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FORMS OF THE AFFINE LINE AND
ITS ADDITIVE GROUP

PETER RUSSELL

Let k& be a field, X, an object (e.g., scheme, group scheme)
defined over k. An object X of the same type and isomorphic
to X, over some field K o k is called a form of X,. If % is
not perfect, both the affine line A' and its additive group G,
have nontrivial sets of forms, and these are investigated here,
Equivalently, one is interested in k-algebras R such that
K Qi R = K[t] (the polynomial ring in one variable) for some
field K o k, where, in the case of forms of G., R has a group
(or co-algebra) structure s: R — R @y R such that (K ®s)(t) =
t®1+1Q¢t A complete classification of forms of G, and
their principal homogeneous spaces is given and the behaviour
of the set of forms under base field extension is studied.

If & is perfect, all forms of A' and G, are trivial, as is well known
(cf. 1.1). So assume % is not perfect of characteristic p > 0. Then
a nontrivial example (cf. [5], p. 46) of a form of G, is the subgroup
of G = Spec k[x, y] defined by y* = x + ax® where ack,a¢k’. We
show that this example is quite typical (cf. 2.1): Every form of G,
is isomorphic to a subgroup of G2 defined by an equation y*" = ax +
ax® + -+ + a,2™, a; €k, a, > 0. Analyzing the equivalence relation
induced on the right hand side polynomials by isomorphism of the
groups which they define, we obtain a description of the set of forms
of G, split by £*" as, essentially, the quotient of an infinite direct
sum of copies of k/k”" under a certain group action (cf. 2.5).

If G is a nontrivial form of G,, we show that End, G is a finite
field (cf. 3.1). This allows one to compute the set of k,/k-forms of
G (k, a separable algebraic closure of k) using Golois cohomology. This
set is nontrivial in general, in contrast to the same situation for G.,.

A form X of A' may fail to have a group structure for two
reasons. First, and this is the serious failure, X, may not have
enough (i.e., infinitely many) automorphisms. As an example, with
the identity as the only automorphism, one may take P' — {q}, where
P! is the projective line and ¢ is a purely inseparable point of degree
p™ > 2. The general case here seems to be rather complex. Secondly,
X, may have enough automorphisms, but X may not have a rational
point. We show that then X is a principal homogeneous space for a
form of G, (cf. 4.1). This gives a new interpretation of a result of
Rosenlicht ([4], p. 10, theorem) on curves with exceptionally many
automorphisms (cf. 4.2).
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1. Throughout this paper k& will be a fixed base field, ¥ an
algebraic closure of k, k; = k*™~ (p = char k) the perfect and k&, the
separable closure of & in k. Reference to % will usually be omitted.

It is well known (cf. [5], p. 34 and [6], p. 108) that a form G
of G, is split by k;, that is, Gi, = G.r,. The same is true for forms
X of A'. For the sake of completeness, and to establish some notation,
we briefly outline the argument. The idea is to investigate the com-
plete regular curve P determined by X. As a matter of terminology,
we call a scheme Y regular if all its local rings are regular, and non-
singular if Y is regular for any KD k. As is well known, Y, non-
singular implies Y nonsingular, and Y is nonsingular if and only if
Y ,— is regular. The existence of forms of A' is closely connected
with the divergence of these notions if % is not perfect. If Y is a
curve, we denote by Y, the regular curve obtained by normalizing Y.

LemMmA 1.1. Let X be a form of A* and P> X a complete regular
curve.

(i) P — X is a point purely inseparable over k.

(ii) There is a unique minimal field k' Dk such that X, = A},
and k' is purely inseparable of finite degree over k.

Proof. The genus of ﬁk; is zero since this is so after suitable
base field extension and since, k; being perfect, the genus does not
change under base field extension (cf. [1], V, §5, Th. 5). Since P;
has a rational point, P; = Pi. An open subscheme of P} (K any field)
is a form of AL if and only if it is the complement of a purely in
separable point. Hence P; — X3 is a point, and a fortiori P — X
(vesp. P,, — X;,) is a point purely inseparable over k (resp. rational
over k;). In particular, 13,,,; =P, and X, = Aj,. If Kok isany field
such that X, = AL, then P, — X, is a point rational over K and K
contains (up to unique isomorphism) the residue field k, of P — X.
Now pass to X, and continue this process. After finitely many steps,
we reach a field ¥’ c K, kc ¥’ c k;, such that P, = P,, and P, — X,
is rational over k’. Then X, = Al.

