FORMS OF THE AFFINE LINE AND ITS ADDITIVE GROUP

PETER RUSSELL

Let k be a field, X_0 an object (e.g., scheme, group scheme) defined over k. An object X of the same type and isomorphic to X_0 over some field $K \supset k$ is called a form of X_0 . If k is not perfect, both the affine line A^1 and its additive group G_a have nontrivial sets of forms, and these are investigated here. Equivalently, one is interested in k-algebras R such that $K \otimes_k R \cong K[t]$ (the polynomial ring in one variable) for some field $K \supset k$, where, in the case of forms of G_a , R has a group (or co-algebra) structure $s: R \to R \otimes_k R$ such that $(K \otimes s)(t) = t \otimes 1 + 1 \otimes t$. A complete classification of forms of G_a and their principal homogeneous spaces is given and the behaviour of the set of forms under base field extension is studied.

If k is perfect, all forms of \mathbf{A}^1 and \mathbf{G}_a are trivial, as is well known (cf. 1.1). So assume k is not perfect of characteristic p>0. Then a nontrivial example (cf. [5], p. 46) of a form of \mathbf{G}_a is the subgroup of $\mathbf{G}_a^2=\operatorname{Spec} k[x,y]$ defined by $y^p=x+ax^p$ where $a\in k, a\notin k^p$. We show that this example is quite typical (cf. 2.1): Every form of \mathbf{G}_a is isomorphic to a subgroup of \mathbf{G}_a^2 defined by an equation $y^{p^n}=a_0x+a_1x^p+\cdots+a_mx^{p^m}, a_i\in k, a_0\neq 0$. Analyzing the equivalence relation induced on the right hand side polynomials by isomorphism of the groups which they define, we obtain a description of the set of forms of \mathbf{G}_a split by $k^{p^{-n}}$ as, essentially, the quotient of an infinite direct sum of copies of k/k^{p^n} under a certain group action (cf. 2.5).

If G is a nontrivial form of G_a , we show that $\operatorname{End}_k G$ is a finite field (cf. 3.1). This allows one to compute the set of k_s/k -forms of G (k_s a separable algebraic closure of k) using Golois cohomology. This set is nontrivial in general, in contrast to the same situation for G_a .

A form X of A^1 may fail to have a group structure for two reasons. First, and this is the serious failure, X_{k_s} may not have enough (i.e., infinitely many) automorphisms. As an example, with the identity as the only automorphism, one may take $P^1 - \{q\}$, where P^1 is the projective line and q is a purely inseparable point of degree $p^n > 2$. The general case here seems to be rather complex. Secondly, X_{k_s} may have enough automorphisms, but X may not have a rational point. We show that then X is a principal homogeneous space for a form of G_a (cf. 4.1). This gives a new interpretation of a result of Rosenlicht ([4], p. 10, theorem) on curves with exceptionally many automorphisms (cf. 4.2).

1. Throughout this paper k will be a fixed base field, \bar{k} an algebraic closure of k, $k_i = k^{p^{-\infty}}$ $(p = \operatorname{char} k)$ the perfect and k_s the separable closure of k in \bar{k} . Reference to k will usually be omitted.

It is well known (cf. [5], p. 34 and [6], p. 108) that a form G of G_a is split by k_i , that is, $G_{k_i} \cong G_{ak_i}$. The same is true for forms X of A^1 . For the sake of completeness, and to establish some notation, we briefly outline the argument. The idea is to investigate the complete regular curve P determined by X. As a matter of terminology, we call a scheme Y regular if all its local rings are regular, and nonsingular if Y_K is regular for any $K \supset k$. As is well known, Y_K nonsingular implies Y nonsingular, and Y is nonsingular if and only if Y_{k^p-1} is regular. The existence of forms of A^1 is closely connected with the divergence of these notions if K is not perfect. If K is a curve, we denote by K the regular curve obtained by normalizing K.

LEMMA 1.1. Let X be a form of A^1 and $P \supset X$ a complete regular curve.

- (i) P-X is a point purely inseparable over k.
- (ii) There is a unique minimal field $k' \supset k$ such that $X_{k'} \cong \mathbf{A}_{k'}^1$, and k' is purely inseparable of finite degree over k.

Proof. The genus of \widetilde{P}_{k_i} is zero since this is so after suitable base field extension and since, k_i being perfect, the genus does not change under base field extension (cf. [1], V, § 5, Th. 5). Since $\widetilde{P}_{\overline{k}}$ has a rational point, $\widetilde{P}_{\overline{k}} \cong \mathbf{P}_{\overline{k}}^1$. An open subscheme of \mathbf{P}_K^1 (K any field) is a form of \mathbf{A}_K^1 if and only if it is the complement of a purely in separable point. Hence $\widetilde{P}_{\overline{k}} - X_{\overline{k}}$ is a point, and a fortiori P - X (resp. $P_{k_i} - X_{k_i}$) is a point purely inseparable over k (resp. rational over k_i). In particular, $\widetilde{P}_{k_i} \cong \mathbf{P}_{k_i}^1$ and $X_{k_i} \cong \mathbf{A}_{k_i}^1$. If $K \supset k$ is any field such that $X_K \cong \mathbf{A}_K^1$, then $\widetilde{P}_K - X_K$ is a point rational over K and K contains (up to unique isomorphism) the residue field k_1 of P - X. Now pass to X_{k_1} and continue this process. After finitely many steps, we reach a field $k' \subset K$, $k \subset k' \subset k_i$, such that $\widetilde{P}_{k'} \cong \mathbf{P}_{k'}$, and $\widetilde{P}_{k'} - X_{k'}$ is rational over k'. Then $X_{k'} \cong \mathbf{A}_{k'}^1$.

