PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 2, 1970

DIAGONAL SUBMATRICES OF MATRIX MAPS

ALFRED E. ToNG

The first question answered in this paper is: if A: 21—y
is a linear operator between sequence spaces, with a matrix
representation (a,;), does it follow that the associated diagonal
matrix (a;;0,,) maps 2 into ? An affirmative answer is given
if 72 is a normal (or monotone) sequence space and x is a
perfect sequence space.

Morever, if 7,/ are normed sequence spaces, under what
conditions will the following inequality hold for all matrix
maps (a;;) from 2 to s |[(a.;) |l = ||(a.,6.5) ] (where ||-|| denotes
the operator sup norm)?

We apply our answer to the first problem to give another
proof for a theorem of S, Mazur.

Section 1 gives the definitions, notations, and some computations.
Section 2 considers the first question. Section 3 gives the application
to Mazur’s theorem. Definitions of terms relating to sequence spaces
are from Kothe (1).

1. Vector spaces of sequences, over the real or complex number
system, which contain all finitely supported sequences are called sequence
spaces and are denoted by A and p. Let « be a sequence (xz(1), ---,
x(t), +++) in ». By the support of © we mean the set of all indices ¢
for which x(?) = 0. We use m to denote the space of all bounded
sequences and @ to denote the space of all sequences. We say that
a sequence of vectors «, +++, %, -++, in A is disjointly supported if
the family of supports S(k) of x, is disjoint and we use x, \V ©, \V ---
V @, V to denote the sequence xc @ defined by x(i) = x.(7) if there is
a k for which 7¢ S(k) and x(7) = 0, otherwise.

Let ¢ denote a sequence (¢(1), ---, ¢(i), ---) in w. The sequence
(c(D)x (1), - - -, c(i)x(i), - --) is denoted by c-x. A sequence space v which
satisfies: ¢-w e \ for all ¢ € m and all x € A is called a normal sequence space.

A monotone sequence space \ is a sequence space satisfying c-x e\
for all xeX and cem where ¢(7) = 1, —1, or 0 (all 7). The sequence
11,---,1, ...) is denoted by 1.

6:; denotes the Kronecker delta. If S is a set of indices and M
is a normal sequence space, the linear projection 7 ,;: A — \ is defined
by setting 7,(x) to be the vector in A whose 4-th coordinate is x; when
1¢S and is 0 when 7¢S. If S is the set of all indices m < 7 < 7,
we shall write 7, ;.

DEFINITION 1.1. Let A, £ be sequence spaces. A linear map
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A: )\ — p is said to have matrix representation (a;;) if 3; a;;x(j) con-
verges for all x e\ and if

A@) = (S (), -+ Saga(i), ---) -

By the associated diagonal of A, we mean the linear map D:\ —
with matrix representation (9;;a;;). We write r; to denote the sequence
consisting of the i-th row of (a;;) and c¢; to denote the sequence
consisting of the j-th column of (a;;).

Linear operators with matrix representation are referred to as
matrix maps.

A sign distribution ¢ on n places is any sequence ¢ = (%, +--,
X, v+, 2, where x;, = +1 for all . Two sign distributions o, ¢ are
said to be distinet if ¢ = 7 and ¢ # —7.

LEMMA 1.2, Let & = {0, +++, 0 +++, Opmn} be a family of 2!
distinct sign distributions on n places. Then:

> | 3 odk)ak)| = 2 max {{a) |, « -+, |2(n) [},

1<igon—1 [ 1sksn

where x(1), ---, x(n) are complex numbers.

For the proof, see (1.3) of [3] where one uses the triangle ine-
quality instead of the Lemma (1.2) in [3].

LEMMA 1.8. Let X\, it be sequence spaces of dimension n. Let
A: N — o be a matriz map represented by (a;;). For each uen, v’ €y,
we can find a sign distribution o on n places and y' € p1* so that:

(a) [yD=1vO)]| forall1=1,2,.--, n.

(b) If x is defined by x(k) = o(k)u(k), then

(Ax), y') = léé ) [ apuk)v' (k)| .

Proof. Let & = {0, --+, 01} be a family of 2" distinet sign
distributions on 7 places. Lemma (1.2) gives:

>, gik)ayuk)| = 2" [ayu(l) || v'(0) |

1sk=n

@] 2

1gigen—1

forall =1, ..., n. Hence, we can find a sign distribution o, so that:
3D 5 10O 5 c®eul|z 5 Jau®]1v0].
1Si=n 1Sksn 1sisn

Choose 3’ to satisfy:
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v®) 3 oBawud) = (VO | 3 okau®)|.

