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A UNIQUENESS THEOREM FOR SECOND ORDER
QUASILINEAR HYPERBOLIC EQUATIONS

A. E. HURD

A uniqueness theorem is proved for weak solutions of
quasilinear second-order hyperbolic equations of the form

n Q

Utt — X -£— aXx, t, u, ux , un) = b(x, t, u)

in many space variables. The weak solutions are assumed to
satisfy a time-wise upper Lipschitz bound

uk(x, tι) - Uk(x, U)

for all 0 < t S tίf t2 where K(t) is an L^function. Together
with the obvious assumptions, the equation is supposed to
satisfy a symmetry condition

da1 _ da*
dUj dUi

along with convexity of the a1 in u and Uk* As a corollary,
a uniqueness theorem for systems proved by Oleinik is gen-
eralized.

In recent years a number of authors have studied quasilinear
hyperbolic equations and systems with the goal of obtaining general
existence and uniqueness theorems for the initial problem. Regular
or smooth solutions do not usually exist for these problems, and so
one tries to establish the existence of weak or generalized solutions
of various types. The uniqueness question for such solutions is then
somewhat more tenuous than that for smooth solutions, and usually
involves the assumption of some sort of one-sided Lipschitz estimate
on the solution.

The first comprehensive attack on these problems began with
Oleϊnik's paper [6] in which she established existence and uniqueness
results for generalized solutions of first order equations of the form

(1) ^ + &-(x, t, u) + ψ(x, t, u) - 0 .
dt dx

The function φ was subject to a convexity assumption

(2) P ^

To prove uniqueness she used a variant of the method of Holmgren

415
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(see [3]), assuming that the generalized solutions u were bounded
measurable, and satisfied a Lipschitz bound of the form

*) ~ u(χ*' *> ^ K(xl9 x2, t) .

Since Oleϊnik's paper much effort has been directed to generalizing
her results in two directions;

(a) to systems of first order equations (see e.g. [4]), and
(b) to equations in many space variables ([1], [2]).

However, little progress has been made on a corresponding general
theory for higher order equations, with no existence theorems having
yet been produced.

This paper is devoted to proving a uniqueness theorem for weak
solutions of the initial value problem for second order symmetric
(Assumption II) quasilinear hyperbolic equations in several space vari-
ables. A variant of the Holmgren method is again used, except that
energy estimates are used in place of pointwise estimates. The same
method has been applied to symmetric first order systems in [5]. We
also require convexity-type assumptions on the equation (Assumption
IV). But in interesting contrast with the case of first order equations,
we are led to impose time-wise Lipschitz bounds on the solution (As-
sumption B) in place of the space-wise Lipschitz bounds (3).

In the last part of the paper our result is used to generalize a
uniqueness theorem for a hyperbolic system of two first order quasilinear
equations which was obtained by Oleϊnik [7]. The generalization
essentially amounts to weakening the convexity condition, and replacing
a constant Lipschitz bound by an L1 function. It would seem that
more substantial extensions of Oleinik's result are possible using the
technique presented here.

2* The uniqueness theorem* In the region

D = {(x, ί) : x = (xί9 --*,xn)eRn;t real, 0 < t < °o}

we consider the second order quasilinear hyperbolic equation

(4) utt - X —-a\x, t, u,uu , un) - b(x, t, u) = 0
i=ί OXi

for the function u(x91), where we have used the notation

- | t = ft and ^ = Ψt.
oxk ot

The equation will be subject to the following assumptions.
I. The functions α*'(α, t, u, uk) and b(x, t, u) are defined for all
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x, t, u, uk satisfying —oo < #, u, uk < oo, 0 < £ < <χ>, and are differ-

entiable with respect to these variables, the derivatives being uniformly
Lipschitz continuous on compact subsets of D. Also dtf/dUj is continu-
ously differentiate with respect to t, u and uk.

II. (Symmetry) If

a • (x, t, u, uk) = aij(x, t, u, uk)
du3-

then

( 5) aij(x, t, u, uk) — aji(xy tf u, uk) .

III. Given positive constants M and T there are corresponding
constants cx > 0 and c2 > 0 such that

( 6 )

i = l

for all vectors (ξlf ••-,?») if (x, t)eBn x [0, T] and

i M I + Σ I ̂  I ̂  Λf.

IV. {Convexity). F o r all vectors (flf •••,?») we have

(7a)

and

(7b) Σ ^— (x, t, u,

V. The functions

-^-(a?, ί, w, uk), -^—{Xj t, u, uk) and —-(a?, ί, w)

are uniformly bounded on compact subsets of (x, t, u, uk) space.
We will be concerned with weak solutions of (4).

