^") e G(f, p) for all primes p with at most a finite
number of exceptions, then
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