RINGS OF ANALYTIC FUNCTIONS

JULIANNE SOUCHEK

If F is an open Riemann surface and A(F) is the set of all analytic functions on F, then A(F) is a ring under pointwise addition and multiplication. This paper is concerned with proper subrings R of A(F) which are isomorphic images of A(G), the ring of all analytic functions on an open Riemann surface G, under a homomorphism \emptyset which maps constant functions onto themselves. The ring R has the form $\{g \circ \phi:$ $g \in A(G), \phi$ an analytic map from F into G}, and will be denoted R_{ϕ} . Relations between ϕ , R_{ϕ} and the spectrum of R_{ϕ} are given as necessary and sufficient conditions for the existence of a Riemann surface G such that R is isomorphic to A(G).

Open Riemann surfaces will be denoted by F and G, the rings of all analytic functions on F and G with pointwise addition and multiplication will be denoted by A(F) and A(G), and Φ will denote a homomorphism from A(G) into A(F) which maps constant functions onto themselves. Let Φ be such a homomorphism. In [5, pp. 272-273] H. L. Royden shows there is an analytic mapping ϕ of F into G such that $\Phi(g) = g \circ \phi$, and that if Φ is an isomorphism onto A(F)then ϕ is a one-to-one, onto analytic mapping. If ϕ is an analytic mapping of F into G, then Φ defined by $\Phi(g) = g \circ \phi$, $g \in A(G)$, is a homomorphism from A(G) into A(F) which preserves constant functions. When ϕ is one-to-one and onto, Φ is an isomorphism.

The image of A(G) under Φ is the set $\{g \circ \phi: g \in A(G), \phi \text{ is an} analytic map of <math>F$ into $G\}$ denoted by R_{ϕ} . R_{ϕ} is a subring of A(F) and contains the constant functions, since $\Phi(\lambda) = \lambda$ for λ a constant function. The following conditions are equivalent: R_{ϕ} properly contains the constant functions, Φ is an isomorphism, ϕ is not a constant function. Theorems 1 and 2 give other relations between ϕ and R_{ϕ} .

THEOREM 1. If R_{ϕ} properly contains the constant functions, then R_{ϕ} contains 1/f whenever $f \in R_{\phi}$, $f(z) \neq 0$ on F, if and only if ϕ maps F onto G.

Proof. Let ϕ map F onto G, $f \in R_{\phi}$, $f(z) \neq 0$ on F. Then $f = \Phi h$ for some $h \in A(G)$ and $1/h \in A(G)$ if $h(y) \neq 0$ for $y \in G$. Suppose h(a) = 0. Since $a = \phi(z)$ for some $z \in F$, $0 = h(a) = h(\phi(z)) = \Phi h(z) = f(z)$. This contradicts $f(z) \neq 0$ on F. Thus $h(a) \neq 0$ for $a \in G$, $1/h \in A(G)$, and $1/f = \Phi(1/h) \in R_{\phi}$.

Suppose R_{ϕ} contains 1/f when $f \in R_{\phi}$, $f(z) \neq 0$ on F. Let $a \in G$.

There is $g \in A(G)$ such that g(a) = 0 and $g(w) \neq 0$ for $w \neq a$ [1, pp. 591-592]. The function $\Phi g \in R_{\phi}$. If $\Phi g(z) = g \circ \phi(z) \neq 0$ for $z \in F$, then there is $h \in R_{\phi}$ such that $(\Phi g)(h) = 1$. There is $k \in A(G)$ such that $h = \Phi k$. Then $(\Phi g)(\Phi k) = 1$ and $\Phi(gk) = 1$ but Φ is an isomorphism implies gk = 1 and g(a)k(a) = 1. This contradicts g(a) = 0. Therefore $g(\phi(z)) = 0$ and $\phi(z) = a$ for some $z \in F$.

A straightforward argument shows

THEOREM 2. If R_{ϕ} properly contains the constant functions, then R_{ϕ} separates the points of F if and only if ϕ is one-to-one.

