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ON THE MAXIMAL MONOTONICITY OF
SUBDIFFERENTIAL MAPPINGS

R. T. ROCKAFELLAR

The subdifferential of a lower semicontinuous proper con-
vex function on a Banach space is a maximal monotone opera-
tor, as well as a maximal cyclically monotone operator. This
result was announced by the author in a previous paper, but
the argument given there was incomplete; the result is proved
here by a different method, which is simpler in the case of
reflexive Banach spaces. At the same time, a new fact is
established about the relationship between the subdifferential
of a convex function and the subdifferential of its conjugate
in the nonreflexive case.

Let E be a real Banach space with dual E*. A proper convex
function on E is a function / from E to (— oo, + o o ] , not identically
+ co, such that

/((I - \)x + \y) ̂  (1 - λ)/(s) + *>f(v)

whenever xeE, y eE and 0 < λ < 1. The subdifferential of such a

function / is the (generally multivalued) mapping df:E-+E* defined

by

df(x) = {x*eE* \f(y)^f(x) + <y - x, O , VyeE} ,

where <•,•>• denotes the canonical pairing between E and E*.

A multivalued mapping T: E—+ E* is said to be a monotone oper-

ator if

ζx0 — x19 x* — x?y ^ 0 whenever x* e T(x0), x? e T(xλ) .

It is said to be a cyclically monotone operator if

<£0 - x19 xf> + + <xn_, - xn, x*_x> + <xn - x0, xΐ> ̂  0

whenever x* e T(x4), i = 0, , n .

It is called a maximal monotone operator (resp. maximal cyclically

monotone operator) if, in addition, its graph

G(T) = {(x, x*) I x* e T(x)} c E x # *

is not properly contained in the graph of any other monotone (resp.

cyclically monotone) operator TΊE—+E*.

This note is concerned with proving the following theorems.
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THEOREM A. If f is a lower semicontίnuous proper convex func-
tion on E, then df is a maximal monotone operator from E to E*.

THEOREM B. Let T:E—*E* be a multivalued mapping. In
order that there exist a lower semicontίnuous proper convex function
f on E such that T == df, it is necessary and sufficient that T be a
maximal cyclically monotone operator. Moreover, in this case T
determines f uniquely up to an additive constant.

These theorems have previously been stated by us in [4] as
Theorem 4 and Theorem 3, respectively. However, a gap occurs in
the proofs in [4], as has kindly been brought to our attention recently
by H. Brezis. (It is not clear whether formula (4.7) in the proof of
Theorem 3 of [4] will hold for ε sufficiently small, because x* depends
on ε and could conceivably increase unboundedly in norm as ε de-
creases to 0. The same oversight appears in the penultimate sentence
of the proof of Theorem 4 of [4]). In view of this oversight, the
proofs in [4] are incomplete; further arguments must be given before
the maximality in Theorem A, the maximality in the necessary con-
dition in Theorem B, and the uniqueness in Theorem B can be regarded
as established. Such arguments will be given here.

2* Preliminary result* Let / be a lower semicontinuous proper
convex function on E. (For proper convex functions, lower semiconti-
nuity in the strong topology of E is the same as lower semicontinuity
in the weak topology.) The conjugate of / is the function / * on E*
defined by

(2.1) f*(χ*) = sup {<x, α?*> - f{x) \ x e E] .

It is known that / * is a weak* lower semicontinuous (and hence
strongly lower semicontinuous) proper convex function on i?*, and that

(2.2) f{x) + f*(x*) - <α, x*> ̂  0, Vx e E, Vx* e # * ,

with equality if and only if x* e df(x)

(see Moreau [3, §6]). The subdifferential 3/*, which is a multivalued
mapping from E* to the bidual E**, can be compared with the sub-
differential df from E to E*, when E is regarded in the canonical way
as a weak** dense subspace of £7** (the weak** topology being the
weak topology induced on ϋ7** by E*). Facts about the relationship
between df* and df will be used below in proving Theorems A and B.

In terms of the conjugate / * * of /* , which is the weak** lower
semicontinuous proper convex function on i?** defined by
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(2.3) /**(#**) = sup {<&**, x*> - /*(&*) I x* e E*} ,

we have, as in (2.2),

(2.4) /**(£**) + /*(&*) - <x**, £*> ^ 0, Vα;** e # * * , Vx* e E* ,

with equality if and only if ^** e3/*(x*) .

Moreover, the restriction of /** to E is /(see [3, §6]). Thus, if E
is reflexive, we can identify /** with /, and it follows from (2.2) and
(2.4) that 3/* is just the "inverse" of df, in other words one has
x e df*(x*) if and only if x* e df(x). If E is not reflexive, the relation-
ship between 3/* and 3/ is more complicated, but 3/* and df still
completely determine each other, according to the following result.

