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DIAGONAL SUBMATRICES OF MATRIX MAPS

ALFRED E. TONG

The first question answered in this paper is: if A: 1 —> μ
is a linear operator between sequence spaces, with a matrix
representation (atj), does it follow that the associated diagonal
matrix (aadn) maps I into /«? An affirmative answer is given
if λ is a normal (or monotone) sequence space and μ is a
perfect sequence space.

Morever, if λ, μ are normed sequence spaces, under what
conditions will the following" inequality hold for all matrix
maps (a,i3) from λ to μ: | | ( α u ) | | ^ ll(<xu^i)ll (where || || denotes
the operator sup norm)?

We apply our answer to the first problem to give another
proof for a theorem of S. Mazur.

Section 1 gives the definitions, notations, and some computations.
Section 2 considers the first question. Section 3 gives the application
to Mazur?s theorem. Definitions of terms relating to sequence spaces
are from Kδthe (1).

1* Vector spaces of sequences, over the real or complex number
system, which contain all finitely supported sequences are called sequence
spaces and are denoted by λ and μ. Let x be a sequence (x(ϊ), •••,
x(i), •••) in λ. By the support of x we mean the set of all indices i
for which x(i) Φ 0. We use m to denote the space of all bounded
sequences and ω to denote the space of all sequences. We say that
a sequence of vectors xL, , xk, , in λ is disjointly supported if
the family of supports S(k) of xk is disjoint and we use xί V %2 V
V xk V to denote the sequence xeo) defined by x(ϊ) — xk(i) if there is
a k for which i e S(k) and x(i) = 0, otherwise.

Let c denote a sequence (e(l), •• ,c(ΐ), •••) in ω. The sequence
(c(l).τ(l), , c(ί)x{ί), •) is denoted by c x. A sequence space λ which
satisfies: c-xeX for all c e m and all x e λ is called a normal sequence space.

A monotone sequence space λ is a sequence space satisfying c x e λ

for all xeX and cem where c(ί) = 1, —1, or 0 (all i). The sequence

(1,1, , 1, •) is denoted by 1.
δ{j denotes the Kronecker delta. If S is a set of indices and λ

is a normal sequence space, the linear projection πs:X—>λ is defined
by setting πs(x) to be the vector in λ whose i-th coordinate is x{ when
i e S and is 0 when i £ S. If S is the set of all indices m <L i <, n,
we shall write 7Γ[TO,Λ].

DEFINITION 1.1. Let λ, μ be sequence spaces. A linear map
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A: λ —• μ is said to have matrix representation {aiό) if Σ i aiMJ) c o n "
verges for all xeX and if

^ii^(i), , Σ a>i

By the associated diagonal of A, we mean the linear map D:X—*ω
with matrix representation (δ^ α^ ). We write r4 to denote the sequence
consisting of the i-th row of (α^ ) and c,- to denote the sequence
consisting of the j-th column of (aid).

Linear operators with matrix representation are referred to as
matrix maps.

A sign distribution σ on n places is any sequence σ = (xXJ •••,
%n •••> «») where ^ = ± 1 for all ί. Two sign distributions σ, τ are
said to be distinct if σ Φ τ and σ Φ — τ.

LEMMA 1.2. Let SS = {σlf , σif , σ2*-i} be a family of 2n~1

distinct sign distributions on n places. Then:

Σ
,—l

σi(k)x(k) ^ 2n'

where x(l), " ,x(ri) are complex numbers.

For the proof, see (1.3) of [3] where one uses the triangle ine-
quality instead of the Lemma (1.2) in [3].

LEMMA 1.3. Let λ, μ be sequence spaces of dimension n. Let
A:X—> μbe a matrix map represented by {ai3). For each u e λ, vf e μx,
we can find a sign distribution σ on n places and y' e μx so that:

(a) \y'(l)\ = \v'(l)\ for all I = 1, 2 , . . . , ? ι .
( b ) If x is defined by x(k) — σ(k)u(k)y then

I akku(k)v'(k) I .

Proof. Let S* = {0\, •••, σ2n-i} be a family of 2n"~ι distinct sign
distributions on n places. Lemma (1.2) gives:

ΣK(J)l i£J^

for all I = 1, , n. Hence, we can find a sign distribution σί so that:

(1.3.1) Σ σi{k)alku{k) ^ Σ \auu(l)\-\v'(l)\.

Choose #' to satisfy:
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Σ 0i(k)alku(k) .

Thus, \y'{l)\ = \v'(l)\. By (1.3.1), we get :

(A(x), yf) ^ Σ I auu(l)v'(l) \ .

