A CONJECTURE AND SOME PROBLEMS ON PERMANENTS

G. N. de Oliveira

Abstract

Let $A=\left[\alpha_{i j}\right]$ denote an $n \times n$ matrix and let E be the $n \times n$ identity matrix. We will designate by $\operatorname{det} A$ and perm A the determinant and the permanent of A respectively. The polynomial $\varphi(z)=\operatorname{det}(z E-A)$ plays a fundamental role in matrix theory. Similarly we can consider the polynomial $f(z)=\operatorname{perm}(z E-A)$ which has been object of several studies recently, particularly when A is a doubly stochastic matrix. The aim of the present paper is to give some results on the existence of matrices satisfying certain conditions involving the roots of this polynomial.

Let M_{n} and \mathscr{L}_{n} be the regions defined as follows: $z \in M_{n}$ if and only if there exists a stochastic matrix of order n with z as characteristic root; $\left(z_{1}, \cdots, z_{n}\right) \in \mathscr{I}_{n}$ if and only if there exists a stochastic matrix of order n whose n characteristic roots are the complex numbers z_{1}, \cdots, z_{n}.

Similarly we define the regions D_{n} and \mathscr{D}_{n} respectively when 'stochastic' is replaced by 'doubly stochastic'. M_{n} was determined by Karpelevič [3] but the determination of the other three regions seems to be a very difficult problem and has not yet been solved (see [7], [8], [9]).

Replacing in the definitions of $M_{n}, \mathscr{L}_{n}, D_{n}$ and \mathscr{D}_{n} 'characteristic root' by 'root of the polynomial $f(z)=\operatorname{perm}(z E-A)$ ' we can define four other regions which we shall denote by $M_{n}^{*}, \mathscr{I}_{n}^{*}, D_{n}^{*}$ and \mathscr{D}_{n}^{*} respectively. To our knowledge no attempt has been made to determine these regions. Their determination is likely to be a much harder problem than the determination of $M_{n}, \mathscr{M}_{n}, D_{n}$ and \mathscr{D}_{n}.

Some problems dealing with the characteristic values of a matrix (like some of the problems mentioned in [6]) can be replaced by similar problems dealing with the roots of

$$
f(z)=\operatorname{perm}(z E-A)
$$

Examples: (1) find a necessary and sufficient condition for the numbers a_{1}, \cdots, a_{n} and z_{1}, \cdots, z_{n} to be the principal elements of a symmetric A and the roots of $f(z)=$ perm $(z E-A)$ respectively; (2) find a necessary and sufficient condition for the numbers $\lambda_{1}, \cdots, \lambda_{n}$ and z_{1}, \cdots, z_{n} to be the characteristic roots of an $n \times n$ matrix A and the roots of $f(z)=\operatorname{perm}(z E-A)$ respectively. In the sequel we give some results on problems of this nature.
2. Let

$$
\begin{gathered}
J_{i}=\left[\begin{array}{ccc}
\lambda_{i} & 1 & 0 \\
& \ddots & \\
& \ddots & \\
& \ddots & 1 \\
0 & & \lambda_{i}
\end{array}\right] \quad \text { (of type } s_{i} \times s_{i} \text {) }, \\
X_{i}=\left[\begin{array}{c}
x_{1}^{i} \\
\vdots \\
x_{s_{i}}^{i}
\end{array}\right], \quad Y_{i}=\left[y_{1}^{i}, \cdots, y_{s_{i}}^{i}\right]
\end{gathered}
$$

and

$$
C=\left[\begin{array}{ccccc}
J_{1} & 0 & \cdots & 0 & X_{1} \\
0 & J_{2} & \cdots & 0 & X_{2} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & \cdots & J_{m} & X_{m} \\
Y_{1} & Y_{2} & \cdots & Y_{m} & q
\end{array}\right]
$$