Let R be a ring of analytic functions defined on F. The spectrum of R, ΣR , is the set of nonzero homomorphisms π from R into the complex numbers such that $\pi(\lambda) = \lambda$ for λ a constant function. For $x \in F$ the point evaluation mapping $\pi_x = \{(f, f(x)): f \in R\}$ is a homomorphism from R into the complex numbers, and $\pi_x(\lambda) = \lambda$ for λ a constant function. Therefore ΣR always contains the point evaluation mappings defined on R. In [5, p. 272] H. L. Royden shows that the spectrum of A(F) is the set of point evaluation mappings π_x defined on A(F), $x \in F$. For $f \in R$ let $\hat{f} = \{(\pi, \pi f): \pi \in \Sigma R\}$; \hat{f} is a function from ΣR into the complex numbers. Let \hat{R} denote $\{\hat{f}: f \in R\}$. With pointwise addition and multiplication \hat{R} is a ring containing the constant functions and is isomorphic to R under $f \to \hat{f}$.

For $y \in G$, let ψ_y denote an element of $\Sigma A(G)$. The mapping $P = \{(y, \psi_y): y \in G\}$ is a one-to-one function from G onto $\Sigma A(G)$. If $R = \Phi(A(G))$ and Φ is an isomorphism, $L = \{(\pi, \pi \circ \Phi): \pi \in \Sigma R\}$ is a one-to-one function from ΣR onto $\Sigma A(G)$. The mapping $\pi \to \pi \circ \Phi = \psi_y \to y$ which is $P^{-1} \circ L$ defines a one-to-one correspondence between ΣR and G when Φ is an isomorphism.

THEOREM 3. Let $R_{\phi} = \Phi(A(G))$, Φ be an isomorphism from A(G)into A(F) which preserves constant functions. Let M be the function from $\Sigma A(F)$ into ΣR_{ϕ} defined by $M(\pi_x) = \pi_x|_{R_{\phi}}$. Then M is onto if and only if ϕ is onto, and M is one-to-one if and only if ϕ is one-to-one.

Proof. The proof that M is one-to-one if and only if ϕ is one-to-one follows from Theorem 2 and the fact that A(F) separates the points of F.

Let $\pi \in \Sigma R_{\phi}$. Then $\pi \circ \Phi \in \Sigma A(G)$ implies there is $y \in G$ such that $\pi \circ \Phi = \psi_y$, where $\psi_y(g) = g(y)$ for $g \in A(G)$. There are two cases: $y \in \phi(F)$, $y \notin \phi(F)$. If $y \in \phi(F)$, then $y = \phi(x)$ for some $x \in F$ and $\pi(\Phi g) = g(y) = g(\phi(x)) = \Phi g(x)$ for every $g \in A(G)$, $\pi(\Phi g) = \Phi g(x)$ for

234

every $f = \Phi g \in R_{\phi}$. This implies $\pi = M(\pi_x)$. If $y \notin \phi(F)$, then $y \neq \phi(x)$ for $x \in F$, and it may be shown that for every $x \in F$ there is $f \in R_{\phi}$ such that $\pi(f) \neq f(x)$. Let $x \in F$. Then $\phi(x) \in G$. $y \in G$, $y \neq \phi(x)$, and A(G) separates the points of G implies there is a $g \in A(G)$ such that $g(y) \neq g(\phi(x))$. From $\Phi(g) \in R_{\phi}$ and $\pi(\Phi g) = g(y) \neq g(\phi(x)) = \Phi g(x)$ it follows that $\pi \neq M(\pi_x) = \pi_x|_{R_{\phi}}$.

For $\pi \in \Sigma R_{\phi}$, $\pi \circ \Phi = \psi_y \in \Sigma A(G)$, and it has been shown $\pi \in M(\Sigma A(F))$ if and only if $y \in \phi(F)$.

From Theorem 3 and since ΣR_{ϕ} and G are in one-to-one correspondence, it follows that the point evaluation maps in ΣR_{ϕ} are in one-to-one correspondence with the points $\phi(x) \in \phi(F)$, and the elements of ΣR_{ϕ} which are not point evaluation maps are in one-to-one correspondence with the points in $G - \phi(F)$.

Theorem 4 contains a necessary condition which a subring R of A(F) must satisfy if R is to be $\Phi(A(G))$, the isomorphic image of A(G) under Φ for some open Riemann surface G. The corollary to Theorem 5 gives a set of sufficient conditions on R in order that R be $\Phi(A(G))$ when $\Phi g = g \circ \phi$ and $\phi: F \to G$ is an onto mapping.