A' = Spec k[t] admits, up to choice of origin, a unique group
structure (given by s(t) =t ® 1 + 1 Q ¢t if the origin is at ¢ = 0), and
any automorphism of A' sending the origin to the origin is a group
homomorphism. Let G and G’ be groups with origins ¢ and ¢’ and
an isomorphism of the underlying schemes, supposed to be forms of
Al, such that 4(q) = q¢’. Then « is a homomorphism of groups after
base field extension, which means that a certain diagram of morphisms
(over k) commutes after base extension and so is commutative to begin
with. Hence + is an isomorphism of groups. This gives:
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LemMA 1.2. Let X be a form of A'. Then any group scheme G
with underlying scheme X is a form of G,. The group structure (1f
it exists) 18 unique up to choice of origin. If X, = Ak, then Gy = G.x.

We assume from now on that chark = p > 0. We denote by &~
the base change functor deduced from

" k—k
o — af .
For any scheme X there is a canonical morphism Fy: X —6"X. If X
is a group scheme, so is #"X and F'y is a homomorphism. Referring
to [3], p. I. 1-5 for more details, we remark only that if X = Spec R
is affine, then "X = Spec ((k, ") Q. B) where (k, p™) = k considered

as a right k-algebra via ¢ and as a left k-algebra in the usual way,
and that F'? is deduced from

Fg:(k’¢n)@R—_’R
a @ T — ax® .

®" accomplishes, up to isomorphism, the same as the base change
kc k*". More precisely, if K is purely inseparable of exponet < n
over k (that is, K*" C k), there is a commutative diagram

k— K
S
ol
k

and we have 0"X = (k, ) Qx Xx for any scheme X over k.

LEMMA 1.3. Let X be a form of A'. For any integer n = 0, F'z
18 a purely inseparable morphism of degree p". For any morphism
¥: X — Y of finite degree, there is a unique factorization + = Fy
where p™ is the inseparable degree of v and 4 is a separable morphism.
Finally, there is an integer n = 0 such that "X = A'.

Proof. The last statement follows from 1.1 and the remark above.
The function field #(X) of X is separable of transcendence degree one
over k and so has, for each %, a unique subfield D % over which it is
purely inseparable of degree p", namely

k(r(X)") = (k, ") @ £(X) = £(6"X)

(cf. [2], p. 186, Th. 19 and p. 179, corollary). This proves the first
statement and the second follows in view of the fact that 67X is
normal.
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1.4. Let X be a form of A'. We let n(X) be the least n such
that #X = A' or, equivalently, the least n such that X has a splitting
field of exponent n over k.

The point of 1.3 is that the affine ring R of X has 'a unique
maximal subring of the form S = k[x] such that R** < S for som n,
and that the only other subrings with this property are the rings
k[x*"], m» = 0. Note, however, that n(X) need not be the least n such
that £(6"X) = k(t) or, equivalently, that "X cP'. Y =P — {¢}, ¢
purely inseparable and not rational over k, is one example and, giving
Y some further twist, one can find X such that *X = Y and » > 1.

2. Since G, is defined over the prime field, we may identify G,
and 6G,. Then F = F; € A = Hom, (G,, G,). It is well known that
A = k[F], a ring of noncommutative polynomials with relations
Fa = a’F for ack. We define the power series ring A = k[[F]]
in the same way. Let ¢:A—k be the natural augmentation. We
let A* = e(k*) and A** = ¢(1) and make corresponding definitions
for A. As in the case of ordinary power series, A* is the group of
units of A. By truncation we obtain groups U, = A*JAF" = A*|AF™,
T=>raF'cA, a, #0, has degree p™ as a morphism z: G, — G,,
and we also give it degree p™ in the graded ring k[F]. Note that
A*C A is the subset of separable homomorphisms. An endomorphism
Ak — k commutes with p-th powers and so extends to an endomorphism
MA—A

S @ F s 3 Ma)F .

In the particular case A = " we put A7) = ¢ for € 4 and MA) =
A", @ ig characterized by F "t = t™F".

If G=SpecR is an affine group with group operation s: K —
R®.R,Hom,(G,G,) may be identified with

frisry=r®1+1Qr}c R = Hom (k[t], R) .
In particular, A is identified with the set of p-polynomials

ft) = at + at? + -+ + a,t™" ck[t] .