Lemma. If C is the matrix described above and E denotes the appropriate identity matrix then

$$
\begin{aligned}
\operatorname{perm}(z E-C)= & \sum_{i=1}^{m}\left[\sum_{h=0}^{s_{i}-1} b_{i h}\left(z-\lambda_{i}\right)^{k} \prod_{\substack{j=1 \\
j \neq i}}^{m}\left(z-\lambda_{j}\right)^{s_{j}}\right] \\
& +(z-q) \prod_{j=1}^{m}\left(z-\lambda_{i}\right)^{s_{j}}
\end{aligned}
$$

where

$$
b_{i h}=(-1)^{s_{i}+h+1} \sum_{j=1}^{h+1} y_{j}^{i} x_{j+s_{i-1}-h}^{i} \quad\left(h=0, \cdots, s_{i}-1\right)
$$

Proof. Let

$$
C_{i}=\left[\begin{array}{ccccc}
J_{i} & 0 & \cdots & 0 & X_{i} \\
0 & J_{i+1} & \cdots & 0 & X_{i+1} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & \cdots & J_{m} & X_{m} \\
Y_{i} & Y_{i+1} & \cdots & Y_{m} & q
\end{array}\right]
$$

Now we expand perm $\left(z E_{i}-C_{i}\right)$ (where E_{i} is the identity matrix of the same order as C_{i}) in terms of its first s_{i} rows. The submatrices contained in these rows with permanent nonnecessarily zero are: $z E^{(i)}-J_{i}\left(E^{(i)}\right.$ denotes the identity matrix of the same order as $\left.J_{i}\right)$ and the submatrices obtained from $z E^{(i)}-J_{i}$ by striking out the $\rho^{\text {th }}$ column ($\rho=1, \cdots, s_{i}$) and bordering on the right hand side with the column $-X_{i}$. We denote this submatrix by H_{ρ}. It is not difficult to see that

$$
\operatorname{perm} H_{\rho}=\sum_{\tau=0}^{s_{i}-\rho}(-1)^{\tau+1} x_{\rho+\tau}^{i}\left(z-\lambda_{i}\right)^{s_{i}-\tau-1}
$$

Let \tilde{H}_{ρ} denote the complementary submatrix of H_{ρ} in $z E_{i}-C_{i}$. It can be easily seen that

$$
\operatorname{perm} \widetilde{H}_{\rho}=-y_{\rho}^{i} \prod_{j=i+1}^{m}\left(z-\lambda_{j}\right)^{s_{j}}
$$

We can now write

$$
\begin{aligned}
\operatorname{perm}\left(z E_{i}-C_{i}\right)= & \sum_{\rho=1}^{s_{i}} \operatorname{perm} H_{\rho} \operatorname{perm} \widetilde{H}_{\rho} \\
& \quad+\operatorname{perm}\left(z E^{(i)}-J_{i}\right) \operatorname{perm}\left(z E_{i+1}-C_{i+1}\right) \\
= & \sum_{\rho=1}^{s_{i}} \sum_{i=0}^{s_{i}-\rho}(-1)^{\tau} y_{\rho}^{i} x_{\rho+\tau}^{i}\left(z-\lambda_{i}\right)^{s_{i}-\tau-1} \prod_{j=i+1}^{m}\left(z-\lambda_{j}\right)^{s_{j}} \\
& +\left(z-\lambda_{i}\right)^{s} i \operatorname{perm}\left(z E_{i+1}-C_{i+1}\right) .
\end{aligned}
$$

Interchanging the order of the first two sums we get

$$
\begin{aligned}
\operatorname{perm}\left(z E_{i}-C_{i}\right)= & \sum_{\tau=0}^{s_{i}-1} \sum_{\rho=1}^{s_{i}-\tau}(-1)^{\tau} y_{\rho}^{i} x_{\rho+\tau}^{i}\left(z-\lambda_{i}\right)^{s_{i}-\tau-1} \prod_{j=i+1}^{m}\left(z-\lambda_{j}\right)^{s_{j}} \\
& +\left(z-\lambda_{i}\right)^{s_{i}} \operatorname{perm}\left(z E_{i+1}-C_{i+1}\right) \\
= & \sum_{n=0}^{s_{i}-1} b_{i h}\left(z-\lambda_{i}\right)^{k} \prod_{j=i+1}^{m}\left(z-\lambda_{j}\right)^{s_{j}} \\
& +\left(z-\lambda_{i}\right)^{s_{i}} \operatorname{perm}\left(z E_{i+1}-C_{i+1}\right)
\end{aligned}
$$