Suppose F is an open Riemann surface, $p \in F$, f is analytic at p and τ is a local uniformizer which maps a neighborhood of p onto $\{z: |z| < g\}$ for some $\rho > 0$, $\tau(p) = 0$. There is a number r > 0 such that $f \circ \tau^{-1}(z) = \sum_{i=0}^{\infty} a_i z^i$ for |z| < r. The multiplicity of f at p is defined as $\inf \{k: k \neq 0 \text{ and } a_k \neq 0\}$, denoted n(p; f). The multiplicity n(p; f) of f at p does not depend on τ . If R contains functions other than constants, $m = \inf \{n(p; f): f \in R\}$ is defined, and n(p; f) = m for some $f \in R$.

THEOREM 4. Let $p \in F$, R_{ϕ} contain functions other than constants and let $m = \{\inf n(p; f): f \in R_{\phi}\}$. There is a local uniformizer τ at p with the properties: $\tau(0) = p$, for some $\rho > 0$, τ maps $\{z: |z| < \rho\}$ onto a neighborhood of p, and if $f \in R_{\phi}$, $f \circ \tau(z) = \sum_{i=0}^{\infty} a_i(z^m)^i$ for $|z| < \rho$.

The proof of Theorem 4 is based on two lemmas:

LEMMA 1. If $p \in F$, $m = \inf \{n(p; f): f \in R_{\phi}\}$ and $f \in R_{\phi}$, then n(p;f) = km, where k is a positive integer.

LEMMA 2. Given $\sum_{i=m}^{\infty} c_i z^i$ convergent for $|z| < \rho$, $c_m \neq 0$, $m \neq 0$, there is $\sum_{i=1}^{\infty} b_i z^i$ convergent for $|z| < \rho$, $b_1 \neq 0$, such that $(\sum_{i=1}^{\infty} b_i z^i)^m = \sum_{i=m}^{\infty} c_i z^i$.

Lemma 1 follows from the two relations: For $f \in R_{\phi}$, $f = g \circ \phi$ for

some $g \in A(G)$, which implies $n(p; f) = (n(p; \phi))(n(\phi(p); g))$, and if $m = \inf \{n(p; f): f \in R_{\phi}\}$ then $n(p; \phi) = m$. Lemma 2 is proved by defining W a subset of the natural numbers N as $W = \{n \in N: b_1, b_2, \dots, b_n \text{ can be defined in such a way that the coefficients of <math>z^i$ for $1 \leq m \leq i \leq m + n - 1$ of $(\sum_{i=1}^{\infty} b_i z^i)^m$ and $\sum_{i=m}^{\infty} c_i z^i$ are equal} and using induction to show W = N.

Proof of Theorem 4. Let τ_p be a local uniformizer about p such that $\tau_p(0) = p$. If $m = \inf \{n(p; f): f \in R_{\phi}\}$, there is $f_p \in R_{\phi}$ and $\rho > 0$ such that $f_p \circ \tau_p(z) = \sum_{i=m}^{\infty} c_i z^i$ for $|z| < \rho, c_m \neq 0$, and the range of $\sum_{i=m}^{\infty} c_i z^i$ contains $|z| < \rho^m$.

There is a power series $\sum_{i=1}^{\infty} b_i z^i$, $b_1^m = c_m$, such that $\sum_{i=m}^{\infty} c_i z^i = (\sum_{i=1}^{\infty} b_i z^i)^m$ for $|z| < \rho$ as stated in Lemma 2. $k(z) = \sum_{i=1}^{\infty} b_i z^i$ is defined for $|z| < \rho$, is one-to-one, and its range contains $|z| < \rho$. Thus $k^{-1}(y)$ is defined for $|y| < \rho$ and $f_p \circ \tau_p \circ k^{-1}(z) = (\sum_{i=1}^{\infty} b_i (k^{-1}(z))^i)^m = z^m$ for $|z| < \rho$, $\tau_p \circ k^{-1}(0) = p$. The function $\tau = \tau_r \circ k^{-1}$ is a local uniformizer about p and there is $f_p \in R_{\phi}$ such that $f_p \circ \tau(z) = z^m$ for $|z| < \rho$.

