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ON AN INITIAL VALUE PROBLEM IN THE THEORY
OF TWO-DIMENSIONAL TRANSONIC

FLOW PATTERNS

STEFAN BERGMAN

In the case of the differential equation

where N is an analytic function, the integral operator of the
first kind

= Γ E(λ, θ, t)f(ζ(l -
Jί = ~l

transforms analytic functions of a complex variable ζ = λ -f id
into solutions of L(^) = 0. Here E is a fixed function which
depends only on L, while f(ζ) is an arbitrary analytic function
of the complex variable ζ; f is assumed to be regular at ζ = 0.
Using this operator, one shows that many theorems valid for
analytic functions of the complex variable can be generalized
for the solutions ψ of h(ψ) = 0. Continuing ψ(2., β) to complex
values U = λ + %Λ and setting λ = 0, one shows that many
theorems in the theorems in the theory of functions of a real
variable can be generalized to the case of solutions of

By change of the variables,

l(x) > 0 for x < 0, l(x) < 0 for x > 0,1(0) = 0, when considered
for x < 0 can be reduced to the equation L(^) = 0. The vari-
ables can be chosen so that U = 0 corresponds to x — 0. How-
ever, in this case the function N(λ) becomes singular at λ = 0.
Nevertheless, one can apply the theory of the so-called integral
operators of the second kind. If ^(0, θ) = Xx(d) and

lim ψM(M, θ) - X2(0)

are given, one can determine the function /. Here M is the
Mach number. In this way one can determine from Xι and
%2 the location and character of singularities of φ in the sub-
sonic region. When considering φ in the supersonic region,
one can show that some theorems on functions of one real
variable can be generalized to the case of certain sets of
particular solutions φXΛ, θ), v = 1, 2, , of H(^) = 0.
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Suppose the streamfunction f of a transonic two-dimensional com-
pressible fluid flow is given by the values of ψ and of ψM on a seg-
ment of the sonic line. Here fM is the derivative with respect to
the Mach number M.

One of the problems which arises is to determine the regularity
domain, say ^ , and the location and properties of the singularities
of ψ in the subsonic region. Finally, it is of interest to determine ψ
in a given domain ϋ^, ϋ ^ c ^ ? . This problem complex will be called
the initial value problem in the large.

ψ, when considered in the physical plane is a solution of a non-
linear partial differential equation. However, by introducing con-
veniently chosen new variables (instead of the coordinates x, y of the
physical plane), we obtain for ψ a linear partial differential equation
(see Chaplygin [12] and Molenbroek [23]).

The linear equation which we obtain in this way, see (1.4), is of
mixed type. However, it is possible to use the theory of integral
operators in the study of the behavior of ψ in the subsonic region.

The theory of integral operators investigates the solutions of linear
partial differentiation equations of the form

(1.1) Δψ + Σi α.-τ^- + a +rf = °
»=ι OXV

A — Σ?=i d*/dxl is the Laplace differential operator and αv are analytic
functions of xlf , xn regular in a sufficiently large domain.1 Suppose
the solution ψ(xί9 -—,xn) is given in the small, say in the neighbor-
hood of the origin in the form of a series development

(1.2) ψ(%i, •» %n) — Σ Q>vv >vn

χV* *' * χnn

Then this approach reduces the study whether ψ is regular in a
domain Si to the investigation whether or not an analytic function
f(ZtJ , Zm) of m complex variables Zk = xk + iyk, k — 1, 2, , m,
given by its power series development

CO

α f) \ /»/ Γ7 Γ7 \ V~^ A F7 V1 Γ7\> ,vv,

'O) j(^11 * ' *J %m) — 2-1 Λ i - . ^ / l 1 * * * Λm

m

is regular in a domain &r. (See [1], [2], [9], [13], [20], [15], [16], [17].)
In the case of one variable, i.e., if f(Z) ^Y_,AVZ