Thus, |¥'())| =|'()]. By (1.3.1), we get:
(A@),¥) =2 > laau®)v'D)] .

1Sl=n

DEFINITION 1.4. A normed (Banach) sequence space )\ is said to
be a normed (Banach) ideal if it is a normal sequence space satisfying:

(1.4.1) le-w|l = [lwllsup{le(t) |21 = 1,2, - -}

for all cem, xeX. A normed monotone sequence space is said to be
monotonely normed if (1.4.1) holds for all ¢ € m satisfying ¢(¢) = 1, —1,
or 0 (all 7).

REMARK 1.5. If A is a monotonely normed sequence space of
dimension n and g is a normed ideal of dimension %, then Lemma
(1.3) shows that: || A || = || D || where D is the associated diagonal of A.

DErFINITION 1.6. Let A = (a;;) be a matrix. Let
I=m@) =nd) < - <mk) <nk) <---

be a sequence of indices. The submatrix of A whose (7, j)-th entry
is a@;; when there is a k for which m(k) < 7,7 < n(k) and whose
(¢, 7)-th entry is 0, otherwise, is called the diagonal block submatrix of
A determined by m(k), n(k), and is denoted by B. Denote

T, m 1A i, m 0]

by A™. Note that A" = B,

2. Throughout this section, A and p are spaces of sequences over
the real numbers.

THEOREM 2.1. Let N be a monotone sequence space. Let p be
any sequence space. If A:x—p is a matric map and D is the
associated diagonal submatriz, then D(\) C p*°.

Proof. Suppose D(\) & p**. Then we can find u € \, v’ € ¢° so that
S | au(i)o'(i) | = e .
Define a sequence of indices

1=ml) )< - < mk) < (k) ---
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inductively. Suppose (a;;) is the matrix representation of A. Set
m(l) = 1. Assume: m(l) < --- < m(k) have been chosen.

(2.1.1) Choose n(k) so that
(1) m(k) = n(k)
(2) Dnmwsizamw [azu(@)v'(1) | > k.

(2.1.2) Choose m(k + 1) to satisfy

(1) nk) <mk+ 1)

(2) Sninsice | @u(5)V'(9) | < 1/2*n(k) whenever m(k) < @ < n(k)

(3) Dmtknsice | @u(5)v'(4) | < 1/2*n(k) whenever m(k) < j < n(k).
Here, we used the fact that the i-th row »; of (a;;) is a sequence in
A\® to obtain (2) and the assumption that A(\) C ¢ and that +" € p¢* to
obtain (3).

Let o, -+, 04, -+-, be elements in m so that o, is supported on
[m(k), n(k)], |o:(5)] = 1 if J is in the support, and so that

S a2 S Jeav] .

m(k)<gsn(k m(k)Sisn(k

> )]

m(k)si<n(k)

Here, we used (1.3.1). Hence, by (2.1.1),

by 5, auoduid)])

(= 1w
k m(k)sisn(k) m(k)<g=n(k)
=D, > > la;u()v'(3) | = oo .

k. m(k)sisn(k

If we can show that the term on the left, which we denote by 4, is
finite, then a contradiction results and the hypothesis D(\) ¢ p*° is false.

Define 6 =0,V +++- Vo,V -+ . Let tem be defined by
«(i) = sign (v() 3, auou(du(s))

(k)sjisn
whenever m(k) < © < n(k) and by 7(¢) = 0, otherwise. Let
S, = {t: m(k') <+ < n(k') for some k' > k} .
Observe that (2.1.2) (2) and (3) give:
2 1 asu@v @) ] < e

k jeSp m(k)Sisnlk
. | a;u(5)v'(2) | < oo
k ieSp m(k)sisn(k)
By inspection, 4 = (A(c-u), 7-2')
=212 > au(h)v(d)
k jeSp m(k)SiZn(k)

=2 2 aui)v() .
k ieSp m(k)sisn(k)
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Since » and p* are monotone sequence spaces and since A(\)C yt, we
must have: g-u e\ so that

(A(g-u), T-2') < oo .

Thus 4 < oo.