DEFINITION 1.4. A normed (Banach) sequence space λ is said to
be a normed (Banach) ideal if it is a normal sequence space satisfying:

(1.4.1) || c x\\ ^ || x || sup {| c(i) |: i = 1, 2, •}

for all c e m, # e λ. A normed monotone sequence space is said to be
monotonely normed if (1.4.1) holds for all c e m satisfying c(i) = 1, •—1,
or 0 (all i).

REMARK 1.5. If X is a monotonely normed sequence space of
dimension n and μ is a normed ideal of dimension n, then Lemma
(1.3) shows that: \\A\\ ^ \\D\\ where D is the associated diagonal of A.

DEFINITION 1.6. Let A — (ai3) be a matrix. Let

1 = m(l) g n(l) < . . . < m(k) ^ n(k) < •

be a sequence of indices. The submatrix of A whose (i, i)-th entry
is α^ when there is a & for which m(k) ^ i9 j ^ n(k) and whose
(i, i)-th entry is 0, otherwise, is called the diagonal block submatrix of
A determined by m(k), n(k), and is denoted by B. Denote

by Aw. Note that Aw = Bw.

2. Throughout this section, λ and μ are spaces of sequences over
the real numbers.

THEOREM 2.1. Let X be a monotone sequence space. Let μ be
any sequence space. If A: λ —> μ is a matrix map and D is the
associated diagonal submatrix, then D(X) c μxx.

Proof. Suppose D(X) <£ μxx. Then we can find u e λ, vr e μx so that

Σ I auu(i)v'(i) I = oo .
i

Define a sequence of indices

1 = m(l) ^ n(ΐ) < < m(fc)
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inductively. Suppose (αίy) is the matrix representation of A. Set
m(l) = 1. Assume: m(l) <:•••< m{k) have been chosen.

(2.1.1) Choose n(k) so that
( 1 ) m(k) £ n(k)

*> I auu(i)v'(i)

(2.1.2) Choose m(k + 1) to satisfy
( 1 ) n(k) < m(k + 1)

( 2 ) Σ«<*+n*i<~ I aiSu(j)v\i) I < l/2*tt(&) whenever m(fc) ^ i ^ rc(fc)
( 3 ) Σ»<*+i>*i<- I α ^ O > ' ( i ) I < l/2*w(fc) whenever m(Λ) ^ i ^ w(Jfc).

Here, we used the fact that the ί-th row ri of (αίy) is a sequence in
λ* to obtain (2) and the assumption that A(X) c μ and that v' e μx to
obtain (3).

Let σί9 •••, σk, •••, be elements in m so that o fc is supported on
[m(k), n(k)], \ σk(j) \ = 1 if j is in the support, and so that

ai3 σk(j)u(j)

Here, we used (1.3.1). Hence, by (2.1.1),

Σ I auu{ί)v'{ϊ)

k
v'(i) I

V V, I aiMi)v'(i) I -Σ
If we can show that the term on the left, which we denote by Δ, is
finite, then a contradiction results and the hypothesis D{\) ςί μ** is false.

Define σ — σx V V σ fc V . Let τem he defined by

τ{i) = sign (v(i)

whenever m(/b) ^ ΐ ^ %(&) and by τ(i) = 0, otherwise. Let

Sk = {i: m(k') ^ i ^ w(fc') for some k' > k) .

Observe that (2.1.2) (2) and (3) give:

V V V

Σ Σ Σ I ai.iu(j)v'(i) I < °°

By inspection, Δ — (A(σ-u), τ-vf)

- Σ .Σ w ( j f c jΣ n(k) aiSuUW(i)

- Σ Σ Σ α,^(^>'(i).
k iesk ' "
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Since λ and μx are monotone sequence spaces and since A(k) c μ, we
must have: σ-ueλ so that

(A(σ u), τ v') < oo .

Thus Δ < oo.

LEMMA 2.2. Let X be a normed space. Let (ai:ί) be an n x n
matrix of vectors in X. Then there is a sign distribution σ on n
places and a vector y' e IZ where \ yf(i) \ — 1 for 1 ^ ί ^ n such that:

s.i UK.") 2LΛ Σ

Proof. For each xr e X', define a matrix A of real numbers by
setting the i, j - th term to be (αi7 , #'). Choose u — I , ?/ = 1 in (1.3)
to get the existence of a sign distribution σ on n places and a sequence
?/' so that I y'(i) \ — 1 for all i — 1, 2, , n and

1 /̂V Ί̂ V

Σ

By the Hahn-Banach theorem, this implies:

Σ

THEOREM 2.3. Lei 1 = m(l) ^ tι(l) < m(fc) ^ n(k) 6β α sβ-

quence of indices. Let X be a monotonely normed, sequence space and, μ be
a sequence space. Let A: λ —> μ be a matrix m,ap. Then, the associated
diagonal block submatrix B, determined by {m(A ), n(k)}, of A satisfies:
B(X) c μxx and \\A\\ ^ \\B\\ where || || denotes the operator sup norm,.