V is given, two
methods can be used to determine the regularity domain and the

1 In the case of differential equations of the form (1.1) and for n = 2 one uses
integral operators of the first kind, see [9], pp. 9-27. If the coefficient 4F of the
equation (see (1.9)) has the singularity indicated in (1.9a), we use the integral operator
of the second kind (see [5], p. 869, and [6], p. 452 if.).
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location and character of the singularities of / from given A», v =
1, 2, . (I) the Hadamard-Polya-Mandelbrojt approach, (II) the theory
of Hubert spaces possessing a kernel function. Two possibilities should
be mentioned proceeding along the lines of (II): (a) the use of func-
tions which are simultaneously orthogonal in two domains έ%? and ^ ,
& <Z-&, see [8], (b) some results by Schiffer, Siciak and the author
which give conditions for the coefficients Av in order that an analytic
function given by its series development Σ~^AVZ

V is regular and
square integrable in a given domain £gf (possessing a kernel function),
see [11], [30].

The streamfunction ψ of a two-dimensional compressible fluid
flow satisfies an equation of mixed type, namely

(1.4) M(|) = -Jgp + I ( f f ) i i . - 0 , 1(0) = 0 ,

where l(H) is an analytic function of H, which is real for real H
and such that

(1.5a) l(H) > 0 for H < 0 ,

(1.5b) l(H) < 0 for H > 0 .

l(H) is supposed to be regular in a sufficiently large domain including
H = 0. Further we assume that, if we reduce (1.4) to the normal
form (1.7), l(H) is chosen in such a way that N considered as a
function of λ, see (1.6), has a development of the type indicated in
(1.7a). The study of (1.4) can be reduced to the study of the equation
(1.1) with singular coefficient an+ι. By the transformation

(1.6) - λ =
r=O

the equation (1.4) in the region H < 0 is transformed into

(1.7) UΨ) = Ψn + Ψeo + ±Nψx = 0 ,

(1.7a) N = -~l-'ΠH = -1-[1 + A(-λ)2 '3 + •], A > 0, λ < 0 ,
o IX

(See (2.4), p. 860 of [5].)
Introducing

(1.8) ψ* =
H

(1.8a) tf* = exp[-j>(
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(1.7) becomes

(1.9) L*(ψ*) = ψfx + Ψϊa + Wψ* = 0 ,

(1.9a) F = - ^ ( - λ ) - 2 + JLa(-λ)-2'8 + Άo + ! 2 ( - λ P + ,
144

see [4], [5], [6], [9, p. 106 if.]
In the next section we shall discuss an integral representation for

the solution ψ of (1.7) in terms of a function of one variable.
In the previous papers [5], [6] the conditions for the associate

f(Z) = Zll*YtC»Z\ Z = λ + iθ, in order that ψ satisfies the relations
(4.2), (4.3) on the segment of the sonic line, have been determined.
However, the proof which shows that the relation (4.1;) is a sufficient
condition that ψ satisfies (4.2) and (4.3) can be simplified, (see §§3
and 4 of this paper.)

REMARK. Formula (7.15) of [6] has been obtained in replacing cy

by (4.1a) of the present paper and applying some further transfor-
mations. It should be noted that in formula (7.15) of [6] (as well as
in (4) of [9], p. 121) Jlκ) should be replaced by

DEFINITION, if ( ^ ) = U Jf(Z) where SΓ(Z) = {ζ | | ζ - Z | ^

A representation of ψ in the supersonic region is derived in §7
by the use of integral operators.

2* An integral representation for the analytic solution of
(1.4) in terms of functions of several complex variables* In this
section we shall derive an integral representation for the solution ψ
of equation (1.4). This representation is valid in a subdomain of the
subsonic region.

Z_
2

In the following we assume that & is a stardomain with respect to

the origin.