DEFINITION. Let f(x) and g(x) be essentially bounded measurable
functions on Rn. A weak solution u(x, t) of (4) on D with initial
conditions

u(x,Q)=f(x) and 2±(χ, 0) = g(χ)
dt
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is an essentially bounded measurable function possessing essentially
bounded measurable weak (i.e., distribution) derivatives uk and ut a.e.
on D which satisfy the following conditions:

A. For every twice continuously differentiable test function φ(x, t)
on D which vanishes for large | x \ + t, (| x \ = (x[ + + x\)ιβ) we
have

( 8 )
\\ \uφtt + Σ α ' f e ί, u, uk)<pi - b(x, t, u,)<p\dxdt

+ ί f(x)<Pt(Xf 0)dx - \ g(x)φ(x, 0)dx = 0 .

B. Given any compact subset R of Rn, and T, 0 ^ T < °° there
is a function ϋΓ(ί) e L^O, T) such that

(9a) ^fc(a;, tλ) - uk(x, t2)

holds a.e. for all α e R, and 0 < ίx < t2 ^ ί < 2V

Any twice continuously differentiable (smooth) solution of (4) is a
weak solution as is easily seen by applying the divergence theorem.

Before presenting the main result of the paper we establish a
lemma concerning energy inequalities for twice continuously differ-
entiable solutions of hyperbolic equations of the form

Lφ = ψtt- ΣΣ
do)

- β(x, t)φ = F(X, t)

The energy of the solution φ(x, t) at time t is defined to be

(11) E(t) - \ \φl(x, ί) + Σ Φlfr, t)\dx .

We will assume that our solution has uniformly bounded special support
on any given finite time interval, in the sense that, given T ^ 0
there is a rectangle RaRn such that the support of φ(x, t) as a
function of x lies in 22 for all ί, 0 <; t <̂  T. A uniform bound on E(t)
for all such t will be obtained under the following assumptions:

Γ. The functions aiS(xf ί), a\x, t) and β(x, t) are continuously
differentiable functions of x and ί.

(9b)

1 Since u has essentially bounded weak derivatives it follows (c.f. Serrin [9]) that

ti — U

holds a.e. in R x [0, T], where K is some constant.
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IΓ. For all i, j = 1, , n we have aij(x> t) = aji(x, t).
III'. There are constants cx > 0 and c2 > 0 such that

n n n

i=i i,i=i *=i

for all (x, t)eR x [0, T] and all vectors (flf , fn).
IV. There is a function jKi(ί) e L^O, Γ) such that

(13) Σ aij(χ> *)£•£*• ^ jBΓi(ί) Σ ί!

for all (x, t)eR x [0, T] and all vectors (&, , ζn).

V . There are constants A ^ 0 and i? ^ 0 such that

(14) I a\x, ί) I ̂  A , I /β(a?, ί) | ^ J5

for all (a?, t)eR x [0, Γ] .
VΓ. The function JFXB, ί) is square integrable on R x [0, T].

Then we have

LEMMA. Under assumptions Γ through VI' tfΛβre is α constant C
such that

E{τ) ^ C

/or all τ, 0 ^ τ <̂  Γ.

Proof. We have

?ί)i — Q(^) *)

where

(16) Q(s, ί) = Σ α»Vi9>i - 2 Σ «V^ t

Integrating (15) over JS x [0, r], 0 <̂  τ <̂  Γ, using the divergence theorem,
and the fact that φ vanishes on the boundary of R for all t, 0 ^ t ^ r,
we obtain

Σ aVφ&Pldx = [*[ Q(x9 t)dxdt
*,i=i Jo JoJ/2

4- 2 ί ί <ptF(x, t)dxdt .
JOJR

Denoting all constants generically by C, there results
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E(τ) ^ C\E(0) + [[ Q(x, t)dxdt + 2Π φtF(x, t)dxdt]
L JOJR JOjR J

Now to bound the right-hand side we note that from (13)

Π I~Σ cc\jφiφλdxdt^ \rK^Eiΐjdt

and from (14)

- Π ύiLofφicp'λdxdt ^ c\τE(t)dt .
JOjR L ί = l J JO

Also from (14),

Π 2βφφtdxdt ^C[\ [φ2 + φ*\dxdt
JOJR JOJR

^c[[ φ2dxdt + c[E(t)dt ,
J0jRn JO

so that

a Q(x, t)dxdt
R

rg [[Kit) + C]E(t)dt + c[\ φ2dxdt .
Jo Joj i? w

To estimate the last integral on the right we have

φ(x, t) = \ φs(x, s)ds + φ(x, 0) , X £ Rn .
Jo

By Schwarz' inequality

φ

2(x, t) ̂  2Jίj V.(α, s)ds + cp2(a;, 0)J

and so

[φ\x, t)dt ̂  ί V ~ ί 2 ) ^ ^ + ^2(«τ, 0) .
Jo Jo

Thus

[\ φ\x, t)dxdt ̂  Γ(r2 - f)E(t)
JOJR Jo

+ τl φ2(x, 0)dx
}Rn

yielding

(Γ( Q(x, t)dxdt ^ [[K(t) + τ2 - f + C]E(t)dt
R Jo

+ τ t ^2(α;, 0)efe .
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Finally,