 $\mathbf{A}^1 = \operatorname{Spec} k[t]$ admits, up to choice of origin, a unique group structure (given by $\mathbf{s}(t) = t \otimes 1 + 1 \otimes t$ if the origin is at t = 0), and any automorphism of \mathbf{A}^1 sending the origin to the origin is a group homomorphism. Let G and G' be groups with origins q and q' and ψ an isomorphism of the underlying schemes, supposed to be forms of \mathbf{A}^1 , such that $\psi(q) = q'$. Then ψ is a homomorphism of groups after base field extension, which means that a certain diagram of morphisms (over k) commutes after base extension and so is commutative to begin with. Hence ψ is an isomorphism of groups. This gives:

LEMMA 1.2. Let X be a form of A^1 . Then any group scheme G with underlying scheme X is a form of G_a . The group structure (if it exists) is unique up to choice of origin. If $X_K \cong A_K^1$, then $G_K \cong G_{aK}$.

We assume from now on that char k=p>0. We denote by Θ^n the base change functor deduced from

$$\varphi^n \colon k \longrightarrow k$$
$$a \longmapsto a^{p^n} .$$

For any scheme X there is a canonical morphism $F_X^n: X \to \Theta^n X$. If X is a group scheme, so is $\Theta^n X$ and F_X^n is a homomorphism. Referring to [3], p. I. 1-5 for more details, we remark only that if $X = \operatorname{Spec} R$ is affine, then $\Theta^n X = \operatorname{Spec} ((k, \varphi^n) \bigotimes_k R)$ where $(k, \varphi^n) = k$ considered as a right k-algebra via φ^n and as a left k-algebra in the usual way, and that F_X^n is deduced from

$$F_R^n: (k, \varphi^n) \bigotimes_k R \longrightarrow R$$

$$a \bigotimes x \longmapsto ax^{p^n}.$$

 Θ^n accomplishes, up to isomorphism, the same as the base change $k \subset k^{p^{-n}}$. More precisely, if K is purely inseparable of exponet $\leq n$ over k (that is, $K^{p^n} \subset k$), there is a commutative diagram

$$k \longrightarrow K$$

$$\varphi^n \bigvee_{k} \overline{\varphi}$$

and we have $\Theta^n X \cong (k, \bar{\varphi}) \bigotimes_K X_K$ for any scheme X over k.

LEMMA 1.3. Let X be a form of A^1 . For any integer $n \geq 0$, F_X^n is a purely inseparable morphism of degree p^n . For any morphism $\psi \colon X \to Y$ of finite degree, there is a unique factorization $\psi = \overline{\psi} F_X^m$ where p^m is the inseparable degree of ψ and $\overline{\psi}$ is a separable morphism. Finally, there is an integer $n \geq 0$ such that $\Theta^n X \cong A^1$.

Proof. The last statement follows from 1.1 and the remark above. The function field $\kappa(X)$ of X is separable of transcendence degree one over k and so has, for each n, a unique subfield $\supset k$ over which it is purely inseparable of degree p^n , namely

$$k(\kappa(X)^{p^n}) \cong (k, \varphi^n) \bigotimes_k \kappa(X) = \kappa(\mathscr{G}^n X)$$

(cf. [2], p. 186, Th. 19 and p. 179, corollary). This proves the first statement and the second follows in view of the fact that $\theta^m X$ is normal.

1.4. Let X be a form of A^1 . We let n(X) be the least n such that $\Theta^n X \cong A^1$ or, equivalently, the least n such that X has a splitting field of exponent n over k.

The point of 1.3 is that the affine ring R of X has a unique maximal subring of the form S=k[x] such that $R^{p^n} \subset S$ for som n, and that the only other subrings with this property are the rings $k[x^{p^m}]$, $m \geq 0$. Note, however, that n(X) need not be the least n such that $\kappa(\theta^n X) \cong k(t)$ or, equivalently, that $\theta^n X \subset P^1$. $Y = P^1 - \{q\}$, q purely inseparable and not rational over k, is one example and, giving Y some further twist, one can find X such that $\theta^n X \cong Y$ and n > 1.

2. Since G_a is defined over the prime field, we may identify G_a and $\mathscr{C}G_a$. Then $F=F_{G_a}\in A=\operatorname{Hom}_k(G_a,G_a)$. It is well known that A=k[F], a ring of noncommutative polynomials with relations $Fa=a^pF$ for $a\in k$. We define the power series ring $\widehat{A}=k[[F]]$ in the same way. Let $\varepsilon\colon A\to k$ be the natural augmentation. We let $A^*=\varepsilon^{-1}(k^*)$ and $A^{**}=\varepsilon^{-1}(1)$ and make corresponding definitions for \widehat{A} . As in the case of ordinary power series, \widehat{A}^* is the group of units of \widehat{A} . By truncation we obtain groups $U_n=\widehat{A}^*/\widehat{A}F^n\cong A^*/AF^n$. $\tau=\sum_{i=0}^m \alpha_i F^i\in A, \alpha_m\neq 0$, has degree p^m as a morphism $\tau\colon G_a\to G_a$, and we also give it degree p^m in the graded ring k[F]. Note that $A^*\subset A$ is the subset of separable homomorphisms. An endomorphism $\lambda\colon A\to A$

$$\sum a_i F^i \longmapsto \sum \lambda(a_i) F^i$$
 .

In the particular case $\lambda = \varphi^n$ we put $\lambda(\tau) = \tau^{(n)}$ for $\tau \in A$ and $\lambda(A) = A^{(n)}$. $\tau^{(n)}$ is characterized by $F^n \tau = \tau^{(n)} F^n$.