THEOREM 2.1. Let E{Z, Z*, t) be a function of three complex
variables Z, Z*, t, Z' =X + iθ', Z* — X — iθ, which is defined for t e N(^)
and (Z, Z*)e &. Here N{c^') is a domain which includes the recti-
fiable {oriented) curve ^ , with initial point t = 1 and end point
t = — 1, and & denotes a sufficiently small neighborhood of the origin
0 = [Z = Z* = 0]. & is a curve of the complex t-plane, namely
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We assume that E satisfies the following conditions:
(1) E possesses continuous partial derivatives with respect to all

three of its arguments up the second order for (Z, Z*,t)e %? x N(r^).
(2) E satisfies the partial differential equation

(2.2) (1 - f)(EZH + NEt) - t~Ήz* + 2tZL(E) = 0 ,

concerning L see (1.7).
If /(ζ) = (ζ)1/6p(ζ/2), where p(ζ/2) is an analytic function of ζ

which is defined in a simply connected domain £^, 3? ZD %?(&), then

(2.3) ψ(\, θ) = P2(/) = Im ( E(Z, Z*, t)f(±-Z(l - ?)) d t

J f̂ & ' v JL Z

Im = imaginary part , Z = λ + iθ', Z* = λ — iθ ,

is a solution of h(ψ) — 0.

The function ψ is defined in W Π . ^ ,
(2.4) ^ ^ = {(λ, β) I 3λ2 < θ\ θ > 0, - s f < λ < 0} .

The proof of the above theorem is given in [5, p. 878 ff.] and [6]
see also [1] and [9], Chapters I and V].

DEFINITION. E(Z, Z*, t) and / are denoted as the generating and
associate functions, respectively, of the integral operator P2.

After certain auxiliary lemmas are obtained in § 3, we shall prove
Theorem 4.1. The latter theorem will enable us to solve the problem
mentioned in the introduction.

3* Auxiliary lemma • In this section we shall at first evaluate
certain integrals which we shall need in § 4.

LEMMA 3.1.2

i ' 6 d tlι) ~ [ t-ιιπi -
J i/ l - t2

Γ(lβ)Γ(v + 2/3)

T(2) \ -X—5/3/1 JL2\v4-f)/6 &v

I. = j Vl - t2

2 The counterclockwise orientation of ^ yields the negative sign in (3.1).
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In accordance with our assumptions, ^ is a rectifiable (oriented)
curve connecting the points 1 and —1 and lying in [|ί| ;> 1].

Proof. Applying Cauchy's theorem to the integral of (3.1), we
can reduce the curve ^ to the segment (1, —1) of the real ί-axis.3

Thus

ru) _ run _ι_ ru2)

S ° rli

i ~ v/l-f '
*2\v4-l/6 #&

Introducing τ — t2, we obtain

(3.4) 7"1' = - - l Γ r - 2 / 3 ( l - τ)'
2ι JO Γ(v + 1)

When considering I j 1 2 ) , we note t h a t for — 1 < t < 0, t = rei7ΐ, r > 0,
and therefore

(3 5) J ( 1 2 ) == e~iπίlΛ r~1 / 3ίl — r2Y~ll3dr = -1

 c-^</3 V ̂  / V ^ /
Jo 2 Γ(v + 1)

Thus (3.1) is obtained. (Γ = Gamma function.)
When evaluat ing (3.2), we assume a t first t h a t t — 0 does not

belong to t h e integrat ion curve denoted by /^\ I n t e g r a t i n g by p a r t s
yields

' J"(I) = ~ i i
(3.6)

The first term on the right-hand side of (3.6) vanishes. In the second
term we replace ^ by the segment (1, —1) of the real ί-axis. In-
troducing τ — t2, we obtain

- t2y+il3dt = —
2

3 We replace <g^ a t first by t h e sum of segments [1 > Re t > ε], [t = ε eί0', 0 < ^ < ~],
[—ε > Re ί > — 1], ε > 0. Then we consider the limit of the integrals fo r -€->0 .
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When integrating from 0 to —1, we introduce t = reiπ and thus obtain