THEOREM 2.1. Let G be a form of G,. Then G 1is isomorphic
to a subgroup Spec k[z, y1/I of G% = Spec k[x, y] where I is generated
by a polynomial y*" — (a + ax? + «++ + a,x*™), a,# 0. Equivalently,
G s a fiber product
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¢ .6,

1| I

GuWGa

where T =a, + &, F + «++ + a,F™c A*. Conversely, any G defined
that way is a form of G,.

Proof. Let G = SpecR, s: R— R, R the group operation,
5: (b, ) Q B— (b, o) QRQ R = (b, 9") © B) @ (k. ") @ R)

the induced group operation for #"G. By 1.3, we have 6"G = G, for
some n, so that (k, o) ®, R = k[t] where we can choose ¢ such that
) =tR1L+1Rt. Writet = >, a; @ y; with a,€ k and y; € B. Then

) =tQRQ1+1Qt=30aQyRQLl+>aR®l1Ry:
=2 8a:;Qu) = 3 a; Q s(¥s) -

If we choose the a; linearly independent in %k considered as a vector
space over kvia@®, i.e., linearly independent over k**, this implies
() =¥: @1 +1Xvy;. Hence the y,(1& y;) define homomorphisms
7::G— G, (0™);: G, — G,). As observed above, this implies 1Qy; = fi(t)
where f; is a p-polynomial. Applying F'2 and putting x = Fj(t), we
obtain y?" = fi(«). Clearly the y; generate R over k£ and one of them, call
it v, is a separating variable for £(G). Then ¥ = f(x) = a + a,x° +
oo + 2", with a, # 0 since x is separable over k(y). This shows
that k[x, y] C R is integrally closed. &(G) is separable and purely in-
separable over k(z, y), so k(z, y) = £(G) and R = k[z, y]. This proves
the first statement. The next follows letting » be the homomorphism
corresponding to ¥ and & = F'7 the homomorphism corresponding to x.
Finally, let R = k[x, y] where y** = f(x). Then s: R— R, R, s(x) =
2RL+1QR2,s(¥) =yR1+ 1Ry, is well defined and gives a group
structure on R. Taking a, = 1 for simplicity, we have

1®x — (1®ypn—-1 _ (af”—l®x + Ve + a?nn—1®wpm—-l))p — tf,

in (k, ") @, R. Replacing 1 @« by ¢* on the right hand side and
continuing that way, we find te(k, ") @, R such that 1®z = ¢t
and 1 ® y*" = (f(t))*". Spec R is nonsingular, so (k, ") ®, R is reduced.
Hence 1 Q y = f(t), showing that (k, »") K, R = k[t].

2.2. We write G = (F'", 7) (with 7 e A*) for a fiber product as in
the theorem. Note that G can be so written if and only if "G = G,.
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PROPOSITION 2.3. Let G = (F",7),G, = (F™,7,) and assume n, < n.
Then G = G, if and only if there exist elements pe A*,0ec A and
cek* such that

i = (o™t 4+ F"g)ct.

0 may be chosen of degree < p"~'.

Proof. The monomorphism (&, 7): G— G2 induces an epimorphism of
A-modules A P A = Hom, (G2, G,) — Hom, (G, G,) (cf. [6], p. 102, pro-
position). Hence Hom, (G, G,) = A7y + A¢ with F") = 7§ as a defining
relation. Since G is reduced and irreducible, Hom, (G, G,) is torsion free.

Let 4: G— G, be an isomorphism and consider the commutative
diagram

: 5/\
G, 3 = G
711
ﬂl '1
G, Vi - @,

Now 7 = nyr = pn + o0& for some p, o€ A, and we must have pec A*
since 7/ is separable. Also, if o = p, + 0,F'", then oy = o + p,7¢.
So we can choose o of degree < p”. ~ Assume first » = »,. Then & =
£+ is purely inseparable of degree p”. By 1.3, &4 = ¢& with ce 4
a separable and purely inseparable homomorphism, that is, ce k*. Now

t.ép = F'pop = Fr0o1 + Froé = o™ F") + Froé
= (0"t + Fr0)¢ = (0™t + Fro)c ey,

giving 7, = (0™t + F"o)c™'. Conversely, define &, 7 € Hom (G, G,) by
& = c& and 7 = pn + o&. Then F"y' = 7,§, and we obtain a homomor
phisrAn J: G — G, such that & = &+ and 7' = 4. Now p is invertible
in A and we can write o™ = p, + 0,F* with p,e A*. Then 7 =
(0"t + F"o,)¢ with o, = (0,0t — p,0)c™ € A. Reversing the roles of
G and G, we get +,: G, — G inverting .
Suppose now # — n, = #, = 0. In the commutative diagram
& Fne