If $G = \operatorname{Spec} R$ is an affine group with group operation $s: R \to R \bigotimes_k R$, $\operatorname{Hom}_k(G, G_a)$ may be identified with

$$\{r \mid s(r) = r \otimes 1 + 1 \otimes r\} \subset R \cong \operatorname{Hom}(k[t], R)$$
.

In particular, A is identified with the set of p-polynomials

$$f(t) = a_0 t + a_1 t^p + \cdots + a_m t^{p^m} \in k[t]$$
.

THEOREM 2.1. Let G be a form of G_a . Then G is isomorphic to a subgroup Spec k[x, y]/I of $G_a^2 = \operatorname{Spec} k[x, y]$ where I is generated by a polynomial $y^{p^n} - (a_0x + a_1x^p + \cdots + a_mx^{p^m})$, $a_0 \neq 0$. Equivalently, G is a fiber product

$$G \xrightarrow{\xi} G_a$$

$$\downarrow^{\tau}$$

$$G_a \xrightarrow{F^n} G_a$$

where $\tau = a_0 + a_1 F + \cdots + a_m F^m \in A^*$. Conversely, any G defined that way is a form of G_a .

Proof. Let $G = \operatorname{Spec} R$, $s: R \to R \otimes_k R$ the group operation,

$$\overline{s} \colon (k, \, \varphi^{\scriptscriptstyle n}) \bigotimes_k R \, {\longrightarrow} \, (k, \, \varphi^{\scriptscriptstyle n}) \bigotimes_k R \bigotimes_k R \cong ((k, \, \varphi^{\scriptscriptstyle n}) \bigotimes_k R) \bigotimes_k ((k, \, \varphi^{\scriptscriptstyle n}) \bigotimes_k R)$$

the induced group operation for Θ^nG . By 1.3, we have $\Theta^nG \cong G_a$ for some n, so that $(k, \varphi^n) \bigotimes_k R \cong k[t]$ where we can choose t such that $\overline{s}(t) = t \bigotimes 1 + 1 \bigotimes t$. Write $t = \sum a_i \bigotimes y_i$ with $a_i \in k$ and $y_i \in R$. Then

$$ar{s}(t) = t \otimes 1 + 1 \otimes t = \sum a_i \otimes y_i \otimes 1 + \sum a_i \otimes 1 \otimes y_i$$

= $\sum \bar{s}(a_i \otimes y_i) = \sum a_i \otimes s(y_i)$.

If we choose the a_i linearly independent in k considered as a vector space over k via φ^n , i.e., linearly independent over k^{p^n} , this implies $s(y_i) = y_i \otimes 1 + 1 \otimes y_i$. Hence the $y_i (1 \otimes y_i)$ define homomorphisms $\eta_i \colon G \to G_a$ ($\theta^n \eta_i \colon G_a \to G_a$). As observed above, this implies $1 \otimes y_i = f_i(t)$ where f_i is a p-polynomial. Applying F_R^n and putting $x = F_R^n(t)$, we obtain $y_i^{p^n} = f_i(x)$. Clearly the y_i generate R over k and one of them, call it y, is a separating variable for $\kappa(G)$. Then $y^{p^n} = f(x) = a_0x + a_1x^p + \cdots + a_mx^{p^m}$, with $a_0 \neq 0$ since x is separable over k(y). This shows that $k[x, y] \subset R$ is integrally closed. $\kappa(G)$ is separable and purely inseparable over k(x, y), so $k(x, y) = \kappa(G)$ and R = k[x, y]. This proves the first statement. The next follows letting η be the homomorphism corresponding to y and $\xi = F_G^n$ the homomorphism corresponding to x. Finally, let R = k[x, y] where $y^{p^n} = f(x)$. Then $s: R \to R \otimes_k R$, $s(x) = x \otimes 1 + 1 \otimes x$, $s(y) = y \otimes 1 + 1 \otimes y$, is well defined and gives a group structure on R. Taking $a_0 = 1$ for simplicity, we have

$$1 \otimes x = (1 \otimes y^{p^{n-1}} - (a_1^{p^{n-1}} \otimes x + \cdots + a_m^{p^{n-1}} \otimes x^{p^{m-1}}))^p = t_1^p$$

in $(k, \varphi^n) \otimes_k R$. Replacing $1 \otimes x$ by t_i^p on the right hand side and continuing that way, we find $t \in (k, \varphi^n) \otimes_k R$ such that $1 \otimes x = t^{p^n}$ and $1 \otimes y^{p^n} = (f(t))^{p^n}$. Spec R is nonsingular, so $(k, \varphi^n) \otimes_k R$ is reduced. Hence $1 \otimes y = f(t)$, showing that $(k, \varphi^n) \otimes_k R = k[t]$.

2.2. We write $G = (F^n, \tau)$ (with $\tau \in A^*$) for a fiber product as in the theorem. Note that G can be so written if and only if $\theta^*G \cong G_a$.

PROPOSITION 2.3. Let $G=(F^n,\tau), G_1=(F^{n_1},\tau_1)$ and assume $n_1 \leq n$. Then $G \cong G_1$ if and only if there exist elements $\rho \in A^*$, $\sigma \in A$ and $c \in k^*$ such that

$$\tau_1^{(n-n_1)} = (\rho^{(n)}\tau + F^n\sigma)c^{-1}.$$

 ρ may be chosen of degree $\leq p^{n-1}$.

Proof. The monomorphism (ξ, η) : $G \to G_a^2$ induces an epimorphism of A-modules $A \oplus A = \operatorname{Hom}_k(G_a^2, G_a) \to \operatorname{Hom}_k(G, G_a)$ (cf. [6], p. 102, proposition). Hence $\operatorname{Hom}_k(G, G_a) = A\eta + A\xi$ with $F^n\eta = \tau\xi$ as a defining relation. Since G is reduced and irreducible, $\operatorname{Hom}_k(G, G_a)$ is torsion free.