1

<3.8) I{2) = —(1 - e~2πilz)
2

I (1 e ) .
2 Γ(v + 1)

The generating function E yielding the representation (2.3) has
been determined in [5], [6], [7], [10]. In particular, it has been shown
that two functions

<3.9) E{k) = H*E*k\ E*ik) = Σ ^n>k)(χ) Jfc = 1 , 2 ,
v ' f ^ ( t2Z)n~{ll2)+[2lZ)

<3.10) g(w'7ί)(λ) = Σ Ci1"fc)(-λ)"-(1^+(W(*+1'>, Cίn'k) - const.,
/^(Ol) _ . 9 1 / 6 (7 (02) __ O5/6

(see (1.8a) and [6], p. 453) are solutions of (2.2) for (λ, θ) e c/^ (see
(2.4)). Let ψ be equal to the right-hand side of (2.3) where

~ def Γ /I /2\ -12/3

(3.11) E - j&(λ, ί, t) = Λ£7(1) + Λ [ ^ J

then obviously h(ψ) = 0. Here Aj and A2 are two complex numbers
such that

(3.12) Im (A.A,) Φ 0 .

In the following considerations we need Lemma 3.2 yielding the
limit relations for the generating function E introduced in (3.11).

LEMMA 3.2.

(3.13) lim E(X, θ, t) - -d2t~
φθ~ιlQ ,

; - » o —

(3.14) lim {-xyi'EiiX, θ, t) = [dj-113 + dot->l3(l - tψψ-1'*

where
9 95/3

(3.15) d0 = -4i" 2 S 0 i4 2 > d, = -J—iws&Av d2 = -ί 1 / 6 S 0 Λ ,

JSO, SJ positive.

Proof. By (1.8), (3.9),

+ ]Γ f'^fL +

(-ί 2 (λ + iθ)),1/β
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( 8 Λ 7 )

 = A2σ0

02)S02-1i6(-X)213 + AAS.Cr^i-X)816 +
ί-ί2(λ + i#)]5/6

Thus

(3.19) r 1 ~F3

r 1 ~F

Cί°'k) have been introduced in (3.10). (see also [6] p. 453.) From (3.19)
the limit relations (3.13) and (3.14) follow. The justifications of the
above operations follow from considerations in [5], p. 882, and [10],
p. 336. To derive (3.14), we note that after differentiation of (3.18)
with respect to λ, the only terms of Eλ which contribute to

o- ( — \)φEλ are the coefficients of ( — λ)~1/3. Hence

lim (-xy'3Eλ = - —i
a-»o- 3

)

which implies (3.14).

4* The determination of the associate / in (2.3) from given
values of ψ and ψM on the sonic line*

THEOREM 4.1. Let χk(θ) = ΣΓ=oαί*^% k = 1, 2, {a[k) real) be two
power series which converge uniformly for 0 ^ θ ^ θίy θγ > 0. Suppose
further that E(Z, Z*, t) is given by (3.11), and let

(4.1) ±

(4.1) c - (-2

v — 1

] +
c (2,1) _ ,

where f{Z) is the associate function of the integral operator P2(/) in
(2.3). Then ψ given by (2.3) is a solution of (1.7) satisfying the
conditions

(4.2) lim ψ(λ, 0) = Σ α^61" »
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(4.3) lim (-λ)1/3α/r^(λ, θ) = Σ ^ 2 ) ^ v

Proof. In order to prove the theorem, it is sufficient to show that
1/6 dt(4.4) ^y(λ, 0) = Im ^E(Z, Z*, t)(±Z(l -

Vi-f

satisfies the relations (4.2), (4.3) with the right-hand side replaced by
alk)θu, k = 1,2, respectively. Using Lemma 3.2, we obtain the general
term

5 )
Im

Since dyd2 is real, from (4.4), (3.12) and (4.5) we infer (4.2). It is easy
to see that Im [dQdJll)Il

u

2)] Φ 0 in the case under consideration.
We now consider the second condition. We note that

(4.6) lim ( - λ p ^ _ = im f

since

(4.7) lim(-λ)1 / 3^/, = 0 .