Let $f \in R_{\phi}$, f not a constant function. Then $f \circ \tau(z) = \sum_{i=0}^{\infty} a_i z^i$ for $|z| < \rho$. Let N denote the natural numbers and define W = $\{n \in N: f \circ \tau(z) = \sum_{i=0}^{n} a_{mj_i} z^{mj_i} + z^{mj_n} h_n(z), \text{ where } h_n(z) = \sum_{i=1}^{\infty} b_{n,i} z^i \text{ and } j_i$ are nonnegative integers, $0 = j_0 < j_1 < \cdots < j_n\}$.

It follows from Lemma 1 that for $|z| < \rho, f \circ \tau(z) = \sum_{i=0}^{\infty} a_i z^i = a_0 + a_{mj_1} z^{mj_1} + z^{mj_1} h_1(z)$, where $h_1(0) = 0$. If $k \in W$, then $f \circ \tau(z) = \sum_{i=0}^{k} a_{mj_i} z^{mj_i} + z^{mj_k} h_k(z)$, $h_k(0) = 0$. Since $f \in R_{\phi}$, $z^m \in R_{\phi}$ and constants are contained in R_{ϕ} , $z^{mj_k} h_k(z) = f(z) - \sum_{i=0}^{k} a_{mj_i} z^{mj_i} \in R_{\phi}$. If $h_k \neq 0$, $n(p; z^{mj_k} h_k) = mj_{k+1}$ and $f \circ \tau(z) = \sum_{i=0}^{k+1} a_{mj_i} z^{mj_i} + z^{mj_k+1} h_{k+1}(z)$, where $h_{k+1}(z) = \sum_{i=1}^{\infty} b_{k+1,i} z^i$ on $|z| < \rho$ and $j_{k+1} > j_k$. If $h_k = 0$, then the above statement is true with $a_{mj_{k+1}} = 0$, $h_{k+1} = 0$. By induction W = N and $f \circ \tau(z) = \sum_{i=0}^{\infty} a_{mi} z^{mi}$ on $|z| < \rho$.

If R, a subring of A(F), has the property that for every $a \in F$, $f \in R$, for some local uniformizer τ about a, $f \circ \tau(z) = \sum_{i=0}^{\infty} a_i(z^{m(a)})^i$ for $m(a) = \inf \{n(a; f): f \in R\}$, then R has property (ξ) . If R contains functions other than constants and has property (ξ) , then for $a \in F$, $m(a) = \inf \{n(a; f): f \in R\} = 1$ if R separates the points of F.

THEOREM 5. If R is a subring of A(F) which contains functions other than constants and has property (ξ) , then there is an open Riemann surface G, an analytic mapping ϕ of F onto G, and a separating subring S of A(G) such that S is isomorphic to R under $\hat{f} \rightarrow \hat{f} \circ \phi$, $\hat{f} \in S$.¹

Proof. Let $G = \{\pi_p : p \in F\}$ where $\pi_p = \{(f, f(p)) : f \in R\}$ and $\phi =$

 $\{(p, \pi_p): p \in F\}$. The topology on G will be that which makes ϕ continuous and open. If N_p is an open neighborhood of $p \in F$, then $N_{\pi_p} = \{\pi_q: q \in N_p\}$ is an open neighborhood of π_p . The set G with this topology is a connected Hausdorff space.

Let $p \in F$, $\pi_p \in G$ and $m = \inf \{n(p; f): f \in R\}$. By the same argument used in the beginning of the proof of Theorem 4, there is a function $f_p \in R$ and a local uniformizer τ about p such that $\tau(0) = p$ and $f_p \circ \tau(z) = z^m$ for $|z| < \rho^{1/m}$ for some $\rho > 0$. Then for $f \in R$, $f \circ \tau(z) = \sum_{i=0}^{\infty} a_i(z^m)^i = g_f(z^m)$ for $|z| < \rho^{1/m}$, g_f analytic on $|z| < \rho$.

