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HOMOTOPY GROUPS OF P L - E M B E D D I N G SPACES

L. S. HUSCH

Let N be a compact PL-n-manifold, and let M be a PL-
m-manifold without boundary. Two of the major problems
in PL-topology are to determine conditions such that (1) any
continuous map of N into M can be homotoped to a PL-
embedding, and (2) two homotopic PL-embeddings are PL-
isotopic.

If C(N, M) is the space of continuous maps of N into M
with the compact open topology, and if PL(N, M) is the
subspace of PL-embeddings, one can consider the map
H: ΠO(PL(N, M)) -» Π0(C(N, M)) induced by inclusion. If (1)
is true, then i% is onto; if (2) is true, then i% is one-to-one.
In this paper, we investigate the higher homotopy groups of
PL{N, M) and C(N, M).

Irwin has shown that if N is a closed manifold, m Ξ> n + 3, then
sufficient conditions for (1) are that N is (2n — m)—connected and M
is (2n — m + 1)—connected. By raising the connectivities of N and
M by one, Zeeman [7] proved (2).

By using Proposition 1 of Morlet [4] and Irwin [3], one can
easily show the following theorem by using techniques similar to the
proof of Theorem 2 below.

THEOREM 1. Let N be a closed (2n + s + 1 — m)—connected PL-
n-manifold and let M be a (2n + s + 2 — m)—connected PL-m-
manifold without boundary, m ^ n + 3. The homomorphism if
Πs (PL(N, M))—>ΠS(C(N, M)) induced by inclusion is an isomorphism;
if the connectivities of N and M are lowered by one, then % is onto.

An analogous theorem in the differential case has been proved
by J. P. Dax [1], [2].

If N has a nonempty boundary, then Dancis, Hudson and Tindell
(independently and unpublished) have shown that if N has a k-
dimensional spine with m ^ {n + 3, n + k), this is a sufficient condi-
tion for (1). If m ^ {n + 3, n + k + 1}, they obtain (2). We
generalize.

THEOREM 2. Let N be a compact PL-n-manifold with k-spine
K, k < n, and let M be a PL-m-manifold without boundary. If
m^n + k + s + 1, the homomorphism i#: ΠS(PL(N, M)) — ΠS(C(N, M))
induced by inclusion is an isomorphism] if m ^ n + k + s, % is onto.

Note that the codimension 3 restriction is eliminated. In § 3,
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we obtain some consequences of this theorem and its proof.
The author wishes to express his gratitude to N. Max who read

a preliminary version of this paper and suggested some corrections.
In this paper, we shall consider PL{N, M) and C{C, M) as zf-sets

(-i.e., as semisimplicial complexes in which the degeneracy maps are
ignored). In § 1, we list the basic definitions and results on A-sets
which we shall use. One may use either Rourke and Sanderson [6]
or Morlet [5]. [Morlet uses the terminology "quasisimplicial" set.]

We shall assume familiarity with either [1] or [7] and shall use
terminology therein with one exception. When referring to piecewise
linear maps or manifolds, we shall always use the prefix "PL-".

Let X and Y be polyhedra. In this paper pλ and p2 will always
denote projections of X x Y onto the first and second factors re-
spectively. An isotopy between X and Y will be represented as a
family of embeddings ft: X — Y, t e / = [0, 1].

1. J-sets* Let An denote the standard ^-simplex with ordered
vertices vQ, v1} •• ,vw. The i-th face map d{: A

n~ι —> An is the order
preserving simplicial embedding which omits viβ A is the category
whose objects are An, n = 0, 1, and whose morphisms are generated
by the face maps. A A-set (A-group) is a contra variant functor from
A to the category of sets (groups). A A-map between J-sets (zί-groups)
is a natural transformation between the functors.

If X is a A-set, Xk = X(Ak) is the set of k-simplexes and the
maps dt = X(di) are called face maps. We shall be interested in
pointed z/-sets in which we distinguish a simplex *k e Xk for each k
and designate * c X as the sub-zί-set of X consisting of these simplexes
and maps 3* defined by d^k = *k~\

With each ordered simplicial complex K, we associate a J-set,
also designated by K, whose λ -simplexes are order-preserving simplicial
embeddings of Ak into K.

Let Λn>i = Cl(bdry An—diA
n~1). A A-set X is called a Kan A-set

if every J-map/: Λn>ί—>X can be extended to a A-maipf: An —>X.
If X is a Kan A-set and P is a polyhedron, a map f: P—> X is a

J-map/: K—+X where K is an ordered triangulation of P. /0, fx\ P-+X
are homotopίc if there is a map F: P x I —>X such that F\P x {ί} =
fi,ί = 0,1. [P X] denotes the set of homotopy classes. We shall
need the following two propositions which are proved by Rourke and
Sanderson.