LEmMMA 2.2. Let X be a normed space. Let (a;) be an n X n
matriz of wectors in X. Then there is a sign distribution ¢ on n
places and a vector y' €l where |y'(i)| =1 for 1 < 1 = n such that:

=

2 v 3 o()ay

Qrr| -

1Sks=n

Proof. For each z' ¢ X', define a matrix A of real numbers by
setting the 4, j-th term to be (a;;, 2/). Choose % =1,% =1 in (1.3)
to get the existence of a sign distribution ¢ on n places and a sequence
o' so that |4 (1) =1 for all 4 =1,2, .-+, % and

(S0 S o o) = (Aw@), )
= > (e @) .

1sksn

By the Hahn-Banach theorem, this implies:

=

>

1<ksn

IS v S o6

THEOREM 2.3. Let 1 = m(l) < n(l) < «+- m(k) < n(k) --+ be a se-
quence of indices. Let \ be a monotonely normed sequence space and yt be
a sequence space. Let A: N — ft be a matric map. Then, the associated
diagonal block submatrixc B, determined by {m(k), n(k)}, of A satisfies:
B(\)c p*® and || A|| = || B|| where ||-|| denotes the operator sup norm.

Proof. Let w denote Zi,;,.ay and 7% denote Zp,uyi1,mitn—11e
Define a;; to be wiAx;, miAx), i Axs, or wiAn%: depending on whether

(1) 2=2k—1and 5=2] -1,

(2) 1=2k—1 and 7 = 2,

(3) =2k and 9 =2l —1 or

(4) 4 =2k and 7 = 21
respectively. The vectors a;; are to be regarded as linear operators
from ) to yt. Let < denote the diagonal submatrix of (a;;). Let
7™ denote the 2k x 2k submatrix of (a;;) whose 7,7 term is a,; if
1<14,7=<2k Let 22'" be the diagonal submatrix of .&7'*l, We may
regard .&'¥! (and also <2'1) as an operator:
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@) = 3 3 a,®) .

1552k 15152k

If we set X = all bounded linear operators from ) to /¢*, then we
get from Lemma (2.2) that:

™ = | 2" .

Here, we used the fact that #** is a normed ideal and that ) is
monotonely normed. Assuming, momentarily, that < (\) C p°", we get
that since B = 7,2 where S = {i: m;, < 1 < m, for some k} we must
also have that B(\) C p**: it is easy to see that:

Al = |7 = | 2™
and so,

Al =z lim [| 2™ =[] .
Thus,

lallzllzll zllz.z |l =Bl

because y* is a normed ideal.

To see that 2r(\) C p**, write: 2, = 7i(x), ©y = mwi(v) for each
2 €N. Similarly, define ¢, = wi(y’) and ¥’ = 7i(y") for each y' e .
For each x e\ and each y' € ¢*, let £ denote

{wem: u)z, \V -+ V u(i)az, \V +-- €N},
Let v* denote
Wem:vQy,\ ++ VV@)Y,\V o€}

Then £ is monotonely normed and (v*)* is a Banach ideal if # and v*
are given the respective induced norms from X\ and y¢”.

The matrix M = (a;;(x;), ;) defines a matrix map from & to v if
we set:

M(u) = (1 Zw u(j)(aij(xj)y y;)’ *t 1§J_Z<.w u(j((aij(xj)9 fl/:), . ')

=j<

for each ue k. If D is the associated diagonal of M, then (2.1) gives
D(k) c v*®, since Iek and Tcy", we get:

Eil (@si(2;), 1) < oo

Thus:
(2(@),y) = Z (Z@®),¥) = Z (@i(®s), 1) < oo

holds for all zeX, y' e p*. ... D(\)C pee=.
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REMARKS 2.4. Although ¢, is not a perfect sequence space, it is
nevertheless true that if M is any normal sequence space (over the
reals) and A: )\ — ¢, is a matrix map, then the associated diagonal D
of A maps \ into ¢,. For, if A(\) ¢, then Theorem (2.1) shows
D(\)cm. Let (a;;) be the matrix representation of A. If r; denotes
the i-th row of (a;;), it is not hard to check that {r;} is a 0-convergent
in the weak topology on [, from [,. Thus, {r;} is 0-convergent in the
[, norm. In particular,

lim|a;| < lim,(r;) = 0. D\ Ce, .

(Essentially the same argument holds even when A & m.)