It will be shown that $\sigma_{\tau} = \{(z^m, \pi_{\tau(z)}): |z| < \rho^{1/m}\}$ is a local uniformizer about π_p . If $z_1^m = z_2^m$, then $f \circ \tau(z_1) = g_f(z_1^m) = g_f(z_2^m) = f \circ \tau(z_2)$, for $f \in R$ implies $\pi_{\tau(z_1)} = \pi_{\tau(z_2)}$, which implies that σ_{τ} is a function. If $\pi_{\tau(z_1)} = \pi_{\tau(z_2)}$ then in particular $f_p \circ \tau(z_1) = f_p \circ \tau(z_2)$, which implies $z_1^m = z_2^m$, and σ_{τ} is one-to-one. Since the relations $z^m \to z \to \tau(z) \to \phi(\tau(z)) = \pi_{\tau(z)}$ are open and continuous, σ_{τ} is open and continuous. Thus σ_{τ} is a homeomorphism from $\{w: |w| < \rho\}$ onto $\phi \circ \tau(\{z: |z| < \rho^{1/m}\}) = N_{\pi_p}$.

If $\pi \in W = \sigma_{\tau_2}(|z| < \rho_2) \cap \sigma_{\tau_1}(|z| < \rho_1)$, there are points z_1, z_2 such that $\pi_{\tau_1}(z_1) = \pi_{\tau_2}(z_2)$. Then $f \circ \tau_1(z_1) = f \circ \tau_2(z_2)$ for every $f \in R$, and $z_1^{m_1} = f_1(\tau_1(z_1)) = f_1(\tau_2(z_2)) = g_{f_1}(z_2^{m_2})$, so g_{f_1} is analytic on $\{w: |w| < \rho_2\}$, which contains $\sigma_{\tau_2}^{-1}(W)$. This shows that $z_1^{m_1} = \sigma_{\tau_1}^{-1} \circ \sigma_{\tau_2}(z_2^{m_2})$ is analytic on $\sigma_{\tau_2}^{-1}(W)$ to $\sigma_{\tau_1}^{-1}(W)$. The function σ_{τ} is a local uniformizer of a neighborhood of π_{r_2} , and G is a Riemann surface.

For $f \in R$, let $\hat{f} = \{(\pi_p, f(p)): p \in F\}$, $S = \{\hat{f}: f \in R\}$. Since f is continuous and ϕ is open, \hat{f} is continuous. The function \hat{f} is analytic at π_p , because if $|w| < \rho$, $w = z^m$, then $\hat{f} \circ \sigma_\tau(w) = \hat{f}(\pi_{\tau(z)}) = f(\tau(z)) = \sum_{i=0}^{\infty} a_i(z^m)^i = \sum_{i=0}^{\infty} a_iw^i$. The mapping ϕ is analytic at p, because $\sigma_\tau^{-1} \circ \phi \circ \tau(z) = \sigma_\tau^{-1}(\pi_{\tau(z)}) = z^m$ for $|z| < \rho^{1/m}$. With pointwise addition and multiplication, S is a ring and is isomorphic to R under the mapping $\hat{f} \to \hat{f} \circ \phi = f$. The ring S separates the points of G. Since S contains functions which are not constant and are analytic on G, G is an open Riemann surface.

If S is to be A(G), then by Theorem 3 the mapping $M(\pi_p) = \pi_p|_R$ from $\Sigma A(F)$ to ΣR must be onto, since ϕ is an onto mapping of F to G. Thus ΣR may contain only point evaluation mappings and $\Sigma R = G$.

COROLLARY TO THEOREM 5. If R is a subring of A(F) which properly contains the constant functions and has property (\hat{z}) , if ΣR contains only point evaluation mappings, and R contains all $f \in A(F)$ such that $f \circ \tau_p(z) = \sum_{i=0}^{\infty} a_i(z^m)^i$ for $|z| < \rho^{1/m}$, $p \in F$, m = $\inf \{n(p; f): f \in R\}$, then $\Sigma R = G$ is an open Riemann surface, and R is isomorphic to S = A(G).

¹ This result and proof are similar to one given by M. Heins for a subfield of the field of all meromorphic functions on a Riemann surface [2, pp. 268-269].