PROPOSITION 1. Any homotopy class in [P; X] is represented
by a A-map f: K —+ X where K is any ordered triangulation of P.

PROPOSITION 2. Let Q be a subpolyhedron of P and let
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h: Q x IU P x {0} —• X be a A-map to a Kan A-set X; then h extends
to a A-map h!\ P x I —»X.

If X is a pointed Kan A-set, then the n-th homotopy group of
X, ΠnX = [In, bdry In; X, *], the homotopy classes of J-maps of pairs,
where In is the PL-n-cell.

C(N, M)(PL(N, M)) is made into a J-set by defining the k-
simplexes to be maps (PL-embeddings) f:Nx Ak—>Mx Ak such that
p2f=p2 and defining d{f = f\Nx dtJ

k.

PROPOSITION 3. C(N, M) and PL(N, M) are Kan A-sets.

Proof. Let /: ΛnΛ —> PL(N, M) be a z/-map. / can then be con-
sidered as a PL-embedding

/: N x ΛnΛ • M x Λnιi

such that p2f = p2. Using the fact that the pair (Λnti x J, ylΛfi x {0})
is PL-homeomorphic to (An, Λn>%), one can easily construct the desired
extension.

2* Proof of Theorem 1* The following two propositions are
generalizations to product spaces of the simplicial approximation and
general position theorems. They can be proved similarly.

PROPOSITION 4. Let M and Y be PL-manifolds and let P g Q
be compact polyhedra. Suppose f: Q—+ M x Y is a continuous map
such that f\P is PL. There exists a homotopy ht: M x Y—>M x Y,
tel, such that

( i ) Viht = p2 for t e I;
(ii) htf\P=ffor tel;
(iii) hJ:Q-+Mx Y is PL.

PROPOSITION 5. Let M and Y be PL-manifolds and let P g Q
be compact polyhedra. Suppose f:Q—>Mx Y is a PL-map such
that f\P is a PL-embedding. There exists a PL-homotopy
ht:Mx Y-+Mx Y, tel, such that

( i ) V*ht = p2 for t e I;
(ii) htf\P=ffor tel;
(iii) the singular set of hj has dimension ^2 dimQ — dim(Mx Y);
(iv) the branch set of hj has dimension <2 dim Q — dim (Mx Y).
The following two constructions are needed frequently in the

following propositions.

PROPOSITION 6. Let N be a PL-n-manifold with k-spine K. Let
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P be a polyhedron in N such that dim P + dim K + 1 <; dim N.
There exists a PL-isotopy Ht of N, te I, such that Ho = identity
and H^N) Π P = 0 .

Proof. By general position, we can find a PL-ambient isotopy
Lt of N so that LJZ Π P = 0 . Let N' be a regular neighborhood
of LγK in N such that N' Γ\ P = 0 . Note that Î ϋΓ is also a spine
of iV. Hence, by the uniqueness theorem of regular neighborhoods,
there is a PL-isotopy Ht of N, te/, such that Ho = identity and
H,(N) = N'.

CONSTRUCTION a. Let /; be a PL-cell in the interior of Is and
let U be a neighborhood of Cl (/s — 1+) in I s . Let Uo, U1 be regular
neighborhoods of Cl (I s - I;) in Is such that ?70 S int ̂  and ί7x C Ϊ7.
Let <p: S8"1 x I—>C1 (ί7i — ί70) be a PL-homeomorphism such that

-1 x {i}) = bdry [7, Π int /% i = 0, 1.

PROPOSITION 7. Lei JV, -SΓ, Λf be as in Theorem 2 with m ^
n + k + s. Lei f; N x Is -+M x Is be a PL-map such that p2f = p2

α ĉί sue/?, ίfeαί ίfeere eo;tsis α neighborhood U of Cl (I s — ίj) such that
f\NxU is a PL-embedding, then there exists a PL-homotopy
ft:Nx Is —> M x Is and a neighborhood V of Cl (/s - If) in Is such that

( i ) /o = /, P»/, = P2, ί e I;
(ii) ft\ V = ftel;
(iii) f: N x Is —* M x Is is a PL-embedding.

Proof. By Proposition 5, we can assume that the singular set
T of / has dimension ^ 2(w + s) — (m + s), the branch set BaT of

/ has dimension < 2(w + s) — (m + s), and that f\KxIs is a PL-
embedding. By Proposition 6, there is a PL-isotopy Ht of iV such
that Ho = identity and ίf^iV) Π PiJ5 = 0 . Hence there is no loss of
generality in assuming that /1 p^iH^N)) x Is is a PL-embedding.

