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ON THE GROWTH OF ENTIRE FUNCTIONS
OF BOUNDED INDEX

W. J. PUGH AND S. M. SHAH

A class E of entire functions of zero order and with
widely spaced zeros has been defined and it is proved that if
fe E then / ' , / " , e E. Furthermore / is of index one. This
class includes many functions which are both of bounded index
and arbitrarily slow growth. If / is any transcendental entire
function then there is an entire function g of unbounded
index with the same asymptotic behavior. When / is of infinite
order then it is of unbounded index and we simply take g = f.
When / is of finite order we give the construction for g.

DEFINITION 1. An entire function f(z) is said to be of bounded
index if there exists an integer ikf, independent of z, such that

f{n)(z)

for all n and all z. The least such integer M is called the index of f(z).

Although functions of bounded index have been the object of a
number of recent investigations (cf: [3], [5], [6], [7]-[9]), little is known
about their properties, and most of the following natural questions
seem to require further study.

I. What are the growth properties of functions of bounded
index:

( a ) can they increase arbitrarily rapidly,
(b) can they increase arbitrarily slowly,
(c) is it possible to derive the boundedness (or the unbounded-

ness) of the index from the asymptotic properties of the logarithm of
the maximum modulus of f(z), i.e., logikf(r, /)?

II. Classes of functions of bounded index:
(a) find classes of functions of bounded index,
(b) is the sum (or product) of two functions of bounded index

also of bounded index?

Question I(a) was settled by Shah [8] who proved that the growth
of functions of bounded index is at most of the exponential type of
order one. (See also Lepson [6].) Shah [8] and Lepson [6] have con-
structed functions of arbitrarily slow growth and of unbounded index.
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In the present note we derive a simple answer to Question I(b) from
the consideration of

Functions with widely spaced zeros. Let f(z) be an entire func-
tion of genus zero, and let {aj}J=1 be the sequence of its zeros. We
say that f(z) has widely spaced zeros if the zeros {aό} are all simple
and

I a, I ̂  a = 5, | an+ί | ^ an | an\ (n = 1, 2, 3, . .) .

Using this definition we prove

THEOREM 1. Let f(z) have widely spaced zeros. Then, for all z,

|/<»>(*) I < max {\f(z) |, \f'(z) \) (n = 2, 3, 4, . . .) .

COROLLARY 1.1. Functions with widely spaced zeros are of bound-
ed index.

COROLLARY 1.2. There exist functions of bounded index and of
arbitrarily slow growth.

Corollary 1.1 may also be considered as a contribution to Question
II(a). Corollary 1.2 answers Question I(b). Other contributions, due
to separate efforts of the present authors, will be found elsewhere.
In [9] Shah proves that all solutions of certain classes of linear differ-
ential equations are of bounded index. In his doctoral dissertation,
Pugh shows that the functions

F.(z) = Π (l + 4-) (σ > 8) ,

and

/,(*) = Π (l - q'z) (0<(i<k)>
3=0 \ 16/

are of bounded index. As a contribution to Π(b), Pugh [7] has shown
that the sum of two functions of bounded index need not be of bounded
index.

Our second result clarifies one aspect of Question I(c). We prove

THEOREM 2. Let f(z) be any transcendental entire function of
finite order. It is always possible to find an entire function g(z), of
unbounded index such that

log M(r, f) — log M(r, g) (r —> oo) .
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Choosing f(z) to be of bounded index, we see that it is always
possible to find functions of unbounded index with the same asymp-
totic behavior as f(z).

The authors gratefully acknowledge the help of Professor Albert
Edrei who suggested the class of functions with widely spaced zeros,
and indicated the connection between Theorem 2 and the results of [2].

1* Successive derivatives o£ functions with widely spaced
zeros*

LEMMA 1. Let f(z) be an entire function with widely spaced
zeros {α, }JU. Let {6,-}̂  (16,-1 ^ | bj+1|), be the zeros of f{z).

Then

(1.1) i % t d < I bn\ £ I aH+ι I , (n^2,b = 1.6) ,
b

and

(1.2) (l + 2 R + d) \aί 1< 16,1 ̂  Iα,!, (R = 2.4, d = 10~3, l α j ^ α ^ δ ) .
\ a /

Proof. In §§ 1-3, we shall write 1.6 = 6, 2.4 = R, 10~3 = d,
1 + (2R + d)fa = 1.9602 - c. Put

and

(1.3)
f{z)

Our proof of the lemma depends on obvious applications of Rouche's
theorem [4, p. 254].