Let $\psi: G \to G_1$ be an isomorphism and consider the commutative diagram

Now $\eta' = \eta_1 \psi = \rho \eta + \sigma \xi$ for some ρ , $\sigma \in A$, and we must have $\rho \in A^*$ since η' is separable. Also, if $\rho = \rho_1 + \rho_2 F^*$, then $\rho \eta = \rho_1 \eta + \rho_2 \tau \xi$. So we can choose ρ of degree $< p^*$. Assume first $n = n_1$. Then $\xi' = \xi_1 \psi$ is purely inseparable of degree p^* . By 1.3, $\xi_1 \psi = c \xi$ with $c \in A$ a separable and purely inseparable homomorphism, that is, $c \in K^*$. Now

$$egin{aligned} au_{_1} & \xi_{_1} \psi = F^{_n} \eta_{_1} \psi = F^{_n}
ho \eta + F^{_n} \sigma \xi =
ho^{_{(n)}} F^{_n} \eta + F^{_n} \sigma \xi \ & = (
ho^{_{(n)}} au + F^{_n} \sigma) \xi = (
ho^{_{(n)}} au + F^{_n} \sigma) c^{_{-1}} \xi_{_1} \psi \;, \end{aligned}$$

giving $\tau_1 = (\rho^{(n)}\tau + F^n\sigma)c^{-1}$. Conversely, define $\hat{\xi}'$, $\eta' \in \text{Hom } (G, G_a)$ by $\xi' = c\xi$ and $\eta' = \rho\eta + \sigma\xi$. Then $F^n\eta' = \tau_1\xi'$, and we obtain a homomor phism $\psi \colon G \to G_1$ such that $\xi' = \hat{\xi}_1\psi$ and $\eta' = \eta_1\psi$. Now ρ is invertible in \hat{A} and we can write $\rho^{-1} = \rho_1 + \sigma_2F^n$ with $\rho_1 \in A^*$. Then $\tau = (\rho_1^{(n)}\tau_1 + F^n\sigma_1)c$ with $\sigma_1 = (\sigma_2\rho^{(n)}\tau - \rho_1\sigma)c^{-1} \in A$. Reversing the roles of G and G_1 we get $\psi_1 \colon G_1 \to G$ inverting ψ .

Suppose now $n - n_1 = n_2 \ge 0$. In the commutative diagram

$$\begin{array}{cccc} G^1 & \xrightarrow{\hat{\xi}_1} & G_a & \xrightarrow{F^{n_2}} & G_a \\ \eta_1 & & & \downarrow \tau_1 & & \downarrow \tau_1^{\langle n_2 \rangle} \\ G_a & \xrightarrow{F^{n_1}} & G_a & \xrightarrow{F^{n_2}} & G_a \end{array}$$

both the left and right square are cartesian. So the big square is cartesian, and consequently $G_1 = (F^n, \tau_1^{(n_2)})$. Now the previous argument applies.

Since $(F^n, \tau) \cong (F^n, \tau \varepsilon(\tau)^{-1})$, any G can be written with $\tau \in A^{**}$. This normalizes τ to some extent:

COROLLARY 2.3.1. Let $G = (F^n, \tau)$. Then $G \cong G_a$ if and only if $\tau c \in A^{(n)}$ for some $c \in k^*$. If $\tau = 1 + a_1 F + \cdots + a_m F^m \in A^{**}$, then $k' = k(a_1^{p^{-n}}, \cdots, a_m^{p^{-n}})$ is the minimal splitting field for G.

Proof. Since $G_a = (F^n, 1)$, the proposition gives $\tau c = \rho^{(n)} + F^n \sigma \in A^{(n)}$ if $G \cong G_a$. Conversely, let $\tau c = \tau_1^{(n)}$. Then $\tau_1 \in A^*$ and we can write $1 = \rho \tau_1 + \sigma F^n$. So $1 = (\rho^{(n)} \tau + F^{(n)} \sigma c^{-1})c$ and $(F^n, 1) \cong (F^n, \tau)$. This proves the first statement, and the second follows since we can take c = 1 above if $\tau \in A^{**}$.

COROLLARY 2.3.2. Let
$$G=(F^n, \tau)$$
 and $0 \leq m \leq n$. Then $\Theta^m G=(F^{n-m}, \tau)$.

Proof. Apply Θ^m to the cartesian square defining G. Noting that $\Theta^m \tau = \tau^{(m)}$, we get $\theta^m G = (F^n, \tau^{(m)}) \cong (F^{n-m}, \tau)$.

2.4. For any field $K \supset k$, we define E(K) as the set of isomorphism classes of forms of G_{aK} and put $E(K, n) = \{G \in E(K) \mid \theta^n G \cong G_{aK}\}.$

The rule
$$(
ho,\,\sigma,\,c)\!\cdot\! au=(
ho^{{}_{(n)}} au\,+\,F^{{}_{n}}\sigma)c^{-{}_{1}}$$
 defines an action of $A^* imes A imes K^*$,

endowed with a suitable semi-direct product structure, on A^* , and 2.3 states that E(k,n) may be considered as the quotient of A^* under this action. A^* is not a group, but this inconvenience can be avoided by dividing out by A first and passing to the group $U_n = A^*/AF^n$. Let $V_n = U_n \times k^*$. Then the map

$$(*) V_n \times A^*/F^n A \longrightarrow A^*/F^n A$$

$$(\bar{\rho}, c) \times \bar{\tau} \longmapsto (\rho^{(n)} \tau c^{-1})^{-1}$$

(where $\bar{}$ denotes taking residue classes) is well defined and gives an action of V_n on A^*/F^*A . Clearly all the operations involved are compatible with base field extension. Now 2.3 implies:

THEOREM 2.5. The map

$$A^* \longrightarrow E(k, n)$$
$$\tau \longmapsto (F^n, \tau)$$

induces a bijection between the quotient of A^*/F^*A by the action (*) defined above and E(k, n). This identification is compatible with base field extension.