Proof. Everything except S = A(G) was shown in the proof of Theorem 5. The function $\hat{f} \in A(G)$ if and only if for every $\pi_p \in G$, $\hat{f} \circ \sigma_{\tau_p}(w) = \sum_{i=0}^{\infty} a_i w^i$ for $|w| < \rho$. Let $\hat{f} \in A(G)$, $p \in F$, $\pi_p \in G$, and $f = \hat{f} \circ \phi$. Then $f \in A(F)$ and $f \in R$, because for $|z| < \rho^{1/m}$, $f \circ \tau_p(z) = \hat{f} \circ \phi(\tau_p(z)) = \hat{f}(\pi_{\tau_n(z)}) = \hat{f} \circ \sigma_{\tau_n}(z^m) = \sum_{i=0}^{\infty} a_i(z^m)^i$.

If $R = \{\hat{f} \circ \phi : \hat{f} \in S\}$ and S separates the points of G, then R separates the points of F if and only if ϕ is a one-to-one function. If S separates the points of G, and S = A(G), then R may not separate the points of F, because if it did ϕ would be a one-to-one, onto analytic function from F to G, and R = A(F). If $S \neq A(G)$ there may be a surface H, a mapping ϕ_1 and a separating subring T of A(H) such that ϕ_1 is analytic and one-to-one but not onto, and T = A(H).

In this part of the paper it is noted that if $R = \Phi(A(G))$, then ΣR with the Gelfand topology is an open Riemann surface, and \hat{R} which is isomorphic to R, is the ring of all analytic functions on ΣR . Theorem 8 gives sufficient conditions on a subring R of A(F) and on \hat{R} in order that ΣR be an open Riemann surface and \hat{R} be a ring of analytic functions on ΣR . In conclusion sufficient conditions for \hat{R} to be $A(\Sigma R)$ are given.

If R is a ring of complex valued functions on F, then the Gelfand topology on ΣR is the weakest topology on ΣR which makes each element of \hat{R} continuous, where $\hat{R} = \{\hat{f}: f \in R\}, \hat{f} = \{(\pi, \pi f): \pi \in \Sigma R\}$. Let $\pi_0 \in \Sigma R$, K be a finite subset of \hat{R} , $\varepsilon > 0$. An open neighborhood of π_0 will be $\{\pi \in \Sigma R: |\hat{f}(\pi) - \hat{f}(\pi_0)| < \varepsilon$ for $\hat{f} \in K\}$. If $R = \Phi(A(G))$ and Φ is an isomorphism, then ΣR and $\Sigma A(G)$ with the Gelfand topology are homeomorphic under the mapping $L(\pi) = \pi \circ \Phi$ from ΣR onto $\Sigma A(G)$. The mapping $P(y) = \psi_y$ from G onto $\Sigma A(G)$ with the Gelfand topology is one-to-one, onto and continuous. The mapping Pis also open. As Royden observes [4, pp. 287-288], this is a consequence of a theorem of Remmert that an open Riemann surface can be mapped one-to-one and holomorphically into C^3 [3, p. 118]. Thus $P^{-1} \circ L$ is a homeomorphism from ΣR with the Gelfand topology onto G.

THEOREM 6. If R is a subring of A(F) such that $R = \Phi(A(G))$, and if Φ is an isomorphism which preserves constant functions, then ΣR with the Gelfand topology is an open Riemann surface, and \hat{R} is the ring of all analytic functions on ΣR . Moreover \hat{R} is isomorphic to R.

Proof. The spectrum of R with the Gelfand topology is a Hausdorff space. It is homeomorphic to G under the mapping $L^{-1} \circ P$,

and is connected. Let $\pi_q \in \Sigma R$ where $q \in G$, $\psi_q \in \Sigma A(G)$, and $L^{-1} \circ P$ maps $q \to \psi_q \to \pi_q$. If N_q is a neighborhood of q then $N_{\pi_q} = L^{-1} \circ P(N_q)$ is a neighborhood of π_q . There exists $h_q \in A(G)$ which has a simple zero at q [1, pp. 591-592]. h_q is a local uniformizer on a neighborhood of q, $N_q = h_q^{-1}(|z| < \rho)$ for some $\rho > 0$. If $\sigma_q = h_q|_{N_q}$, then $h_q \circ \sigma_q^{-1}(z) = z$ for $|z| < \rho$. For $h \in A(G)$, $y \in N_q$, $h(y) = \sum_{i=0}^{\infty} a_i(h_q(y))^i$.