We now set $i=1$, use induction, and after some manipulation we obtain the formula stated in the lemma.

We proceed to our main result.

Theorem 1. Given any n complex numbers a_{1}, \cdots, a_{n} and a polynomial $f(z)=z^{n}-c z^{n-1}+\cdots$, there exists a square matrix A of order n with a_{1}, \cdots, a_{n} as principal elements and such that $f(z)=$ perm $(z E-A)$ if and only if $\alpha_{1}+\cdots+a_{n}=c$. If this condition is satisfied and both a_{1}, \cdots, a_{n} and the coefficients of $f(z)$ are real, A can be chosen real.

Proof. We prove first the 'if' part. If we perform a permutation on the rows of a square matrix A and then the same permutation on its columns, the roots of $f(z)=\operatorname{perm}(z E-A)$ are not altered. Hence we can, without loss of generality, take the numbers a_{1}, \cdots, a_{n} in any order. Thus we will assume that the first s_{1} numbers from among a_{1}, \cdots, a_{n-1} have the common value λ_{1}, the following s_{2} numbers have the common value λ_{2}, \cdots, the last s_{m} numbers have the common value λ_{m} and that $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. Consider now the matrix C of the
lemma with $q=a_{n}$ and all the $x_{h}^{k}=1$. We will show that we can choose Y_{1}, \cdots, Y_{m} such that perm $(z E-C)=f(z)$.

Let $g(z)=\prod_{j=1}^{m}\left(z-\lambda_{j}\right)^{s_{j}}$. Using the formula of the lemma we can write

$$
\frac{\operatorname{perm}(z E-C)}{g(z)}=\sum_{i=1}^{m} \sum_{h=0}^{s_{i}-1} \frac{b_{i h}}{\left(z-\lambda_{i}\right)^{s_{i}-h}}+z-q
$$

Let us now resolve $f(z) / g(z)$ into partial fractions. Bearing in mind that $f(z)=z^{n}-\left(\sum_{i=1}^{n} a_{i}\right) z^{n-1}+\cdots$ we get

$$
\begin{equation*}
\frac{f(z)}{g(z)}=\sum_{i=1}^{m} \sum_{h=0}^{s_{i}-1} \frac{d_{i h}}{\left(z-\lambda_{i}\right)^{s_{i}-h}}+z-q \tag{I}
\end{equation*}
$$

Let us take $b_{i h}=d_{i h}$. With this choice of the $b_{i h}$ we have $f(z)=$ perm $(z E-C)$ as required. Now we compute the y_{h}^{k} by $b_{i n}=$ $(-1)^{s_{i}+h+1} \sum_{j=1}^{h+1} y_{j}^{i}\left(h=0, \cdots, s_{i}-1 ; i=1, \cdots, m\right)$ which is a system of linear equations, always compatible.

If we suppose the numbers a_{1}, \cdots, a_{n} as well as the coefficients of $f(z)$ real it follows from (I) that the $d_{i n}$ and therefore the $b_{i k}$ are also real. In this case C can, clearly, be chosen real.

The "only if" part of the theorem is an immediate consequence of the formula

$$
\operatorname{perm}(z E-A)=z^{n}+\sum_{p=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{p} \leqq n}(-1)^{p} \operatorname{perm} A\binom{i_{1}, \cdots, i_{p}}{i_{1}, \cdots, i_{p}} z^{n-p}
$$

where $A\binom{i_{1}, \cdots, i_{p}}{i_{1}, \cdots, i_{p}}$ denotes the principal submatrix of A contained in the rows i_{1}, \cdots, i_{p}.