Similarly, we can define an action

$$U_n imes A^{**}/F^n A \longrightarrow A^{**}/F^n A$$
 by $ar{
ho} \cdot ar{ au} = (
ho^{(n)} au arepsilon (
ho)^{-p^n})^-$.

Since any G can be written as $G=(F^n,\tau)$ with $\tau\in A^{**}$, the quotient may again be identified with E(k,n). As an example, let us work out the case n=1. Choose a complementary subspace W_0 for k^p in k and for each $i\geq 1$ let W_i be a copy of W_0 . Then $U_1=k^*$ acts on $W=\bigoplus_{i=1}^{\infty}W_i$ by $c\cdot\sum a_i=\sum c^{p(1-p^i)}a_i$. Letting $(F,1+\sum a_iF^i)$ correspond to the class of $\sum a_i$, one identifies E(k,1) and W/k^* .

Let $A^*/F^{n+1}A \to A^*/F^nA$ be the natural map and define $V_{n+1} \to V_n$ by $(\overline{\rho}, c) \mapsto (\overline{\rho^{(1)}}, c)$. Then

$$V_{n+1} imes A^*/F^{n+1}A \longrightarrow A^*/F^{n+1}A \ igg| V_n imes A^*/F^nA \longrightarrow A^*/F^nA$$

commutes and it follows from 2.3.2 that the induced map on the quotients is $\theta: E(k, n+1) \to E(k, n)$. Unfortunately there does not seem to be a coherent way to reverse the vertical arrows in order to obtain the inclusion $E(k, n) \subset E(k, n+1)$.

Proposition 2.6. Let $K \supset k$ be a field and

$$\Psi \colon E(k) \longrightarrow E(K)$$

$$G \longmapsto G_{\kappa}$$

the natural map.

- (i) If K is purely inseparable over k, then Ψ is surjective.
- (ii) If k is algebraically closed in K and K is separable over k, then Ψ is injective.
- *Proof.* (i) Let $G=(F^n,\tau)\in E(K),\ \tau=1+a_1F+\cdots+a_mF^m$. There is an integer $r\geq 0$ such that $a_i^{p^r}=\alpha_i\in k,\ i=1,\cdots,m$. Let $\tau'=1+\alpha_1F+\cdots+\alpha_mF^m$ and $G'=(F^{n+r},\tau')\in E(k)$. Then $\tau'=\tau^{(r)}$ over K and 2.3 implies $G_K'=(F^{n+r},\tau^{(r)})\cong (F^n,\tau)=G$.
- (ii) Let $G=(F^n,\, au),\, au=1+\sum a_iF^i\in A,\,
 ho=\sum x_iF^i\in A_K^*$ with $x_i=0$ for $i\geq n,\,\,and\,\,\sigma=\sum y_iF^i\in A_K$. Suppose $(
 ho^{(n)} au+F^n\sigma)x_0^{-p^n}=1+\sum b_iF^i= au'\in A,\,\,$ that is,

$$\left(\begin{array}{ccc} \sum\limits_{i=0}^{i-1} x_{j}^{p^{n}} a_{i-j}^{p^{j}} + x_{i}^{p^{n}} + y_{i-n}^{p^{n}} \right) x_{0}^{-p^{n+i}} = b_{i} \in k$$

for $i \geq 1$. (Set $y_i = 0$ for i < 0). We have to show that the same can be done with $x_i, y_i \in k$. We may clearly assume $G \not\cong G_a$. Then not all $a_i \in k^{p^n}$ and there is an $r \geq 1$ such that $a_1, \dots, a_{r-1} \in k^{p^n}$ but $a_r \in k^{p^n}$. If r > 1, we can replace τ by $(1 - a_1 F)\tau$ (since $a_1 \in k^{p^n}$) which has a zero linear term. By an obvious induction argument, we can assume $a_1 = \dots = a_{r-1} = 0$. Then (*) gives (for i = r)

$$a_r x_0^{p^n-p^{n+r}} + x_r^{p^n} x_0^{-p^{n+r}} + y_{r-n}^{p^n} x_0^{-p^{n+r}} = b_r$$
.

Put $u=x_0^{-1}$, $v=x_rx_0^{-r}$ if r< n (and so $y_{r-n}=0$), and $v=y_{n-r}x_0^{-r}$ if $r\geq n$ (and so $x_r=0$). In both cases $a_ru^{(p^r-1)p^n}+v^{p^n}=b_r$. Extracting p-th roots in k from a_r and b_r as far as possible, we can write $au^{(p^r-1)p^{n_1}}+v^{p^{n_1}}=b$ where not both a and b are in k^p and $n_1\geq 1$ (since $a_r\notin k^{p^n}$). If $u\notin k$, then u is transcendental over k, $au^{(p^r-1)p^{n_1}}-b+v^{p^{n_1}}$ is irreducible in k(u)[v], but becomes reducible upon adjoining $a^{p^{-1}}$ and $b^{p^{-1}}$ to k. This shows that $k(u,v)\subset K$ is not separable, contradicting the separability of K. Hence $x_0=u^{-1}\in k$. Taking (*) first with $i=1,\dots,n-1$, we see that $x_i\in k$, and then $y_{i-n}\in k$ follows for $i\geq n$.