G —G,— G,

S

Gll F"l Ga F"Z Gd
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both the left and right square are cartesian. So the big square is
cartesian, and consequently G, = (F'*, 7{"'). Now the previous argument
applies.

Since (F'", t) = (F'", te(t)™"), any G can be written with e A**.
This normalizes 7 to some extent:

COROLLARY 2.83.1. Let G = (F", 7). Then G = G, if and only if
tce A™ for some cek*. If t=1+aF + -+ + a,F™ec A**, then
E = k(a?™", «-+,a% ") s the minimal splitting field for G.

Proof. Since G,=(F",1), the proposition gives tc=p™ + F g€ A™
if @ = G,. Conversely, let z¢ =7{®. Then 7, ¢ A* and we can write 1 =
o, + oF™ So 1= (0"t + F™ogc¢*)¢ and (F*, 1) = (F", 7). This
proves the first statement, and the second follows since we can take
¢ = 1 above if T e A%*.

COROLLARY 2.3.2. Let G = (F™,7) and 0 <m < n. Then
"G = (F~™, 7).

Proo f. Apply @™ to the cartesian square defining G. Noting that
ot = '™, we get "G = (F", ™) = (F ™, 7).

2.4. For any field K Dk, we define E(K) as the set of isomorphism
classes of forms of G,r and put E(K, n) = {Ge E(K)|0"G = G.x}.

The rule (p, g, ¢)-T = (0"t + F"o)c™* defines an action of
A* X A x k*,

endowed with a suitable semi-direct product structure, on A*, and 2.3
states that E(k, n) may be considered as the quotient of A* under
this action. A* is not a group, but this inconvenience can be avoided
by dividing out by A first and passing to the group U, = A*/AF™".
Let V, =U, x k*. Then the map

Vo X A*[F"A — A*[F"A
(0, €) X T——(0™7e™)”

(*)

(where ~ denotes taking residue classes) is well defined and gives an
action of V, on A*/F"A. Clearly all the operations involved are com-
patible with base field extension. Now 2.3 implies:

THEOREM 2.5. The map

A* —— E(k, n)
T—— (F", 7)
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induces a bijection between the quotient of A*/F"A by the action (*)
defined above and E(k,n). This identification is compatible with
base field extension.

Similarly, we can define an action
Un X A**/F'nA____) A**/FnA by p‘_z_. — (‘o(n)z.e(p)_pn)_, .

Since any G can be written as G = (F'", 7) with 7€ A**, the quotient
may again be identified with E(k, n). As an example, let us work out
the case n = 1. Choose a complementary subspace W, for k? in k& and
for each ¢+ =1 let W, be a copy of W,. Then U, = k* acts on W =
D, W; by ¢-Sa; = 3, ¢??q,. Letting (F,1+ 3 a;F%) correspond
to the class of 3 a;, one identifies E(k, 1) and W/k*.

Let A*/F""A— A*/F"A be the natural map and define V,., —
V., by (0, ¢) — (0™, ¢). Then

Va1 X A*|F"A —— A*|F"HA

J l

V., x A*|F"A —— A*|F"A

commutes and it follows from 2.3.2 that the induced map on the
quotients is @: E(k,n + 1) — E(k, n). Unfortunately there does not
seem to be a coherent way to reverse the vertical arrows in order to
obtain the inclusion E(k, n) C E(k, n + 1).

PROPOSITION 2.6. Let KDk be a field and
V. E(k)— E(K)

the natural map.
(i) If K tis purely inseparable over k, then ¥ is surjective.
(ii) If k is algebraically closed in K and K 1is separable over k,
then ¥ s injective.

Proof. (i) Let G=F"1)cEK),7=1+aF + -« + a,F™
There is an integer » = 0 such that o = a;ek, 2 =1, ---, m. Let
=14+aF + +++ +a,F™ and G = (F**", ') e E(k). Then ¢’ ="
over K and 2.3 implies Gx = (F'"*", ") = (F", 7) = G.