Concerning the interchange of lim^0- and I compare [10, pp. 336,

339], and [5, (5.28), p. 882 ff]. Using Lemmas 3.1 and 3.2, we obtain
the general term

[dQdJίι)H2) + \d*\

<4 8)

J I ? | 8

Im [dβJMIl*1]

Noting (4.6), we infer (4.3) from (4.8). This completes the proof of
Theorem 4.1.

5* The conditions imposed on the coefficients a[k) in order
that ψ has singularities of specific types* In § 4 we expresed the
associate function f(Z) in terms of values alk\ k = l,2,v = 0,l,2,
(see (4.2) and (4.3)), which appear in the initial value problem con-
sidered here. Suppose f(Z) is regular, say in some simply connected
domain &r, & c Ύ/^, the stream function ψ will be regular there.
As mentioned in the introduction, there exist various procedures for
the determination of the location of singularities of a function Zll6f(Z)
given by its series development Zίβ Σ c^v a t the origin.
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In the following we shall discuss a procedure using the approach
indicated by (I), see [18], [21].

THEOREM 5.1. Suppose that the solution ψ(X, θ) is defined in a
sufficiently small neighborhood of the origin and on a segment
(X = 0, — θt <; θ ^ θy), θγ > 0, and satisfies the conditions (4.2) and (4.3).

Here ΣΓ=o a[k)θv are power series converging absolutely and uni-
formly for \Θ\<LΘX. Let

(5.1) — = 2 lim
aίι)

Im

where dk, I!,'", k = 1, 2, have been introduced in (3.15), (3.1), (3.2),
and let

(5.2) cos φ = lim
Λ 0 +

, σ(h) = lim (j dn{h)\]lln ,

(5.3) dn(h) =
Im

(Cζ are binomial coefficients.) Suppose

(5.4) - 1 <
2

Let us denote by i ^ 2 the domain

(5.5) {(λ, θ) I 3 ] / 2 ( λ | < <?, -sT < λ ^ 0, λ 2

and let

< p2} .

( 5 . 6 ) s ι = UX, Θ)\X — p c o s φ , θ — p s i n <£>,

lim σ W ~ 1 < cos φ < 0, λ2 + θ2 -
Λ-0+ h

ΓΛe^ ψ(λ, θ) is regular in &2 U s1. Concerning s0 see [5], p. 878.

Proo/. Since E(Z, Z*y t) is regular in c//^, see (2.4), the solution
ψ is regular in every subdomain of 'W~ which does not include θ — 0
in which f(Z)/Z1'6 is regular. Here /(Z) - Z ] / 6 ΣΓU C.Z". By the
theorems of Hadamard and Mandelbrojt, the function g(Z) = ΣΓ=o c,Zv is
regular in the circle | Z\ < p, p = l/Γίm^^ | cv |

1/v > 0 and on the
arc[(0,^>), \Z\ = p where

(5.7) cos φ - lim J σ(h) ~1\y φ) = Πin [| ^
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6* The representation of ψ in a simply connected domain

3ί, & c W. As indicated in [2], [9], the integral operators enable us
to translate many theorems in the theory of analytic functions of com-
plex variables into theorems on functions ψ satisfying a linear partial
differential equation of elliptic type. As an example of an application
of this method, we shall determine for the domain 3ί systems {ψ^X, θ)}
of solutions of (1.7) such that every solution ψ regular in ϋ ^ , £p\ =

), can be represented in £& in the form

(6.1)

Given a simply connected domain £&lf there exist various systems
{φv{Z)} of analytic functions of one complex variable such that a function
g(Z) regular in ϋ ^ can be developed in srγ in the form