If $f_q = \Phi h_q$ then \hat{f}_q is a local uniformizer on $N_{\pi_q} = L^{-1} \circ P(N_q)$. From $\hat{f}_q(\pi_y) = h_q(y)$ follows $\hat{f}_q(\pi_y) = h_q \circ P^{-1} \circ L(\pi_y)$, $\pi_y \in N_{\pi_q}$, which implies \hat{f}_q is a homeomorphism of N_{π_q} onto $|z| < \rho$. If $\pi_y \in N_{\pi_{q_1}} \cap N_{\pi_{q_2}}$, then $\hat{f}_{q_1}(\pi_y) = h_{q_1}(y) = \sum_{i=0}^{\infty} a_i(h_{q_2}(y))^i = \sum_{i=0}^{\infty} a_i(\hat{f}_{q_2}(\pi_y))^i$ since $\pi_y \in N_{\pi_{q_2}}$ or $y \in N_{q_2}$. The function \hat{f}_q is a local uniformizer on N_{π_q} and ΣR is a Riemann surface.

The ring \hat{R} is contained in $A(\Sigma R)$, because if $\hat{f} \in \hat{R}$, $\pi_y \in N_{\pi_q}$, $z = \hat{f}_q(\pi_y)$, then $\hat{f} \circ \hat{f}_q^{-1}(z) = \hat{f}(\pi_y) = h(y) = \sum_{i=0}^{\infty} a_i(h_q(y))^i = \sum_{i=0}^{\infty} a_i(\hat{f}_q(\pi_y))^i = \sum_{i=0}^{\infty} a_i z^i$. The function $T(q) = \pi_q$ is an analytic map of G onto ΣR . If θ is analytic on ΣR , then $\theta \circ T \in A(G)$ and $\theta \in \hat{R}$ because $\theta(\pi_q) = \theta \circ T(q) = \psi_q(\theta \circ T) = \pi_q(f)$ for $f = \Phi(\theta \circ T)$. This implies $\theta = \hat{f}$. Thus $\hat{R} = A(\Sigma R)$. Since \hat{R} contains functions which are analytic and are not constant on ΣR , ΣR is an open Riemann surface.

THEOREM 7. Let $R = \Phi(A(G))$. If $\hat{\pi} \in \Sigma R$, then $\hat{\pi}^{-1}(0)$ is a principal maximal ideal of R, and every principal maximal ideal of R is the kernel of $\pi \in \Sigma R$. If $\hat{\pi}^{-1}(0)$ is generated by f, then \hat{f} is a local homeomorphism on a neighborhood $N_{\hat{\pi}}$ of $\hat{\pi}$ and if $\pi \in N_{\hat{\pi}}$, $\hat{k} \in \hat{R}$, then $\hat{k}(\pi) = \sum_{i=0}^{\infty} a_i(\hat{f}(\pi))^i$.

Proof. If $\hat{\pi} \in \Sigma R$, then $\hat{\pi} \circ \Phi = \psi_q \in \Sigma A(G)$ and $\hat{\pi}^{-1}(0) = \Phi(\psi_q^{-1}(0))$. The kernel of ψ_q , $M_q = \psi_q^{-1}(0)$, is a principal maximal ideal of A(G), and every principal maximal ideal of A(G) is a kernel of $\psi \in \Sigma A(G)$ [5, pp. 271-272]. If h generates M_q , then h has a single zero and it is a simple zero at q [5]. Thus h is a homeomorphism on a neighborhood of q, N_q . If $f = \Phi h$, then $\hat{\pi}^{-1}(0)$ is the ideal generated by f. Also \hat{f} is a uniformizer on $N_{\hat{\pi}}^{\perp} = L^{-1} \circ P(N_q)$, and if $\pi \in N_{\hat{\pi}}^{\perp}$, $\hat{k} \in \hat{R}$, then $\hat{k}(\pi) = \sum_{i=0}^{\infty} a_i(\hat{f}(\pi))^i$ as shown in the proof of Theorem 6.

LEMMA. Let S be a ring of continuous functions on X with identity. Then X is not connected if and only if S is contained in a ring Q of continuous functions on X, where $Q = I_1 + I_2$, I_1 , I_2 proper ideals of Q, $I_1 \cap I_2 = \{0\}$.