(ii) Let G= F"~7)y,v=1+ Da;F‘eA, o= xFicA} with
z; =0 for i = n, and ¢ = D, y;F* e Ax. Suppose (07 + Fro)x;?" =
1+ 3.0,F* =7¢'ec A, that is,

i—1 . .
(*) ( S atall; + o 4 y%’f%)w:”““ =b,ek

3=0
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for 1 = 1. (Set y, =0 for 7 < 0). We have to show that the same
can be done with z;, y;€k. We may clearly assume G % G,. Then
not all a;c k" and there is an r = 1 such that a,, ---, a,_, ¢ k*" but
a,¢ k™. If » > 1, we can replace 7 by (1 — a,F')t (since a, ¢ k") which
has a zero linear term. By an obvious induction argument, we can
assume a, = --+ = @,_, = 0. Then (x) gives (for ¢ = r)

n_pntr PN —pn T n —pntr
@l P w4yt a? T =0,

Put w = a7, v = x,2;7" if » <n (and so y,_, = 0), and v = y,_,x;7" if
r = n (and so x, = 0). In both cases a,u®?" 4 ¢*" = b,. Extracting
p-th roots in k from a, and b, as far as possible, we can write
au'*"~h?" 4 97" — p where not both a and b are in k” and n, = 1 (since
a,¢ k™). If we¢k, then u is transcendental over k&, au®"—"?"t — b 4 »?™
is irreducible in k(u)[v], but becomes reducible upon adjoining a?~' and
b""" to k. This shows that k(u, v) C K is not separable, contradicting
the separability of K. Hence 2, = u~'c k. Taking (x) first with 7 =
1, ..--,n — 1, we see that 2;¢k, and then v,_, €k follows for 7 = n.

The proof above suggests examples showing that the assumptions
in (ii) cannot be weakened. First, let &k = k,(a, b) with a, b algebraically
independent over k,. Then G = (F,1 + aF)and G’ = (F,1 + bF) are
not isomorphic over k. On the other hand, we can define K = k(u, v)
by au”®" — b + v* = 0. One checks that % is algebraically closed in
K. Butnow 1+ bF = u~?(1 + aF)u* + Fv, so that G = G%. Next,
suspose k contains elements a and ¢ such that a ¢ k” and ¢ ¢ k*~* where
g=p">2. LetG=(F",1+ aF™,G =F™1+ caF™. If KDk,
then Gy = G} if and only if au?"™ + v? = ¢’a has a solution with u,
ve K. If K is separable over k, then a ¢ K?, so necessarily v = 0 and
%'t = ¢. This is possible over a finite separable extension of % but
not over k. We will see below that this example is typical (cf. 3.1.1.).

3. Let G and G, be forms of G, written as fiber products

¢ -*.a, G, .6,
nl lr and ml lq
G, - G, G, T G,

with % = »(@) and %, = %(G,) (cf. 1.4). Suppose + € Hom, (G, G,) is
nonzero. Then #*y: G, — &G, is nonzero, and since a nonzero homo-
morphic image of G, is isomorphic with G, (cf. [6], p. 101, lemma),
we must have n, =n — n, = 0. Now F™&+ has inseparable degree
= p" and therefore factors through & This gives a commutative
diagram
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G —
3g&g}a FJ’ -
G
G, — G, — G,

“ Fm % Fm

If 4 is separable, so are 7, and z{"»7,. This shows that one can use
the big square to define G as a fiber product, that is, G = (F'", t{"'z,).
By 2.3 there exist o€ A* and o e A such that

(%) ", = o't + Fro .

(No ¢ appears since £ is left unchanged.) Conversely, if 7, satisfies
(%), there is a unique +» making the diagram commutative. So separ-
able homomorphisms +: G — G, are in one-to-one correspondence with
those 7, A* for which a solution to (x) exists.

THEOREM 3.1. Let G be a form of G., G % G,. Then End, G may
be identified with a finite subfield of k. If End, G, =F, and
kc Kck, then Endy Gy = KN F,.

Proof. Let G = (F'", 7), n = n(G), and suppose +:G— G is non-
zero. If + is not separable, there is a nonzero homomorphism 6G —
G. Since n(0G) < n(G), this is impossible, as we have seen. So + is
separable and 7, = #"y satisfies a relation

(%) T, = Pt + F"o peA*,oceA.