(6.2) 9(Z) = ±a1fφv(Z).
i/ = l

For instance, one can choose for {φu(Z)}, v = 1, 2, , the system
of functions which are orthogonal in <grί9 or functions {[^(Z)]1'}, v — 0,

1, 2, 3, , [(g(Z))° d= const], where g(Z) maps &, onto the unit circle.
Suppose now that £& is a star domain with respect to Z = 0, &r c 5^^
and g(Z/2) is regular in ^ = if (JF), every solution ψ* regular for
λ, θ e j ^ i can be represented in & in the form (6.1), where

(6.3) τMλf (?) - Im
(1 - tψ* '

and i/r2v_1(λ, θ) are the real parts of the above integral.

Proof. Since we assumed that Z~ι/6f(Z/2) is regular in £p\, the
representation

(6.4) Z-1'

converges for (Z/2) e ϋ ^ uniformly and absolutely.
In the development

ψ(X, θ) = Im f j0(Z, Z*, ί)(Z(l - ί2))1/6

(6.5)
v,

we can interchange the order of summation and integration, and we
obtain the development (6.1), where ψu(X, θ) are given by the real and
imaginary parts of 1 in (6.3).
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7* A representation of a stream function ψ in the supersonic
region* As indicated in [10], the approach of the present paper can
be generalized to the case where λ is replaced by the complex variable

(7.1) U=\ + iA,

and under some assumptions about

χι(θ) = ]imir(U9θ) and χt(θ) = lim U* 3 * < % θ)

u^o u-*o o U

one can determine the associate / in terms of χ1 and χ2. Consequently,
the method of integral operators can also be used to consider the in-
itial value problem in the supersonic region. Replacing λ by Z7, see
(7.1), and setting λ = 0, we obtain

A = hrι arctan [h(M2 - 1)1/2] - arctan [(M2 - 1)1/2] ,

( λ. 1 \ l / 2

T T T ) * > 1

Here M is the Mach number and p = cpk is the pressure density
relation, k, c are constants. (See [22] and [5], p. 861). Equation (1.7)
assumes the form

= ΨΛΛ - fee + 4 ^ , = 0 ,
(7>3)

 Nl = A ± l Ml , M > i .
8 (ikP - 1)3/2

In the supersonic case it is convenient to introduce the variable

(7.3a) T2 = M2 - 1 .

If we write in analogy to (1.8)

(7.3b) f(Λ, θ) = SάΛWiA, θ) , f*{A, θ) = f*(iΛ, θ) ,

where

(7.3c) S^Λ) = exp Γ - 2Γ N^dτJ

and

A = Λ{M) , Λo = yl(2 '2) ,

then ψ* satisfies

(7.4) H*(t*) = VAA ~ Ψte - iF,ψ* = 0 ,

„ A>\ jp - (k + 1)M4 Γ -(3fe - l)Mι - 4(3 - 2k)M* + 16
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(see [5], p. 861). A formal computation yields that

« « 1 Γ 9k -|i/2(&-i) «

k + l ) + ( k - 1)T2

In general, we use in the following the same notations as in [5]
and [6]. As a rule we write p(Λ) = p(ίA), e.g., q{nk)(A) = q{n>κ)(iΛ).
Further, instead of H(T) (see [5] (4.3), p. 870) we introduced here

H(T) (see (7.4") and (7.3a)). Consequently the generating function $
differs from E(iΛ, iΛ, θ).

In defining the operation4

-rfc/ ^ \ d e f
 T

P(/) = Im

^7 5^ HM) = H(A(T)), A > 0, 2Λ < \Λ + θ\ ,

E*2(X + iΛ, θ, t) = ^*(Z, Z*, ί) ,

it was assumed that ^ is a curve connecting t — 1 with £ = — 1 and
lying in \t\ ^ 1 (see [5], p. 872). As in the subsonic case (see [6]
(7.12) p. 468), we set

E*(Λ, θ, t) = Aβ^iίΛ, θ, t)

(7.6) + [(iΛ + iθ)/(l - i*)/2γι*AtE*{2)(iΛ, θ, t),

Im (AAi) Φ 0 .