THEOREM 8. Let R be a subring of A(F) which properly contains the constant functions, and suppose \hat{R} is not contained in a ring Q of continuous functions on ΣR where $Q = I_1 + I_2$, I_1 , I_2 proper ideals of Q, $I_1 \cap I_2 = \{0\}$. If for $\hat{\pi} \in \Sigma R$, $\hat{\pi}^{-1}(0)$ is a principal ideal of R

JULIANNE SOUCHEK

generated by f and \hat{f} , the function in \hat{R} which corresponds to f in R, is a homeomorphism on a neighborhood of $\hat{\pi}$, and for π in this neighborhood, $g \in R$, $\pi g = \sum_{i=0}^{\infty} a_i (\pi f)^i$, then ΣR is an open Riemann surface and \hat{R} is a ring of analytic functions on ΣR .

Proof. The spectrum of R with the Gelfand topology is a Hausdorff space. By the lemma ΣR is connected. Let $\hat{\pi} \in \Sigma R$. There is \hat{f} a homeomorphism of $N_{\hat{\pi}}$ onto $|z| < \rho$ for some $\rho > 0$. If $\pi \in N_{\hat{\pi}}$, $g \in R$, then $\hat{g}(\pi) = \sum_{i=0}^{\infty} a_i(\hat{f}(\pi))^i$. If $\pi \in N_{\pi_1} \cap N_{\pi_2} = W$ then $\hat{f}_1 \circ \hat{f}_2^{-1}(\hat{f}_2(\pi)) = \hat{f}_1(\pi) = \sum_{i=0}^{\infty} a_i(\hat{f}_2(\pi))^i$ implies $\hat{f}_1 \circ \hat{f}_2^{-1}$ is analytic on $\hat{f}_2(W)$. $\{(N_{\pi}, \hat{f}_{\pi}): \pi \in \Sigma R\}$ defines an analytic structure on ΣR . It is immediate that $\hat{R} \subset A(\Sigma R)$. Since \hat{R} contains functions which are not constant and are analytic on ΣR , ΣR is an open Riemann surface.

If $\{R_n\}$ is a sequence of subrings of A(F) such that R_n satisfies the conditions of Theorem 8, $\Sigma R_n|_{R_1} = \Sigma R_1, R_{n-1} \subset R_n$, then the chain has a maximal element, $\{\hat{f} \circ \phi: \hat{f} \in A(\Sigma R_1) \text{ and } \phi(x) = \pi_x, x \in F\}$. Let $\hat{\pi} \in \Sigma R_1$ and \hat{f} be a local homeomorphism at $\hat{\pi}$. If R_1 satisfies the conditions of Theorem 8 and contains all functions g in A(F) such that $\hat{g}(\pi) = \sum_{i=0}^{\infty} a_i(\hat{f}(\pi))^i$ for $\pi \in N_{\hat{\pi}}, \pi$ and $\hat{\pi}$ elements of ΣR_1 , then $\hat{R}_1 = A(\Sigma R_1)$, because if $\hat{g} \notin \hat{R}_1$, then there is $\hat{\pi} \in \Sigma R_1$ such that $\hat{g} \circ \hat{f}^{-1}$ is not analytic on $\{z: |z| < \rho\}$ which implies $\hat{g} \notin A(\Sigma R_1)$.

The author wishes to thank Professors H. B. Curtis and H. E. Lacey for their suggestions and encouragement.

References

1. H. Behnke, and F. Sommer, *Theorie der analytischen Funktionen einer komplexen Veränderlichen*, Springer-Verlag, Berlin, 1962.

2. M. Heins, Algebraic structure and conformal mapping, Trans. Amer. Math. Soc. **89** (1958), 267-276.

3. R. Remmert, Sur les espaces analytiques holomorphiquement separables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 118-121.

4. H. Royden, Function algebras, Bull. Amer. Math. Soc. 69 (1963), 281-298.

5. ____, Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc. 83 (1956), 269-276.

Received July 24, 1968, and in revised form October 14, 1969. This paper is part of the author's Ph. D. thesis submitted to the University of Texas at Austin.

SAM HOUSTON STATE UNIVERSITY HUNTSVILLE, TEXAS