PROPOSITION 1. Let f be a lower semίcontίnuous proper convex
function on E, and let x*eE* and x**eE**. Then a?** e3/*(£*)
if and only if there exists a net {xf | i e l } in E* converging to x*
in the strong topology and a bounded net {Xi\ίe 1} in E {with the
same partially ordered index set I) converging to .τ** in the weak**
topology, such that xf e df(x{) for every iel.

Proof. The sufficiency of the condition is easy to prove. Given
nets as described, we have

by (2.2), where /(#*) = /**(#<). Then by the lower semicontinuity of
/ * and /** we have

f**(x**) + /*(&*) ^ liminf {/**(^) + /*(&?)}

= lim <χ, xty = <&**, £*> .

(The last equality makes use of the boundedness of the norms | | ^ | | ,
iel.) Thus ^ * e 3 f ( ^ ) by (2.4).

To prove the necessity of the condition, we demonstrate first that,
given any x**eE**, there exists a bounded net {y^iel} in E such
that yi converges to x** in the weak** topology and

(2.5) lim/d/i) = /**(£**) .

Consider f + ha, where a is a positive real number and ha is the lower
semicontinuous proper convex function on E defined by

(2.6) ha(x) = 0 i f \\x\\ ̂ a , h a ( x ) = + o o i f \ \ x \ \ > a .

Assuming that a is sufficiently large, there exist points x at which
/ and ha are both finite and ha is continuous (i.e., points x such that
fix) < +°° and 11 a? 11 < a). Then, by the formulas for conjugates of
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sums of convex functions (see Moreau [3, pp. 38, 56, 57] or Rockafellar
[5, Th. 3]), we have (/ + ha)* = / * Π hi (infimal convolution), and
consequently

*(2.7) (/ + KY* = (/* Π h*)* = /** + hi

Moreover hi(x*) = a\\x* || for ever x* eE*, so that

*,**(&**) - sup {<£**, £*> - α || £* || | a;* e #*}

_ (0 if || a?** || ^a ,

= t + oo if || a?** || >a .

Hence by (2.7), given any x**eE**, we have

(2.8) /**(£**) = (/ + ha)**(x**)

for sufficiently large a > 0. On the other hand, it is known that, for
any lower semicontinuous proper convex function g on E, g** is the
greatest weak** lower semicontinuous function on i£** majorized by
g on E (see [3, § 6]), so that

(2.9) g**(x**) = liminfflf(i/) ,

where the "liminf" is taken over all nets in E converging to x** in
the weak** topology. Taking g = f + ha, we see from (2.8) and (2.9)
that

f**(x**) = \imiτd[f(y) + ha(y)] f

implying t h a t (2.5) holds as desired for some net {Vi\ie 1} in E such
t h a t yt converges to $** in the weak** topology and \\yi\\^a for
every ie I.

Now, given any £ * e i 7 * and #** eδ/*(a?*), let {Vi\iel} be a
bounded net in E such t h a t T/̂  converges to #** in the weak** topology
and (2.5) holds. Define et ^ 0 by

Note that lim s* = 0 by (2.5) and (2.4). According to a lemma of
Br^ndsted and Rockafellar [1, p. 608], there exist for each ίel an
^ G £7 and an x* eE* such that

The latter two conditions imply that the net {xf \ i e 1} converges to
x* in the strong topology of £7*, while the net {^ \ίel} is bounded
and converges to #** in the weak** topology of E**. This completes
the proof of Proposition 1.
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3* Proofs of Theorems A and B. In the sequel, / denotes a
lower semicontinuous proper convex function on E, and j denotes the
continuous convex function E defined by j(x) = (l/2)||x||2. We shall
make use of the fact that, for each xeE, df(x) is by definition a
certain (possibly empty, possibly unbounded) weak* closed convex sub-
set of 2?*, whereas dj(x) is (by the finiteness and continuity of j, see
[3, p. 60]) a certain nonempty weak* compact convex subset of i?*.
Furthermore

(3.1) d(f + j) = df(x) + dj(x), VxeE

(see [3, p. 62] or [5, Th. 3]). The conjugate of j is given by j*(x*) =
(1/2) || x* ||2, and since

(/ + j)*(x*) = (/* Πi*)(**) = min {f*(y*) + i*(x* - ?/*)}

([3, §9] or [5, Th. 3]) the conjugate function (f + j)* is finite and
continuous throughout E*.

Proof of Theorem A. Theorem A has already been established by
Minty [2] in the case of convex functions which, like j, are every-
where finite and continuous. Applying Minty's result to the function
(/ + i)*> we may conclude that d(f + j)* is a maximal monotone op-
erator from E* to E**. We shall show this implies that df is a
maximal monotone operator from E to 1?*.

Let T be a monotone operator from E to E* such that the graph
of T includes the graph of 3/, i.e.,

(3.2) T(x) 3 df(x), VxeE .