2Π φtF(x, t)dxdt ̂  \τE(t)dt
JOJR Jθ

+ Π F2(x, t)dxdt ,
J O J Λ Λ

and so in all

E(τ) £ f(τ) + [χ(t)E(t)dt ,
Jo

where

f(τ) = CΪE(0) + r( φ\x, 0)dx + Π F\x, t)dxdt] ,
L Ji?w JOJΛΛ J

and

χ(t) = C[K(t) + τ2 - f + 1] .

From GronwalPs inequality it follows that

E(τ) S fiτ)

and hence the uniform boundedness of E(τ) on 0 ^ r ^ T.
In the proof of the theorem we will actually use the following

immediate

COROLLARY. Under the assumptions of the lemma we have

\ \ \φ\ + Σ ψ\ \dxdt ^ constant .
JoJtfL *=i J

The fact of crucial importance in this lemma, as far as the appli-
cation to quasilinear equations is concerned, is that the bounds on
the solution follow only from upper and not two-sided bounds on a\\

We now come to the main result of this paper.

THEOREM. Weak solutions of (4) are uniquely determined by
their initial conditions.

Proof. If u\x, t) and u2(x, t) are two weak solutions of (4) with
the same initial conditions we will show that if ω — u1 — u2, then

(17) [[ F(x, t)ω(x, t)dxdt = 0

for every twice continuously differentiable function F(x, t) having



422 A. E. HURD

compact support in D thus showing that o) is zero a.e. in D.
For any test function φ(x, t) we have

f f ί n

(18) i } Λ

— [b(x, t, uι) — b(x, t, u)]φ \dxdt = 0 .

Now

\eV, I/, t v , (Λ/Jc/ ~~~ w V > > y ™k)

n

— al(x, t)β) + Σ ^^X ĵ ^)^i

where

(19) α*(flc, t) = \ — a l ( x , ί, r^1 + (1 — τ)u2, τ < -f (1 —

Jo du
and

/OQ\ ocHx /) — 1 π}^(x t TΉ} -4- ί l τ\v? TV/1 -\- ί l T
Jo

Similarly

6(α;, ί, to1) — δ(a?, ί, u2) = /8(a?, ί)ω

where

(21) ^(α?, ί) - [4-l>(χf *> τvjL + (1
Jo ^i6

Thus for any test function φ we have

(22) f ( ίωφtt + Σ «*%< + Σ ofωψi - βcoφXdxdt = 0

The identity (17) will be established by constructing an appropriate
sequence of test functions φm(m — 1,2, •••), using (22), and taking
limits.

Let ωm(x, t) be the Gaussian averaging kernel on Rn x (— oo <
t < oo) with support contained in the sphere

thus

\ I ωm(x, t)dxdt =
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for all m. If the function ψ(x, t) is in L2

loc0) we extend it to Rn x
(__ oo < t < oo) by putting φ(x, t) = 0 for t <̂  0 and then define

ψm(x, t) = ψ*ύ)m

where the * indicates convolution. It is well known that the functions
ψm are smooth in Rn x ( — oo < £ < oo) and converge to ψ in mean
square on compact subsets of D. If in addition the function ψ is
uniformly bounded on a compact subset of D then the functions ψm

possess the same bound on that subset.
The functions cί%(x, £), ai(x, t) and βm(x, t) are now defined by

the formulas for aij(x, t), etc., except that y}m replaces u* (i = 1, 2).
Using our assumptions it is easy to see that

I oή>(x, t) - a**(x, t) I

£ const [Σ \u{ -ui\ + Σ Σ I < - <» l] »

uniformly on compact subsets of D, from which it follows that the
sequence aϋ converges to aij in mean square on compact subsets of
D. Similarly, cCm and βm converge to a1 and β in mean square on
compact subsets of D.

The test functions φm are now chosen to satisfy the equation

n n

(23) φft — Σ (wlίφ?)] + Σ aLφT — βmφm — F(χ, t)

and the conditions φm(x, T) = <pϊ(x, T) = 0, where it is assumed that
the support of F(x, t) is contained in D Π {0 < t < T). Such functions
are obtained by solving the backward initial-value problem with zero
initial conditions at t = T. More precisely, we find solutions ψm(x, t) of

(24) ψTt - Σ χ (ΉΐΨTh + Σ αί f Γ ~ ^mt m = F(x, t)

on 0 ^ ί ^ Γ, subject to the initial conditions α/rw(#, 0) = ψ?(x, 0) = 0,
where άϋ(x, t) = αίί(α?, Γ — ί), etc., and then put φm(x, t) = ^m(α;, Γ — ί).
The standard existence theory [3] guarantees that we can find smooth
solutions of this initial-value problem which are then admissible test
functions.