The proof above suggests examples showing that the assumptions in (ii) cannot be weakened. First, let $k=k_0(a,b)$ with a,b algebraically independent over k_0 . Then G=(F,1+aF) and G'=(F,1+bF) are not isomorphic over k. On the other hand, we can define K=k(u,v) by $au^{p(p-1)}-b+v^p=0$. One checks that k is algebraically closed in K. But now $1+bF=u^{-p}(1+aF)u^p+Fv$, so that $G_K\cong G_K'$. Next, suspose k contains elements a and c such that $a\notin k^p$ and $c\notin k^{q-1}$ where $q=p^m>2$. Let $G=(F^m,1+aF^m)$, $G'=(F^m,1+c^qaF^m)$. If $K\supset k$, then $G_K\cong G_K'$ if and only if $au^{q(q-1)}+v^q=c^qa$ has a solution with $u,v\in K$. If K is separable over k, then $a\notin K^p$, so necessarily v=0 and $u^{q-1}=c$. This is possible over a finite separable extension of k but not over k. We will see below that this example is typical (cf. 3.1.1.).

3. Let G and G_1 be forms of G_a written as fiber products

with n = n(G) and $n_1 = n(G_1)$ (cf. 1.4). Suppose $\psi \in \operatorname{Hom}_k(G, G_1)$ is nonzero. Then $\Theta^n \psi \colon G_a \to \Theta^n G_1$ is nonzero, and since a nonzero homomorphic image of G_a is isomorphic with G_a (cf. [6], p. 101, lemma), we must have $n_2 = n - n_1 \geq 0$. Now $F^{n_2} \xi_1 \psi$ has inseparable degree $\geq p^n$ and therefore factors through ξ . This gives a commutative diagram

$$G \longrightarrow \stackrel{\xi}{\longrightarrow} \mathbf{G}_{a}$$
 $\psi \downarrow \qquad \qquad \downarrow \tau_{2} = \Theta^{n} \psi$
 $G_{1} \stackrel{\xi_{1}}{\longrightarrow} \mathbf{G}_{a} \stackrel{F^{n_{2}}}{\longrightarrow} \mathbf{G}_{a}$
 $\tau_{1} \downarrow \qquad \qquad \downarrow \tau_{1} \qquad \downarrow \tau_{1}^{(n_{2})}$
 $\mathbf{G}_{a} \stackrel{F^{n_{1}}}{\longrightarrow} \mathbf{G}_{a} \stackrel{F^{n_{2}}}{\longrightarrow} \mathbf{G}_{a}$.

If ψ is separable, so are τ_2 and $\tau_1^{(n_2)}\tau_2$. This shows that one can use the big square to define G as a fiber product, that is, $G \cong (F^n, \tau_1^{(n_2)}\tau_2)$. By 2.3 there exist $\rho \in A^*$ and $\sigma \in A$ such that

$$au_{\scriptscriptstyle 1}^{\scriptscriptstyle (n_2)} au_{\scriptscriptstyle 2}=
ho^{\scriptscriptstyle (n)} au+F^{\scriptscriptstyle n}\sigma$$
 .

(No c appears since ξ is left unchanged.) Conversely, if τ_2 satisfies (*), there is a unique ψ making the diagram commutative. So separable homomorphisms $\psi\colon G\to G_1$ are in one-to-one correspondence with those $\tau_2\in A^*$ for which a solution to (*) exists.

THEOREM 3.1. Let G be a form of G_a , $G \not\cong G_a$. Then $\operatorname{End}_k G$ may be identified with a finite subfield of k. If $\operatorname{End}_{k_s} G_{k_s} = \mathbf{F}_q$ and $k \subset K \subset k_s$, then $\operatorname{End}_K G_K = K \cap \mathbf{F}_q$.

Proof. Let $G = (F^n, \tau)$, n = n(G), and suppose $\psi \colon G \to G$ is nonzero. If ψ is not separable, there is a nonzero homomorphism $\theta G \to G$. Since $n(\theta G) < n(G)$, this is impossible, as we have seen. So ψ is separable and $\tau_2 = \theta^n \psi$ satisfies a relation

$$au^* =
ho^{(n)} au + F^n \sigma \;, \qquad
ho \in A^*, \, \sigma \in A \;.$$

We will assume, as we may, that $\deg \rho < p^n$. Since $\theta^r, r \geq 0$, is a faithfully flat base change functor, θ^r : $\operatorname{End}_k G \to \operatorname{End}_k \theta^r G$ is injective and moreover $\theta^r \psi$ is a monomorphism (epimorphism) if and only if ψ is. Taking r = n - 1, we see that it is enough to prove the first statement in case n = 1. We can then choose $\rho = a \in k^*$ and $\tau = 1 + a_1 F^{m_1} + \cdots + a_s F^{m_s}$ with $1 \leq m_1 < m_2 < \cdots < m_s$ and $a_i \notin k^p$. Let $\tau_2 = c_0 + c_1 F + \cdots + c_r F^r$, $c_0 \neq 0$ and $c_r \neq 0$. Comparing coefficients in (*), we get $a_s c_r^{p^{m_s}} \in k^p$ unless r = 0. Since $m_s \geq 1$ and $a_s \notin k^p$, we actually have r = 0 and $\tau_2 = c_0 = c \in k^*$. (*) now reduces to $a^p \tau - \tau c \in FA$, and this gives $a^p - c = 0$ and $(c - c^{p^{m_i}})a_i \in k^p$, $i = 1, \cdots$, s. Since $a_i \notin k^p$, this implies $c - c^{p^{m_i}} = 0$. Or, equivalently, $c - c^{p^m} = 0$ where m is the greatest common divisor of m_1, \cdots, m_s . Conversely $\tau c = c\tau$ for such c and if $c \neq 0$, it lifts to an automorphism of G. Hence $\operatorname{End}_k G = k \cap F_{p^m}$ in this case.