Let z — reiθ and

(1.4) I a J < r < | an+1 \ , (n ^ 1) .

Clearly

Re (zg.(z)) = ΣΣ

i=i r + I a3-1

and hence
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• i-ι r + I a5

In particular by the definition of widely spaced zeros we have

n ^ n 25 , ^ o x(1.5)

(1.6)

I g,(z) I ^
I α . + 1 I 26

> 2

(«• ^ 2) .

For hn{z) we have

^ \ I U-n+l +
1 ttn+i 1 V

1.25

6 - 1

2.8 (n ^ 2) .

(1.7)

Now in the disc

(1.8)

grn(2) has n poles, and, by the theorem of Gauss-Lucas [10, p. 6],
exactly (n — 1) zeros. The function hn{z) is regular in the disc (1.8),
and by (1.6) and (1.7)

\gn{z)\>\K{z)

Hence, by Eouche's theorem

gn(z) + hn(z) =
f(z)

has exactly (n — 1) zeros in the disc (1.8).
We have thus proved

(1.9)

Similarly, for

(1.10)

\®ψ± < I δ. I , (n ̂  2) .

= I « I = T I α» ( 1 < 7 < 1.01, it ̂  2)
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we have

^ (I an+11 - 7 I an I)-1 + (1.1)(| an+2 | - 7 | an \)~ι

^ (7 I an I + I a, I)"1 < | flrΛ(s) | .

Again by Rouche's theorem f'(z)/f(z) has exactly (n — 1) zeros in
any disc with center at the origin and a radius r satisfying (1.10).
Hence

I δ- i l < 7 I a J (rc ̂  2) ,

and letting 7 —> 1 + , we obtain

(1.11) I 6n_! I ̂  I an I (w ̂  2) .

The second of the inequalities (1.2) also follows from (1.11).
We complete the proof of the lemma by showing that

implies

{1.13)

Thus ff(z) will have no zeros in the disc (1.12) and, therefore

0 I a , I < I &x I ,

which is the first of the inequalities (1.2).
In order to verify (1.13) notice that (1.12) and the definition of

widely spaced zeros imply

1 / 1 _ f 1 )
α j l l + c V α i ( i " 1 ) / 2 - cJ

> 0 .

This completes the proof of Lemma 1.

LEMMA 2. If f(z) has widely spaced zeros all the derivatives

f'(z),f"(z), "

have the same property.

Proof. It is sufficient to prove that if f(z) has widely spaced
zeros, the zeros of f'(z) are also widely spaced. By (1.2)

<1.14) 9.801 <: c I cii I < I δx 1 .
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By (1.1) and (1.2)

I b n\ ^ I an+11 , (n^l)

f \ a n + 2 \ < \ b n + ι \ ,

Hence

(1.15) \an an

b I α w + 1 1
> an (n ^ 1) .

The relations (1.14) and (1.15) show that the &'s are widely spaced.

2* Minimum distance between a zero of f(z) and a zero of
/'(#)• The inequalities (1.1) do not preclude the possibility that

I an+1 — bn\ be very small. In this section we show that

(2.1) inf \aό -bk\> 2R + d .

I. From now on, we denote the zeros of fίk)(z), in order of as-
cending moduli by {a^}γ=1. By definition <> = an and / ( 0 ) = /.

II. We consider systematically the sets

Dk(p) = U {«: I * - «P \^P) (P > 0, k = 0, 1, . . . ) .

LEMMA 3. If f(z) has widely spaced zeros, and if zgD0(R), then

(2.2)
/(*)

Proof. The identities

^ - ι

dz\f(z)J f(z) V

imply

+
oo - J \ 2

Σ )
=i \z — a d \ J

Hence, the inequalities (2.2) follow from the single inequality

(2.3)

If z%

i=i \ z - a ά

), and I 2 I < \a11, then



<2.4)

and

(2.5)

Hence
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\z- a1\> R
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Σ 1 - of 1

so t h a t (2.3) holds i£ \z\<\a1\.
In general, the relations

a n I ̂  I 21 < I α n 4
^ l ) , 2

imply

<2.6)

provided

{2.7) n ^ 2 ,

Similarly, for j > n + 1

<2.8) ( s - α , ( ̂  ( a j [ - [ a n + ι \

< TO .