We will assume, as we may, that dego < p". Since 6", » =0, is a
faithfully flat base change functor, #7: End, G — End, "G is injective
and moreover @7 is a monomorphism (epimorphism) if and only if +
is. Taking » = » — 1, we see that it is enough to prove the first state-
ment in case n = 1. We can then choose p =ack* and 7 =1+
aF™ + «occ +q,F™ with 1< m, <m,< --- <m, and a;¢k". Let
Ty, =C+cF+ oo +¢F e, =0 and ¢, # 0. Comparing coefficients
in (%), we get a,c2"° ck” unless » = 0. Since m, =1 and a,¢k”, we
actually have »r =0 and 7, = ¢, = cck*. (x) now reduces to a?r —
tce FA, and this gives > —c¢=0 and (¢ — ¢® )a;ek?, i =1, +++,8
Since a; ¢ k?, this implies ¢ — ¢*"* = 0. Or, equivalently, ¢ — ¢*™ = 0
where m is the greatest common divisor of m,, «--, m,. Conversely
7¢ = ¢t for such ¢ and if ¢+ 0, it lifts to an automorphism of G.
Hence End, G = kN F,» in this case.

Now let n = 1,F, = End, G, ,kCc KCk, and 7, =ce KNF;. To
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show that ¢ e Endy; G, we have to solve (x) with o, 0 € Ax. However
there exists a solution over k,, and applying to it a K-automorphism
»of k,, we get 7¢ = N(ze) = Mo™) + F™A(0) and 0 = (0™ — A(E™))T +
F*»(c — Mo)). Multiplying by z* (in AK), we have 0 = (0" — MpE™)) +
Fr(e — Mo))r™, giving o™ = Mo™) and ¢ = A\(0) since deg o < p™.
Hence p, 0 € Ag.

The theorem states that the automorphism functor of G coincides
with the functor p, (r-th roots of unity, » = ¢ — 1 prime to p) on
separable algebraic extensions of k. Galois cohomology therefore gives
(for details we refer to [8], in particular I, §5, II, §1 and III, §1):

COROLLARY 3.1.1. Let E(k,/k, G) be the set of k,/k-forms of G.
Then E(kk, G) = H'(k, F}) = k*/k**.

4. We turn now to forms of A' that fail to be groups by just
the absence of a rational point.

PROPOSITION 4.1. Let X be a form of A' and suppose that X,
admits a group structure. Then X is a principal homogeneous space
for a form G of G, determined wuniquely by X. Moreover, X =
Spec kfz, y]/I, G = Spec kl[u, v]/J where I and J are generated respec-
tively by y™ — b — f(x) and v*" — f(u) with bek and f a separable
p-polynomial. Conversely, if X and G are defined as above, then X
18 a principal homogeneous space for G.

Proof. Let X = SpecR. As in the proof of 2.1, we have
(k, ™) Qi B = k[t] for some n,t =3, a; ®y; with a; ek linearly in-
dependent over £*", and y?" = g,(x) € k[x] with » = F3(t). Let qe X,
be rational over k, and let ¢; ek, be the residue of y; at ¢g. Put ¥, =
Y; —cp, V=1t - =t —cand 2’ =x —c. Then ¢t = >, a; R Y},
q lies above the point ¢ = 0 of A}, = #"X,, and we can choose ¢ as
the origin of the group structure supposed to exist on X,. The a;
remain linearly independent over k2" and we have y'*" = fi(«’) with f;
a p-polynomial as in the proof of 2.1. Hence g;(z) = y?" = b; + fi(x)
with b, = ¢ — fi(c), and g,(x) € k[x] implies b, ek and fi(x) e k[x]. If
y is a separating variable for £(X) picked from the y;, we get y*" =
b + f(x) where f has nonzero linear term. As before, this implies R =
k[z, y]. Let G = SpecS, S = k[u, v] with v** = f(w). Then a: R—
RRS,ax)=2QRL1+1RX®u and ay) =yR1+1Qv, defines an
action of G on X. a@R®,R—RQ,S defined by a(w®z) =
(w® 1)a(z) is an isomorphism and gives an isomorphism (over X)
G x,X-—~> X x,X. Hence X is a principal homogeneous space for
G. If this is also true for G,, we get an isomorphism (over X)
G x, X-->G, x,X. Applying 2.6 (ii) to the fiber over the generic
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point of X, we see that G = G..