(7.6') E2i(Λ, θ, t) = HMWtM, θ, t) .

We shall show that by imposing some additional restrictions on
the domain of definition of E(Λ, θ, t) we can use for ^ the curve

(7.7) i f * = ίf2 1 U ^22 U ^ 2 3 ,

£f21 = ( - 1 S t S -to) ,

(7.7') ^ 2 2 = (t = toe
iφ, t0 > 0, -π ^ <p S 0) ,

^23 = (ί 0 ^ ί g 1) .

Analogously to [5, (5.5), p. 878], or [6, (4.7), p. 453],

E*lκ)(U, θ,t) =

where q{n>κ)(U), ic = 1, 2, n = 0, 1, 2, , are solutions of the equations

4 Both the real and imaginary parts of ϊίι{Λ)\ c ••• are solutions of (7.3). In ac-
cordance with the previous definition we choose here "Im". In view of definition (2.4)
it is sufficient to assume that | ί | ^ 1. If 0 < U ^ | ί |, where to < 1, then ^ has to
be replaced by {2 | λ | < | Z | t2

Q}.
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(7.8')

(7.8")
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= 0

(see [6, p. 453, (4.4)])\ These solutions can be written in the form

(7.9) q{n^ = Σ C i - " ( - t/")—1/>+t/a"[+1"

where

(7.10) Cύ01) = 21'6, C;"" ^ 6 'n^ 3 '*—
1/6

^ 1, C[nί) = 0,

(T.U)

(α)Λ Ξ α(α + 1) (α + n — 1)

(see [6, (4.4), (4.5), (4.6a), (4.6b), (4.6c), (3.11), (3.12)] or [9, p. 113, (la),
(lb), (2), (3a), (3b), 3c)].)

REMARK. One initial value condition determines uniquely q{n>2)(U).
Indeed, the general solution of (7.8') and (7.8") can be written in the
form

(7.12) C l n > 2 ) ( -

From (7.9) follows that the second initial value condition used for
(7.12) is CLV1 = 0.

In [6, p. 459, (4.43)], it has been shown that

(7.13)

and t h a t

(7.14) !

\E*(U,θ,t)\ ^

ψ)
s > 0 .

LEMMA 7.1. Let U = iΛ, 0 < A < t[θ/(l - tl), where (2 + e)t\ < t%,

5 In the first equation of [6, (4.4)], q is missing after AF(λ).
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0 < t0 < 1, ε > 0 [0 < t0 g \t\,t e & *], see (7.6). Then the series on
the right-hand side of (7.13) converges absolutely and uniformly for
te-£"* and 2 | U\ < t\\ Z\.

Proof. Since {Γ(n + 4/3)/Γ(n + 1)} ^ w + 1, it is sufficient to
show that 2Λ/\ f(Λ + θ) | < 1. From our assumptions follows that
Θ/Λ > (1 - tf)/tl, therefore, for t e <£T* and A > 0,

\t\A + θ)\ ti\ + θ λ

\ A j

t I2

t\2 ~ ( 2 -

ι | "
tl

f. ε)

| ί | 2

<r

1 +

1
2 +

1

ε

—
if(7.15)

Analogously to Theorem 4.1 we can express the associate f(Λ + θ)
in terms of

(7.16) lim φ(A, θ) and lim [AιI*φΛ(A, θ)] ,

see also [10], [28] and [29]. In formula (7.5) with U = iΛ the as-
sociate / = f((l/2)i(Λ + Θ){1 - t2)) = ?((l/2)(A + θ)(l - f)) is a function
of a real variable (A + θ). In this case we obtain some modifications
of our results.