From (22) and (24) we obtain, after some integration by parts,
the identity

(25)
(( ωFdxdt = \\ j Σ (αίί - cxίj)ωjφτ

Σ « - oC)ωφT + (βm - β)ωφ*\dxdt.
ί=l J
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Our result will be established by showing that the right-hand side of
(25) approaches zero as m —> oo. Now as is easily seen,

for all vectors (&, •••,£„), where cL and c2 are constants independent
of m, F has compact support and the existence theorems then
show that the supports of the functions ψm are uniformly contained
in some rectangular region R x [0, T] where R is a fixed rectangle
in Rn; the integration on the right-hand side of (25) need only be
extended over this region. Since the functions ω and ωt are uniformly
bounded, and the functions αjj, etc., converge to aij, etc., in mean
square on R x [0, T] we see, using Schwarz' inequality, that it suffices
to show that φf and φm are uniformly bounded in mean square over
this region. This will be achieved by applying the Corollary of Lemma
1 to obtain a similar bound for the functions ψf and ψm.

To apply Lemma 1 we need to show that assumptions Γ — VI'
are satisfied by the coefficients of equation (23), with bounds independent
of m. The only assumption that is not immediately evident is IV.
To establish it we note that

A-Sϋ(xtt) = -?-
dt dt

and so it suffices to demonstrate that

Σ 4ra™(χ>

Now

= _£ [A*i(x, t) + £«(&, t) + C«(x,

where

Aϋ(x, t)

(25a) S ——(r* f Til1 -4- Π 7-^/2 r ^m _i_ /I

———-( x, τ, τum -f- ^i — T)um, τ~-— + ( i —
o dt V dxu
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Cΰ(x, t)
(26c)

and we need only show the lower boundedness of the three separate
quadratic forms. Since the Aij are uniformly bounded, the associated
form is lower bounded. To show the lower boundedness of the two
other forms we use assumptions IV and B. Using the properties of
the averaging kernel it can be shown (see [6]) that the inequalities
(9) imply that

•%- £ K(t)
dt

and

where the function K(t) e 1/(0, T). The same upper bound then holds
for the convex combinations of these derivatives which occur in (26b)
and (26c). Using IV we now see that

Σ (Bij + C'O&fi ^ -2^(ί) Σ fϊ,

completing the proof.
It is clear from the proof that the uniqueness theorem will still

be valid if the inequalities in (7) are reversed and the inequalities (9)
are replaced by lower bounds

λ) U(X9 t2) ^

tι t2

y t2)

tι

Our assumptions were chosen to be consistent with those Oleϊnik [7].
In that paper she considered the system

(27a) — + dφ(χ' ty ^ = 0
dt dx

(27b) i ϋ . - *OL = 0 .
J dt dx

For this system the proved uniqueness, under the assumption dφ/dv < 0
and the convexity assumption d2φ/dv2 > 0, of pairs of weak solutions
(u, v) (defined in the obvious way), where v satisfied a.e. a bound of
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the form

(28) v(χ> *i)

where K is a constant. If we were dealing with smooth (i.e., twice
continuously differentiate) solution pairs, then equations (27) could
be replaced by the single equation

(29) ξ j - -?-a(x,t,v,vx) = 0
df dx

where

~a(x, t, v, vx) = —-φ(x, t, v) = -¥- + -£-(x, t, v)vx .
dx dx dv

Inequality (7a) is then

(30) f ^
dv2

which is even weaker than the strict convexity assumed by Oleίnik,
and inequality (7b) is vacuously satisfied.

But this reduction can also be made for weak solutions. Using a
result of Schauder [8] we see that the weak form of (27b) implies
the existence of a (locally) Lipschitz continuous potential function
J(x, t) which a.e. satisfies Jx — v and Jt — u. (This function can be
normalized so that J(0, 0) = 0.) It is then easy to see that / is a
weak solution of

(31a) Jtt + -$-φ(x, t, Jx) = 0
dx

with the initial conditions

J(x, 0) = \*v(x, ϋ)dx
Jo

and

(31b) Jt(x, 0) = u(x, 0) .

For (31a) the inequality (7b) is equivalent to (30) and Oleϊnik's other
assumptions are sufficient for the application of our theorem. The
uniqueness theorem applied to (31) then generalizes Oleίnik's result.
I am indebted to E. D. Conway for pointing out the possibility of this
reduction.
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