Principal homogeneous spaces for G are clasified by H'(k, G) (cf.
[8], I, Proposition 33). Let G = (F'", 7). Then there is a commuta-
tive diagram with exact rows:

7

0 kery G
al el o
0 ker ¢ G, G. 0.

T

The exact cohomology sequence and HYk, G, =0 give H'(k, G) =
k/f(k) + k", where f is the p-polynomial corresponding to z. The
Galois group of the spliting field of 0 =56+ f(x) = b+ ax + - - - + @™,
a, # 0, is isomorphic to a subgroup of f~'(0)c k,. Hence f(k) =k if
k has no normal extension of degree p, and H'k, G) = 0 for all forms
G of G, in that case. The author does not know whether the con-
verse of this statement is true if & is not perfect.

In [4] Rosenlicht characterized curves that are “exceptional” in
the sense that the genus ¢ is =1 and the group of automorphisms
(leaving a point fixed if ¢ = 1) is infinite. We give another characteri-
zation, already implicit in [4], p. 10, theorem, assuming the exceptional
case over k_only.

THEOREM 4.2. Let P be a complete regular curve such that Py is
exceptional. Then P has exactly one singular point q,q is purely
inseparable over k, and X = P — {q} is a principal homogeneous space
for a form of G,.

Proof. It is enough to prove the first statement in case k = k..
It is then taken directly from [4], p. 5, lemma. It is also shown
there that 13,,1. has genus zero. Hence X = P — {q} is a form of A’
and we have F7: X —6"X = A’ = Spec k[t] for some n. This gives
an injection #": Aut, X — Aut, A'. Now let £ = k,. It then follows
from [4], loc. cit., that Aut, X has an infinite subset of automorphisms
operating without fixed point. Hence 6#"(Aut, X) contains infinitely
many translations ¢+ ¢ + b. With notations as in the proof of 4.1,
write t = 3 a; @ ¥, 1 Q y; = fi(t), with ¢ so chosen that the point
9, € X above ¢t = 0 is rational. If ¢; is the residue of y; at q,, we have
fi(0) = ¢?" e k*". Since 0 = Y a,1;(0), we get f,(0) =0. If T, is the
automorphism of X inducing t+— ¢ + b, we have ¢t + b = 3 a; ® T¥(¥,).
Let b; € k be the residue of y; at T,(¢;). Then b = 3, a;b?" and ¢ + b =
>.a:;Q(y; + b;). Hence Ty (y;) = y; + b; and fi(t + b) = 1Q T (y:) =
fi(t) + b7". With ¢t =0, this shows 02" = f;(b). Since this holds for
infinitely many b, each f; is a p-polynomial. Hene X has a group
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structure (over k,) and 4.1 applies.

If X is a principal homogeneous space for a form G of G, and
P> X a complete regular curve, then G(k,) C Aut, P,, is infinite.
So P, is exceptional if the genus g of P is positive. The cases g =0
as well as g =1 can be settled completely. Excluding the trivial
case X = A', we have: If g =0, then chark =2. If g =1, then
char k. = 8. Moreover, X = Spec k[x, y]/I where I is generated by
y* — b — & — ax® with p = 2 or 3 respectively and a, bek.

It is enough to prove the corresponding statement for the groups
G that are involved, that is, we may assume X = G has a rational
point. Now, by a theorem of Tate ([9], Corollary 2), the genus changes
by a multiple of 1/2(p — 1) on passage from X to X. On the other
hand, if # is the local ring of P — X, the genus change is dim, &2/’
where 7' = (k, ) @, ¢ and 7, is the normalization of ' (cf. [7],
p. 73, example). So a drop in genus occurs unless <7 is nonsingular.
But then P is nonsingular, so ¢ = 0 and P = P'. Excluding the case
G = G, we must have P' — G of degree 2 (cf. [5], p. 35 or the remark
in the introduction). Hence p = 2 and »(G) = 1. If p > 2, we see that
g=1/20(G)p —1). So g =1 implies #(G) = 1 and p = 3. In both cases
(9 =0 or 1) G = Speck[z,y] with y* =2 + a2? + -+ + a,2*" and
a, ek? (cf. 2.1). Using [9], proposition, one checks that then g =
1/2(p — 1)(p™ — 2). So necessarily m = 1.
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