Operating with functions of one real variable, it is convenient
for many purposes to represent them in form of trigonometric series.
Analogously, in the case of solutions of (7.3) we introduce a set of
solutions

(7.17)

(7.18)

C.(yl, θ) = Re j ^ a ( ^ , ^. t){Λ +

x cos [»(/ί + θ)(l - ?)/2]- dt

(1 - tψ'

SM, θ) = Re ( #22(Λ, β, t)(A + βyi*

X sin [n(A + Θ){1 - f)β]-

n = 0, 1, 2, ,

dt
I )

of (7.3)

REMARK. We note that when introducing a set of particular
solutions of the equation of elliptic type, we used {Un}, n = 0, 1, 2, ,
as associates (see, e.g., [9], p. 22]); here we use

(7.19)
1^
2

and — (
2%

- e~inlA+0)

n = 0, 1, 2,
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Further, instead of using i cos [n(A + θ)(l — t2/2] and i sin [Λ + Θ)(l~tf)/2]
as associates, we take the real part of the integral in (7.17) (7.18).
The integral operator (7.5) assumes the form

(7.20)
ψ(Λy 0) = Re ( E22(Λ, θ, t)(Λ +

J 6*

x
dt

When considering t h e integrat ion along ^ 2 * , it is useful to introduce
the auxiliary variable τ = t-\t) given by

τ = Re t + 1 for t e rέ?2ί = [-1 ^ t ^ t0]

(7.21) r = . 1 / log — ) for te^22=[t = tQeίφ, O^φ^π]
i \ t0 /t0

r = Re ί - ί0
for

LEMMA 7.2. dr/dί = 1 for te (^ 2 1 - Px) U (^ 2 3 - P2) and

^ ^ ^0 jθ?* * ^ <^22 -*1 -^2> -^1 :=::: ^ 21 Π ^22? -̂  2 ""^ ^ 22 Π <^23

THEOREM 7.1. Suppose that the coefficients {an}, {bn}, n — 0,1, 2,
, o/ the series

(7.22) Σ (an cos nx + bn sin
71=9

are chosen in such a way that

(7.23)

J if* w=0 I V I - ?2(r)|

x dτ < oo .

(7.24)

, ί) = Re ( E(Λ, θ, t)(Λ + θ)ι>"
J fc *

dt
_

it holds

(7.25) ψ(Λ, θ) = ± {anCn{Λ, θ) + KSn(Λ, θ)) .
n-Q

Proof. Since for 0 < 2Λ < | A + θ \t\, t e ^ * , JS(Z, Z*, t) = , ί, ί)
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and dtjdτ are uniformly bounded on c£'* — P1 — P2 and \dτ/dt\ ^ A ^ 0
by the Lebesgue theorem (see, e.g., [31, p. 347]), it follows that we
can interchange the order of summation and integration in (7.24).
Using (7.17) and (7.18), we obtain (7.25).

The above investigations suggest that we write the solution6 ψ
as a sum of two operators, namely,

(7.26) ψ(Λ, θ) = φτ(A, θ) + Φτ(Λ> θ) ,

(7.26a) ψr(Λ, θ) = \ E(Λ, θ, t)ζ^f(ζ) d t ζ EE \{Λ + θ)(l - tf)
J x 2lU^23 ( 1 — t ) ' Δ

(7.26b) ΨM, θ) = \ E(Λ, θ, t)C'sf(Q) d t ,
J^22 ( 1 — t ) '

^ 2 i U ^23 - [ - 1 ^ t < -τ] U [ r ^ ί ^ 1] ,

^22 = [ί = Γβ**, -7Γ ^ (p ^ 0] ,

0 < τ < 1 .

When considering {fτ(Λ, θ)}, one can apply various results in the theory
of trigonometrical series, while considering {Ψτ(Λ, θ)}, we apply theorems
on analytic functions of one complex variable.

The author wishes to thank Paul Rosenthal for his assistance in
preparing this paper.
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