Now let $n \ge 1$, $\mathbf{F}_q = \operatorname{End}_{k_s} G_{k_s}$, $k \subset K \subset k_s$ and $\tau_2 = c \in K \cap \mathbf{F}_q^*$. To

show that $c \in \operatorname{End}_K G_K$, we have to solve (*) with ρ , $\sigma \in A_K$. However there exists a solution over k_s , and applying to it a K-automorphism λ of k_s , we get $\tau c = \lambda(\tau c) = \lambda(\rho^{(n)}) + F^n \lambda(\sigma)$ and $0 = (\rho^{(n)} - \lambda(\rho^{(n)}))\tau + F^n(\sigma - \lambda(\sigma))$. Multiplying by τ^{-1} (in \widehat{A}_K), we have $0 = (\rho^{(n)} - \lambda(\rho^{(n)})) + F^n(\sigma - \lambda(\sigma))\tau^{-1}$, giving $\rho^{(n)} = \lambda(\rho^{(n)})$ and $\sigma = \lambda(\sigma)$ since $\deg \rho < p^n$. Hence ρ , $\sigma \in A_K$.

The theorem states that the automorphism functor of G coincides with the functor μ_r (r-th roots of unity, r=q-1 prime to p) on separable algebraic extensions of k. Galois cohomology therefore gives (for details we refer to [8], in particular I, § 5, II, § 1 and III, § 1):

COROLLARY 3.1.1. Let $E(k_s/k, G)$ be the set of k_s/k -forms of G. Then $E(k_s/k, G) = H^1(k, \mathbf{F}_s^*) \cong k^*/k^{*q-1}$.

4. We turn now to forms of A^1 that fail to be groups by just the absence of a rational point.

PROPOSITION 4.1. Let X be a form of A^1 and suppose that X_{k_s} admits a group structure. Then X is a principal homogeneous space for a form G of G_a determined uniquely by X. Moreover, $X = \operatorname{Spec} k[x,y]/I$, $G = \operatorname{Spec} k[u,v]/J$ where I and J are generated respectively by $y^{p^n} - b - f(x)$ and $v^{p^n} - f(u)$ with $b \in k$ and f a separable p-polynomial. Conversely, if X and G are defined as above, then X is a principal homogeneous space for G.

Proof. Let $X = \operatorname{Spec} R$. As in the proof of 2.1, we have $(k, \varphi^n) \bigotimes_k R \cong k[t]$ for some $n, t = \sum_i a_i \bigotimes_i y_i$ with $a_i \in k$ linearly independent over k^{p^n} , and $y_i^{p^n} = g_i(x) \in k[x]$ with $x = F_R^n(t)$. Let $q \in X_k$. be rational over k_s and let $c_i \in k_s$ be the residue of y_i at q. Put $y_i' =$ $y_i-c_i,\,t'=t-\sum a_ic_i^{p^n}=t-c$ and x'=x-c. Then $t'=\sum a_i\otimes y_i',$ q lies above the point t'=0 of $\mathbf{A}_{k_s}^1\cong \theta^n X_{k_s}$ and we can choose q as the origin of the group structure supposed to exist on X_{k_a} . The a_i remain linearly independent over $k_s^{p^n}$ and we have $y'^{p^n} = f_i(x')$ with f_i a p-polynomial as in the proof of 2.1. Hence $g_i(x) = y_i^{p^n} = b_i + f_i(x)$ with $b_i = c_i^{p^n} - f_i(c)$, and $g_i(x) \in k[x]$ implies $b_i \in k$ and $f_i(x) \in k[x]$. If y is a separating variable for $\kappa(X)$ picked from the y_i , we get y^{p^n} b + f(x) where f has nonzero linear term. As before, this implies R =k[x, y]. Let $G = \operatorname{Spec} S$, S = k[u, v] with $v^{p^n} = f(u)$. Then $\alpha: R \to \infty$ $R \bigotimes_k S$, $\alpha(x) = x \bigotimes 1 + 1 \bigotimes u$ and $\alpha(y) = y \bigotimes 1 + 1 \bigotimes v$, defines an action of G on X. $\bar{\alpha}: R \bigotimes_k R \to R \bigotimes_k S$ defined by $\bar{\alpha}(w \bigotimes z) =$ $(w \otimes 1)\alpha(z)$ is an isomorphism and gives an isomorphism (over X) $G \times_k X \xrightarrow{\sim} X \times_k X$. Hence X is a principal homogeneous space for G. If this is also true for G_1 , we get an isomorphism (over X) $G \times_k X \xrightarrow{\sim} G_1 \times_k X$. Applying 2.6 (ii) to the fiber over the generic

P. RUSSELL

point of X, we see that $G \cong G_1$.

538

Principal homogeneous spaces for G are clasified by $H^{1}(k, G)$ (cf. [8], I, Proposition 33). Let $G = (F^{n}, \tau)$. Then there is a commutative diagram with exact rows:

$$egin{aligned} 0 & \longrightarrow \ker \eta & \longrightarrow G & \stackrel{\eta}{\longrightarrow} \mathbf{G}_a & \longrightarrow 0 \ & \downarrow & & & & \downarrow & F^n \downarrow \ 0 & \longrightarrow \ker \tau & \longrightarrow \mathbf{G}_a & \stackrel{\tau}{\longrightarrow} \mathbf{G}_a & \longrightarrow 0 \end{aligned}$$

The exact cohomology sequence and $H^1(k, \mathbf{G}_a) = 0$ give $H^1(k, G) = k/f(k) + k^{p^n}$, where f is the p-polynomial corresponding to τ . The Galois group of the spliting field of $0 = b + f(x) = b + a_0x + \cdots + a_mx^{p^m}$, $a_0 \neq 0$, is isomorphic to a subgroup of $f^{-1}(0) \subset k_s$. Hence f(k) = k if k has no normal extension of degree p, and $H^1(k, G) = 0$ for all forms G of G_a in that case. The author does not know whether the converse of this statement is true if k is not perfect.