Let C/Q, ϋί and φ be as in construction a. Define Ft: N x Is —>
N x Is, tel, by

^ ( ^ , 1/) = (», 1/) 2/ e UQ

(HttQ(x), y) yed(U1- J70), 2/ =
Let ft = / F t and F = C70.

The following is the theorem of Dancis, Hudson and Tindell
mentioned in the introduction. We include the proof for completeness.

PROPOSITION 8. Let N, K, Mbe as in Theorem 2 with m^n + k.
There exists a PL-embedding f: N—> M.
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Proof. Let f':N—*M be a continuous map and approximate / '
by a PL-map / " such that f"/K is a PL-embedding and / " is in
general position. Let δ c S be the branch and singular set of / "
respectively. By Proposition 6, there is a PL-isotopy Ht, tel, of N
such that flί(iSΓ) Π S = S n K. Let / = / " # , .

REMARK. We shall make PL(N, M) and C{N, M) into pointed
4-sets by defining the basepoint complex * as follows. Let *s(x, y) —
(f(%)jV)> %eN, yen8 where / is defined in Proposition 8. The face
operators are defined naturally.

The proof of the following proposition is well known.

PROPOSITION 9. Let N, M, K be as in Theorem 2 with m^n + k.
Let g: N x Is —+M x Is represent an s-simplex in PL(N, M)(C(N, M))
such that

g\N x bdry Is = * s | N x bdry Is ,

g is homotopίc rel bdry Is in PL(JV, M)(C(N, M)) to g'\ N x Is -+
M x Is such that for some neighborhood U of Cl(Is — Is +) in I s ,
g'\Nx U = *s I N x U.

PROPOSITION 10. Let N, M, K be as in Theorem 2 with m :>
n + k + s + 1 and let Ft: N x Is —> M x Is be a PL-homotopy such
that

( i ) Ft are PL-embeddings, i = 0, 1;
(ii) p2Ft = p2, te I:
(Hi) there exists a neighborhood U of Cl (Is — ID in Is such

that Ft\N x U = *s.
Then there exists a PL-isotopy Gt: N x Is—>Mx Is such that
( i ) Gi = Ft for i = 0, 1;
(ii) p2Gt = p2, te I:
(iii) there exists a neighborhood V of Cl (Is — /+) in Is such

that Gt\N x V = * s.

Proof. Note that there is no loss of generality in assuming that
there is an ε > 0 so that Ft are PL-embeddings, te [0, e] U [1 — ε, 1].
However, now this is a restatement of Proposition 7.

The proof of Theorem 2 now follows easily from the above
propositions.

3* Applications. One of the immediate consequences of Theorem
2 is a partial generalization of Hudson's "concordance implies isotopy"
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theorem [2]. (See also Proposition 1 of [4].)

COROLLARY 1. Let N be a compact PL-n-manifold with k-spine
K, k < n, and let M be a PL-m-manifold without boundary. Let
f: N x Is —> M x Is be a PL-embedding such that p2f \ N x bdry Is =
p2. Then if m >̂ n + k + s, there exists a PL-embedding F: N x Is —>
M x Is such that F\N x bdry Is = f and p2F = p2. Ifm^
n + k + s + 1, f and F can be chosen to be isotopic rel N x bdry Is.

Let X be an s-dimensional polyhedron and let p:E—>X and
q:F-+X be PL-fiber bundles with fibers N and M respectively with
structure groups Aut (N) and Aut (M) where

( i ) N is a PL-w-manifold with fc-spine, k < n;
(ii) M is a PL-m-manifold without boundary;
(iii) Aut (N) and Aut (M) are the groups of PL-automorphisms

of N and M, respectively.

By triangulating X and by using the propositions above together
with induction on the dimension of the simplexes of X, one can easily
prove the following.

COROLLARY 2. If f:E~+F is a continuous bundle map (-i.e.,
Qf = P) and m ^ n + k + s, then f is homotopic through bundles
maps to a PL-bundle map which is an embedding of E into F. If
m^n + k + s + 1; any two PL-bundle embedding s of E into F are
isotopic through bundle maps.

A PLm-bundle is a PL-bundle q:F-+X whose fiber is Euclidean
m-space Rm and whose structural group is the PL-automorphisms of
Rm mod the origin.

COROLLARY 3. Let N be a PL-n-manifold with k-spine, k < n;
let p:E—+Xs be a PL-fiber bundle with N as fiber and Aut(N) as
structural group. If m ^ n + k + s, then for any PLm-bundle
q:F—>X, there exists a PL-bundle map f:E—>F which is an
embedding. If m ^ w + Λ + s + 1, then any such two PL-bundle
embeddίngs are isotopic through bundle maps.
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