Proof. Let π\ denote π [w(Λ)fW(Jfc)1 and π\ denote π[n{k)+UmmΛ).lV

Define ai3- to be π\Aπl, π\Aπ)CJ π\Aπ\, or π)Arc\ depending on whether
( 1 ) i = 2& - 1 and i = 2i - 1,
( 2) i = 2& - 1 and i = 2Z,
( 3) i = 2fc and j = 2Ϊ - 1 or
( 4) £ = 2/c and j = 2Z

respectively. The vectors ai5 are to be regarded as linear operators
from λ to it. Let £& denote the diagonal submatrix of (ai3 ) . Let
,S^ϊk] denote the 2k x 2k submatrix of (aiά) whose i, j term is a,u if
1 g i, j ^ 2fc. Let ^ | ; ' Ί be the diagonal submatrix of jVn'λ. We may
regard s*?ιkλ (and also &m) as an operator:
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Σ au(x).
^i^2k

If we set X = all bounded linear operators from λ to μxx, then we
get from Lemma (2.2) that:

Here, we used the fact that μxx is a normed ideal and that λ is
monotonely normed. Assuming, momentarily, that J2&(\) c μ*x, we get
that since B = TΓ,,^ where S = {ί: wιk ^ i <^ mk for some &} we must
also have that J?(λ) c μxx: it is easy to see that:

and so,

Thus,

because μxx is a normed ideal.
To see that ^ ( λ ) c μxx, write: ^/^i = π\(x), x2k = π|(.τ) for each

xeX. Similarly, define y'2k_x — π\(y') and T/^ = πl(y') for each /̂' G μx.
For each a e λ and each yf e μx, let tc denote

{u e m: u{l)xι V V u(i)xx V e λ} .

Let vx denote

{vf e m: v'(l)y[ V V v'(i)y{ V e //*} .

Then /r is monotonely normed and (v*)* is a Banach ideal if /r and vx

are given the respective induced norms from λ and μx.
The matrix M = (di^Xj), y[) defines a matrix map from fc to υxx if

we set:

M(u) = ( Σ w(i)(αw(aiy), 2/0> •> Σ ^ ( ( α ^ fo ), 2/ί), )

for each UG/Γ. If JD is the associated diagonal of ikf, then (2.1) gives

y " since ϊetc and Ϊ € i ; r , we get:

Σ (α«(»i), 2/ί) < ^ .

Thus:

(^(x), ?/') = Σ (^(as*), »ί) = Σ (onto), ?/D <
i %

holds for all xe\,y'e μx. .'. &(X) c μxx.
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REMARKS 2.4. Although c0 is not a perfect sequence space, it is
nevertheless true that if λ is any normal sequence space (over the
reals) and A: λ —> c0 is a matrix map, then the associated diagonal D
of A maps λ into c0. For, if A(λ) c co> then Theorem (2.1) shows
-D(λ) c m. Let (a{j) be the matrix representation of A. If r* denotes
the ΐ-th row of (<%), it is not hard to check that {rj is a O-convergent
in the weak topology on lι from L. Thus, {rj is O-convergent in the
I, norm. In particular,

lim I α« I ̂  lim Z^rJ = 0 . D(λ) c c0 .

(Essentially the same argument holds even when λ ςt m.)
The techniques used in (2.1) and (2.3) are similar to that of [3].

The results there were given for λ = lp, μ — lr and sharper conclusions
were derived insofar as we were able to establish a criterion for
|| A || > || D || whenever 1 <£ r < p ^ oo,

We note also that (2.3) above may be reinterpreted as showing
that the projection from the space of bounded matrix maps onto
the subspace of the associated diagonals is of norm one, provided
that λ is monotonely normed, while μ is a normed ideal and a perfect
sequence space. Actually, we have required μ to be a normed
ideal because we are proving these results in such a way as to cover
sequence spaces over the complex scalars. If real scalars are being
used, then it suffices to assume that μ is monotonely normed. The
crucial use of these hypotheses is in facilitating the use of Lemma (1.3)
where the definition of y' following (1.3.1) is the deciding issue.