In [4] Rosenlicht characterized curves that are "exceptional" in the sense that the genus g is ≥ 1 and the group of automorphisms (leaving a point fixed if g=1) is infinite. We give another characterization, already implicit in [4], p. 10, theorem, assuming the exceptional case over k_s only.

THEOREM 4.2. Let P be a complete regular curve such that P_{k_s} is exceptional. Then P has exactly one singular point q, q is purely inseparable over k, and $X = P - \{q\}$ is a principal homogeneous space for a form of G_a .

Proof. It is enough to prove the first statement in case $k = k_s$. It is then taken directly from [4], p. 5, lemma. It is also shown there that \widetilde{P}_{k_i} has genus zero. Hence $X=P-\{q\}$ is a form of \mathbf{A}^1 and we have $F_X^n: X \to \Theta^n X \cong \mathbf{A}^1 = \operatorname{Spec} k[t]$ for some n. This gives an injection Θ^n : Aut_k $X \to \text{Aut}_k A^1$. Now let $k = k_s$. It then follows from [4], loc. cit., that $Aut_k X$ has an infinite subset of automorphisms operating without fixed point. Hence $\theta^n(\operatorname{Aut}_k X)$ contains infinitely many translations $t \mapsto t + b$. With notations as in the proof of 4.1, write $t = \sum a_i \otimes y_i$, $1 \otimes y_i = f_i(t)$, with t so chosen that the point $q_0 \in X$ above t = 0 is rational. If c_i is the residue of y_i at q_0 , we have $f_i(0) = c_i^{p^n} \in k^{p^n}$. Since $0 = \sum a_i f_i(0)$, we get $f_i(0) = 0$. If T_b is the automorphism of X inducing $t \mapsto t + b$, we have $t + b = \sum a_i \otimes T_b^*(y_i)$. Let $b_i \in k$ be the residue of y_i at $T_b(q_0)$. Then $b = \sum a_i b_i^{p^n}$ and t + b = $\sum a_i \otimes (y_i + b_i)$. Hence $T_b^*(y_i) = y_i + b_i$ and $f_i(t + b) = 1 \otimes T_b^*(y_i) = 0$ $f_i(t) + b_i^{p^n}$. With t = 0, this shows $b_i^{p^n} = f_i(b)$. Since this holds for infinitely many b, each f_i is a p-polynomial. Hence X has a group

structure (over k_s) and 4.1 applies.

If X is a principal homogeneous space for a form G of G_a and $P \supset X$ a complete regular curve, then $G(k_s) \subset \operatorname{Aut}_{k_s} P_{k_s}$ is infinite. So P_{k_s} is exceptional if the genus g of P is positive. The cases g=0 as well as g=1 can be settled completely. Excluding the trivial case $X=\mathbf{A}^1$, we have: If g=0, then char k=2. If g=1, then char k=3. Moreover, $X=\operatorname{Spec} k[\mathbf{x},y]/I$ where I is generated by $y^p-b-x-ax^p$ with p=2 or 3 respectively and $a,b\in k$.

It is enough to prove the corresponding statement for the groups G that are involved, that is, we may assume X=G has a rational point. Now, by a theorem of Tate ([9], Corollary 2), the genus changes by a multiple of 1/2(p-1) on passage from X to θX . On the other hand, if \mathcal{O} is the local ring of P-X, the genus change is $\dim_k \mathcal{O}_1/\mathcal{O}'$ where $\mathcal{O}'=(k,\varphi)\otimes_k \mathcal{O}$ and \mathcal{O}_1 is the normalization of \mathcal{O}' (cf. [7], p. 73, example). So a drop in genus occurs unless \mathcal{O} is nonsingular. But then P is nonsingular, so g=0 and $P\cong P^1$. Excluding the case $G=G_a$ we must have P^1-G of degree 2 (cf. [5], p. 35 or the remark in the introduction). Hence p=2 and n(G)=1. If p>2, we see that $g\geq 1/2n(G)(p-1)$. So g=1 implies n(G)=1 and p=3. In both cases (g=0 or 1) $G=\operatorname{Spec} k[x,y]$ with $y^p=x+a_1x^p+\cdots+a_mx^{p^m}$ and $a_m\notin k^p$ (cf. 2.1). Using [9], proposition, one checks that then $g=1/2(p-1)(p^m-2)$. So necessarily m=1.

REFERENCES

- 1. C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surv. VI, New York, 1951.
- 2. N. Jacobson, Lectures in abstract algebra, vol. III, D. Van Nostrand Co., Princeton, 1964.
- 3. F. Oort, Commutative group schemes, Lecture Notes in Mathematics 15, Springer, Berlin, 1965.
- 4. M. Rosenlicht, Automorphisms of function fields, Trans. Amer. Math. Soc. 79 (1955), 1-11.
- 5. ———, Some rationality questions on algebraic groups, Annali di Mat. (IV) ${\bf 43}$ (1957), 25-50.
- 6. ——, Questions of rationality for solvable algebraic groups over nonperfect fields, Annali di mat., (IV) **61** (1963), 97-120.
- 7. J. P. Serre, Groupes Algébriques et Corps de Classes, Hermann, Paris, 1959.
- 8. ——, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer, Berlin, 1964.
- 9. J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400-406.

Received May 16, 1969. This research was supported in part by the U. S. Army Research Office (Durham).

HARVARD UNIVERSITY