'''1 - 1) [ an+ί |

Finally,

<2.9)

with

(2.10)

\z — an

Γ ^
I z — an+ι \ K

^ — + ( m a x {\z- a n \ , \ z - α n + 1 1 } ) " 1

K

"n I \ ( o " - 1) I α» I
2 ' 2

Combining (2.6), (2.8), (2.9) and (2.10), we find, for n ^ 2,

ll + λ + 2
Λ (o - 1) I α, I

- 1) , 1 , 2
Σ ^ i2 (α" - {a -

I t is easily seen that (2.11) holds for n = 1 also and that (2.11) im-
plies (2.3). Hence the lemma is proved.
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LEMMA 4. If ze D0(2R + d), then f'{z) Φ 0.

Proof. If z e D0(2R + d), then for some n,

(2.12) \z- an\^2R + d = 4.801 .

Hence, if j < n and w ̂  2,

- I an_! | ^ | a J - | aΛ-11 - (2i2

If i > n, then

- I a n I - +

6 |

10

6 I a

ϊ ό 1 5

By (2.12), (2.13), and (2.14) we have, for n^

(2.15)

f'(z) 10(% - 1)

4.801

1
4.801

6 |α.

1 (w - 1)
3 cίn{n~

10 yί 1

6 J = » + I I α,

12 α ( t H

Again, it is easily seen that (2.15) holds for w = 1 also. The
expression on the right of (2.15) is positive and consequently in
D0(2R + d), f'(z) Φ 0 unless f(z) = 0. On the other hand f'(z) Φ 0 if
f(z) = 0 because all the zeros of f(z) are simple. This completes the
proof of Lemma 4.

3* Proof of Theorem 1. Because all the derivatives of f(z)
have widely spaced zeros, Lemmas 1 to 4 apply to all of the functions
f{k)(z), (k = 0, 1, 2, 3, •)• In particular Lemma 4 shows that the sets
Dn_2(R) and D^JJH) are disjoint for n ^ 2.

Hence, by Lemma 3, at least one of the two inequalities

(3.1) < 1

must hold.
Thus, for all z

(3.2) I/<•>(*) I < max{ |/^(z) |, \f^2\z) |} (n = 2, 3, 4, . . .)

Theorem 1 follows from (3.2) by an obvious induction over n.
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4* Proof of Theorem 2. In this section we assume familiarity
with the most elementary results and notations of Nevanlinna's theory
of meromorphic functions.

Let f(z) be a given entire, nonrational function of finite order.
A theorem of Edrei and Fuchs [2; p. 384 and p. 390, formula (3.5)]
asserts the existence of an entire function h(z) such that h(0) = 1 and

(4.1) N(r, - ί ) ~ log M(r, h) ~ log M(r, f) (r — + oo) .

We take g(z) to be of the form

(4.2) g(z) = h(z)P(z) ,

where

(4.3) P(z) = Π (l + f Y .
i=i \ dάJ

The quantities dd are positive and satisfy the following conditions:
( i ) dx>e\ dj+ί>d) ( i = l , 2 , 3 , •••);
(ii) for t >̂ djf

j(j + 1) . ί\ogM(t,f)\1'*
2 < \ logί I β

Since f(z) is not rational

l o g M ( ^ , / ) _ ^ + o o ( ί _ + c o )

logί

and hence it is possible to satisfy condition (ii).
Putting

we see that

(4.5) n(t) = 0 (0 S t < dj, n(ί) - M _ ± i l (^ ^ t < dk+ι)

Hence, if

(4.6) dk ^ t < dk+1 (k ^ 1)

(4.5) and condition (i) imply

(4.7) n(t) < 2k < log dk ^ log t < ί1'2 (k ^ 1) .

By (4.6), (i) and (4.5)
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(4.8) 49 ^ 1 + -r
n(t) k

By (4.6), (ii), (4.5) and (4.4)

n(t) log ί < log Λf(ί, /){. l0

ΆH A'* = o(log M(t, /))
UogΛΓ(ί,/)J(4.9)

By (4.1), (4.2) and the elements of Nevanlinna's theory

(1 +.o(l)) log M(r, f) = N(r, - i ) ^ N(r, A )

^ log Λf(r, flO < log M{r, h) + log M(r, P)

= log M(r,

Hence, in order to obtain Theorem 2 it is sufficient to show that

(4.10) logM(r,P) 0 o o )

log M(r, /)

and to remark that #(2) cannot be of bounded index because it has
zeros of arbitrarily high multiplicity.

The relation (4.10) follows readily from the identity [1, p. 48]

t(t + r)

which, in view of (4.7), (4.8) and (4.9), leads to

log M(r, P) < n(r) log r + r Γ ^ ^ + r f ~ £~3/2d£
Jr t2 Jr2

= o(logΛΓ(r,/)) (r—+oo) .
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