The techniques used in (2.1) and (2.3) are similar to that of [3].
The results there were given for A = [,, st = [, and sharper conclusions
were derived insofar as we were able to establish a criterion for
[|A]l > || D]|| whenever 1 < » < p < oo,

We note also that (2.3) above may be reinterpreted as showing
that the projection from the space of bounded matrix maps onto
the subspace of the associated diagonals is of norm one, provided
that A is monotonely normed, while /¢ is a normed ideal and a perfect
sequence space. Actually, we have required ;¢ to be a normed
ideal because we are proving these results in such a way as to cover
sequence spaces over the complex scalars. If real scalars are being
used, then it suffices to assume that ;¢ is monotonely normed. The
crucial use of these hypotheses is in facilitating the use of Lemma (1.3)
where the definition of 3’ following (1.3.1) is the deciding issue.

3. This section gives an independent proof of Theorem (2.1) for
the case where ) is normal. With this hypothesis on A, we are able
to reduce the problem to an argument involving matrix maps between
Banach sequence spaces and thereby avoid the involved computations
of (2.1). We allow ) and /¢ to be sequence spaces over the reals or the
complex numbers. The rest of the section gives the application to
the problem of Mazur.

THEOREM 3.1. Let N be a normal sequence space. Let p be any
sequence spaces. Let A: N — ¢ be a matric map. Then the associated
diagonal matriz D of A maps N into (.

Proof. If wex and v’ ey, define &,y to be Banach sequence
spaces by setting:
£ ={xew x-uecm}
la(k) | .

Hxlir:zsup{m—)‘l—.k: 1,2, -..}
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v = {yecw: Syl )] < «}
il = Sy ()] -

Here, we have assumed without loss of generality, that w(k) = 0,
v'(k) # 0 for all k. It is easy to check that # and y are Banach
ideals. Clearly, A(x) Cv and since any matrix map between Banach
sequence spaces is bounded (see Corollary 5, p. 204 of [4]), A is also
a bounded operator.

The theorem is proved if we show that D(x) cv. Let ||-|| denote
the operator sup norm. If D does not map £ into vy, then:

S lasu(v' ) | = o .
By (1.5), we have:
oo > [[All = sup (|7, Am, 0 |l
(3.1.1) = Sup | 7, m D, || 2 (1 DI
= 3 | aulkyo' (k) | = < .

Hence, we must have had: D(x) C v.

If ¢ is a normed sequence space we give ¢ the norm generated
by (unit ball of fe)=.

THEOREM 3.2. Let N be a monotonely mormed sequence space.
Let pt be any sequence space. Let A: N — 1t be a bounded matric map.
If D is the associated diagonal of A, then D(N) C p1** and || Al = || D ||,
where the sup norm s computed with respect to the norms of N and
Mxx.

Proof. By (2.1), D(\) cu**. Observe that

1D 11 = lim || T D |

and argue as in (3.1.1), observing that 7, ,,(\) is @ monotonely normed
sequence (of dimension %) and that m,,(x¢) is a normed ideal (of
dimension n) so that the appeal to (1.5) is legitimate.

S. Mazur posed and affirmatively answered the following problem:
If (a;;) is a matrix of complex numbers so that >, |>; a;;x(f) | < o
for all e m, does it follow that 3 |a;| < o?

His answer, found in Pelezynski-Szlenk [2], gives a stronger con-
clusion. In this section, we apply our results in § 2 to give a more
general version of the problem.
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THEOREM 3.3. Let 1 < p,r < «w. Let g denote <o, pr/(p — r),
or r depending on whether 1 < p<r< o, 1 r<p<«, or 1<
r< oo and p= « respectively. Let A:l,— 1. be a matric map.
Then L (ay, «+++ay «++) < . In fact, if D is the associated diagonal
of A, then D(,) cl, and ||A]| = ||D|.

Proof. Note that for the case p = «,r =1, we have g =1 so
that this theorem contains the affirmative answer of Mazur. Observing
that [, = I?*, we conclude from (2.1) that D(,) c!,. In (2.2) of [3],
it was computed that || D|| = l,(ay, -+, @y, --+) and an inspection of
the proof shows that D(l,) cl, if and only if || D|| < <. Finally,

H A H g li?)' H nli»%JAnU,nJ H
= 11:'1’1 H ﬂ.[l,n]Dﬂ.[hn] ”

= llm lg(auy ccy ann) = “D“

where (3.2) was used to obtain the second inequality. We note in
passing that a Baire category argument proves every matrix map
(between Banach sequence spaces) to be bounded (see Corollary 5,
p. 204 of [4]) so that in the theorem above, || D|| < ||A4]| < .
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