Concerning the problem (1) mentioned in $\S 1$ of the present paper, we have been able to prove the following partial result.

Theorem 2. Let a_{1}, \cdots, a_{n} be real numbers and suppose that there exists an index i_{0} such that $i \neq j ; i, j \neq i_{0}$ implies $a_{i} \neq a_{j}$. Let $f(z)=z^{n}-c z^{n-1}+\cdots$ be a given polynomial with real coefficients such that $c=\sum_{i=1}^{n} a_{i}$.

$$
\text { If } f\left(a_{j}\right) \cdot \prod_{\substack{i=1 \\ i \neq j, i_{0}}}^{n}\left(a_{j}-a_{i}\right) \geqq 0 \quad\left(j=1, \cdots, n ; j \neq i_{0}\right)
$$

there exists an $n \times n$ real symmetric matrix A with a_{1}, \cdots, a_{n} as principal elements and such that $f(z)=\operatorname{perm}(z E-A)$.

We omit the proof which follows closely the technique used in the proof of the Theorem 1.
3. We denote by Ω_{n} the set of all doubly stochastic matrices of order n. When $A \in \Omega_{n}, f(z)=\operatorname{perm}(z E-A)$ enjoys some interesting
properties as for instance: the roots of $f(z)$ lie in or on the boundary of the unit disc $|z| \leqq 1$ (see [1] and [4]). For the real roots of $f(z)$ it is known that they lie in the interval $0<x \leqq 1$. We have been led to the following

Conjecture. Let A be an $n \times n$ doubly stochastic irreducible matrix. If n is even, then $f(z)=\operatorname{perm}(z E-A)$ has no real roots; if n is odd, then $f(z)=\operatorname{perm}(z E-A)$ has one and only one real root.

It can be seen by direct computation that the conjecture is true in the following cases:
(a) A is a 2×2 real (not necessarily nonnegative) irreducible matrix all of whose row and column sums are 1.
(b) A is a 3×3 real (not necessarily nonnegative) irreducible symmetric matrix all of whose row and column sums are 1.
(c) A is the $n \times n$ matrix all of whose entries are equal to $1 / n$.

I wish to thank the referee for his valuable comments on a previous version of this paper.

References

1. J. Brenner and R. Brualdi, Properties of the permanent function, Notices Amer. Math. Soc. 14 (1967), 87.
2. R. Brualdi and M. Newman, Proof of a permanental inequality, Quart. J. Math. Oxford (2) 17 (1966), 234-238.
3. F. I. Karpelevič, On the characteristic roots of matrices with nonnegative elements, Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 361-383.
4. M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1967), 577-591.
5. L. Mirsky, Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc. 33 (1958), 14-21.
6. -, Inequalities and existence theorems in the theory of matrices, J. Math. Anal. and Appl. 9 (1964), 99-118.
7. L. Mirsky and H. Perfect, Spectral properties of doubly stochastic matrices, Monats. fur Math. 69 (1965), 35-57.
8. G. N. de Oliveira, An application of the operator $X \rightarrow A X+X B$ to the construction of nonnegative and stochastic matrices with characteristic roots related to the characteristic roots of other matrices, Rev. da. Fac. de Ciências (Lisbon) (2) 12 (1968), 15-24. 9. - On stochastic and doubly stochastic matrices, Thesis, Portuguese, English summary, Rev. da Fac. de C. da Univ. de Coimbra 41 (1968), 15-221.
9. ——, Matrices with prescribed characteristic polynomial and a prescribed submatrix, Pacific J. Math. 29 (1969), 653-662.
10. ——, Matrices with prescribed characteristic polynomial and a prescribed submatrix II, Pacific J. Math. 29 (1969), 663-668.

Received March 19, 1968.
Universidade de Coimbra
Coimbra, Portugal