3. This section gives an independent proof of Theorem (2.1) for
the case where λ is normal. With this hypothesis on λ, we are able
to reduce the problem to an argument involving matrix maps between
Banach sequence spaces and thereby avoid the involved computations
of (2.1). We allow λ and μ to be sequence spaces over the reals or the
complex numbers. The rest of the section gives the application to
the problem of Mazur.

THEOREM 3.1. Let X be a normal sequence space. Let μ be any
sequence spaces. Let A: λ —> μ be a matrix map. Then the associated
diagonal matrix D of A maps λ into μxx.

Proof. If u e λ and v' e μx, define ic, v to be Banach sequence
spaces by setting:

iί = {xe ω: x-uem)

\\x\\κ = s u p I I x ( f c ) I : k = 1 , 2 , •••}



558 A. E. TONG

= {yeω:'ξί\y(k)vt(k)\

Here, we have assumed without loss of generality, that u(k) Φ 0,
v'(k) Φ 0 for all k. It is easy to check that tc and v are Banach
ideals. Clearly, A(/c) c v and since any matrix map between Banach
sequence spaces is bounded (see Corollary 5, p. 204 of [4]), A is also
a bounded operator.

The theorem is proved if we show that D{tc)czv. Let || || denote
the operator sup norm. If D does not map tc into v, then:

Σ I akku{k)v'{k) I = co .
k

By (1.5), we have:

co > II A II ^ s u p | | π L l , n J A τ r [ l f l l ] |
n

(3.1.1)

Hence, we must have had: D(tc) c v.

If μ is a normed sequence space we give μ£X the norm generated
by (unit ball of μ)xx.

THEOREM 3.2. Let λ be a monotonely normed sequence space.
Let μ be any sequence space. Let A:X—> μ be a bounded matrix map.
If D is the associated diagonal of A, then D(X) c μxx and \\A\\ ^ || I? ||,
where the sup norm is computed with respect to the norms of λ and
μxx.

Proof. By (2.1), D(X) c uxx. Observe that

\\D\\ =

and argue as in (3.1.1), observing that 7Γ[1>n](λ) is a monotonely normed
sequence (of dimension n) and that πίUn](μ) is a normed ideal (of
dimension n) so that the appeal to (1.5) is legitimate.

S. Mazur posed and affirmatively answered the following problem:
If (ai5) is a matrix of complex numbers so that Σ i I Σy UiMJ) \ < °°
for all xem, does it follow that Σ i I aa I < °° ?

His answer, found in Pelczyήski-Szlenk [2], gives a stronger con-
clusion. In this section, we apply our results in § 2 to give a more
general version of the problem.
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THEOREM 3.3. Let 1 <Ξ p, r <; eχ>. Let g denote co, pr/(p — r ) ,

or r depending on whether l^p^r<*oo,l<^r<p<^, or 1 <;

r < co αwd p = co respectively. Let A: lp —> ϊ r δe α matrix map.

Then lg(aLl1 α i {, •) < co. /% fact, if D is the associated diagonal

of A, then D(lp) c lr and || A || ^ || Z> | | .

Proof. Note t h a t for the case p — co, r = 1, we have g — 1 so

t h a t this theorem contains the affirmative answer of Mazur. Observing

t h a t lr - lx

r*, we conclude from (2.1) t h a t D(lp) c lr. In (2.2) of [3],

it was computed t h a t | | D | | = lg(aLL, •••,««, •••) and an inspection of

the proof shows t h a t D(lp)<zlr if and only if \\D\\ < co. Finally,

|| A || ^

^απ, •••, ann) = | |2? | |

where (3.2) was used to obtain the second inequality. We note in

passing that a Baire category argument proves every matrix map

(between Banach sequence spaces) to be bounded (see Corollary 5,

p. 204 of [4]) so that in the theorem above, | | D | | <̂  | |A | | < co.

BIBLIOGRAPHY

1. G. Kb the, Topoίogίscke lineare Rάume, Springer, 1960.
2. A. Pelczyήski and W. Szlenk, Sur I 'injection de espaces (I) da?ιs Γespace (lP), Col-
loquium Mathematicum, 1O (1963), 313-323.
3. A. Tong, Diagonal nuclear operators on lP spaces (to appear in Trans. Amer,
Math. Soc.)
4. A. Wilansky, Functional analysis, Blaisdell, 1964.

Received February 18, 1969.

STATE UNIVERSITY OF NEW YORK AT ALBANY