We must show that equality necessarily holds in (3.2).
The mapping T + dj defined by

(T + dj)(x) = T(x) + dj(x)

= K + xf I x* e Γ(a;), x? e #(&)}

is a monotone operator from E to £7*, since T and 3j are, and by (3.1)
and (3.2) we have

(3.3) (T + dj)(x) ^ d(f + j)(x), Vx e E .

Let S be the multivalued mapping from E* to i?** defined as follows:
#** G S(x*) if and only if there exists a net {xf \iel} in E* converg-
ing to x* in the strong topology, and a bounded net {x{\ie 1} in E
(with the same partially ordered index set /) converging to #** in the
weak** topology, such that
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It is readily verified that S is a monotone operator. (The boundedness
of the nets {xt\ie 1} enters in here.) Moreover

(3.4) S(x*) D d(f + j)*(x*), Va;* e E* ,

by (3.3) and Proposition 1. Since 3(/ + j)* is a maximal monotone
operator, equality must actually hold in (3.4). This shows that one
has x e 3(/ + j)*(x*) whenever x e E and x e £(&*), hence in particular
whenever x* e (T + dj)(x). On the other hand, one always has
x*ed(f+j)(x) if xed(f + j)*(x*) and xeE. (This follows from
applying (2.2) and (2.4) to / + j in place of /.) Thus one has
%* G d(f + i)(a?) if x* e (T + 3j)(αO, implying by (3.3) and (3.1) that

(3.5) T(x) + dj(x) = 3/(α?) + 3i(α?)f V^ G # .

We shall show now from (3.5) that actually

T(x) = 3/(a?), Vα? e JE7 ,

so that df must be a maximal monotone operator as claimed. Suppose
that x G E is such that the inclusion in (3.2) is proper. This will lead
to a contradiction. Since df(x) is a weak* closed convex subset of £ * ,
there must exist some point of T(x) which can be separated strictly
from df(x) be a weak* closed hyperplane. Thus, for a certain yeEf

we have

sup {<2/, α*> I x* e T(x)} > sup {<>, £*> | ^ e df(x)} .

But then

sup {<>, 2;*> I ̂ * G T(x) + 3i(α)}

- sup {<!/, α;*> I a;* G Γ(α)} + sup {<τ/, y*y \ y* e oj(x)}

> sup {<>, α;*> I x* G 3/(α)} + sup {(y, ?/*> | /̂* e

= sup {<2/, ^*> ! 2* G

inasmuch as 3J(x) is a nonempty bounded set, and this inequality is
incompatible with (3.5).

Proof of Theorem B. Let g be a lower semicontinuous proper
convex function on E such that

(3.6) dg(x) =) df(x), Vx e E .

As noted at the beginning of the proof Theorem 3 of [4], to prove
Theorem B it suffices, in view of Theorem 1 of [4] and its Corollary
2, to demonstrate that g = f + const.

We consider first the case where / and g are everywhere finite
and continuous. Then, for each x e E, df(x) is a nonempty weak*
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compact set, and

(3.7) f'(x; u) = max {<u, £*> | x* e df(x)}, VueE ,

where

f'(x; u) = lim [f(x + Xu) - f(x)]/X
;.io

[3, p. 65]. Similarly, dg(x) is a nonempty weak* compact set, and

(3.8) g'(x; u) = max {(μ, α*> | x* e dg(x)}, Vu 6 E .

It follows from (3.6), (3.7) and (3.8) that

(3.9) f'(x; u) ^ g'(x; u), VxeE,VueE .

On the other hand, for any x e E and y e E, we have

Λv) - /(») = (V((l - λ)α? + \y;y - x)dx ,
Jo

= \ ̂
Jo

(see [6, § 24]), so that by (3.9) we have

f(y) - f(χ) ^ g{y) - g(χ), vα? eE,vyeE.

Of course, the latter can hold only if g = / + const.
In the general case, we observe from (3.6) that

dg(x) + dj(x) 3 df(x) + dj(x), VxeE ,

and consequently

9(0 + Λ(») => d(f + i)(a?), Vα; e E ,

by (3.1)(and its counterpart for g). This implies by Proposition 1 that

(3.10) d(g + j)*(x*) Z) 3(f + i)*(a?*), Vaj* e .&* .

The functions (/ + j)* and (̂  + i)* are finite and continuous on £7*,
so we may conclude from (3.10) and the case already considered that

(9 + JT = (/ + 3)* + α

for a certain real constant α. Taking conjugates, we then have

(3.11) (g + 3)** = ( f + 3 ) * * -a-

Since (g + j)** and (/ + i ) * * agree on E with # +j and f + j, re-
spectively, (3.11) implies that
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and hence that g = f + const.

REMARK. The preceding proofs become much simpler if E is re-
flexive, since then 9/* and d(f + i)* are just the "inverses" of df
and d(f + j), respectively, and Proposition 1 is superfluous. In this
case, S may be replaced by the inverse of T + dj in the proof of
Theorem A.
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