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A GENERALIZED HAUSDORFF DIMENSION
FOR FUNCTIONS AND SETS

ROBERT J. BUCK

A generalization of the Hausdorff dimension of sets is given
by restricting the lengths of the intervals in the covering
family. The dependence of this dimension on the choice of
covering family is studied by considering the set of points in
the countable unit cube Iω whose coordinates are the values
of the dimensions of some set for a fixed, countable collection
of covering families. General conditions are given in order
that two families yield the same dimension on each set, and
that a covering family give the ordinary Hausdorff dimension.

In 1919, Hausdorff [3] introduced a notion of dimension for sub-
sets of the unit interval. For any set E, this dimension is H{E) —
sup {7: \(E) > 0}, where Xr(E) = inf {1(1(1^: ϋlj 3 E}\ and it can
take any value between 0 and 1, being 1 in the case that E has posi-
tive Lebesgue outer measure. This notion of dimension can be genera-
lized in various directions and the approach taken here follows Bill-
ingsley [1]. In particular, consider the dimension Hr{E) given by the
outer measure X'r(E) = inf {Σ(m(Ci))r: UC* 3 S & de ^}, where m
denotes Lebesgue measure and ^ is any collection of m-measurable
sets containing sets of arbitrarily small measure. If ^ contains the
intervals and their finite unions, then H'{E) assumes only the values
0 and 1, as m(E) = 0 or not. Thus for the study of sets of Lebesgue
measure zero, it appears that ^JΓ cannot be too large with respect to
the family of all intervals. Accordingly, the dimension H'{E) is studi-
ed only where ^JΓ is any collection of intervals containing intervals
of arbitrarily small length and where ^ is closed under translations,
i.e., where JF is completely determined by the length of its members.
Rather than use the set of these lengths to describe ^ it is more
convenient to use the set S of their negative logarithms, which is
unbounded in (0, oo), The dimension then becomes a function S{E) of
the set E and the unbounded set S. In § 2, dimension is defined for
a certain family ^ of nondecreasing functions, c.f. [2], [4], [5], which
greatly facilitates the study.

The principal results concern the dependence of S(E) on the choice
of the covering set determined by S, and are obtained by considering
the set &(S, T) of points in the unit square whose coordinates are
respectively S(E) and T(E), for some set E. If Ω denotes the pro-
duct of the closed unit interval with itself countably many times,
Theorem 5 shows that the set of points in Ω, whose coordinates are
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Sk(E) for some E and fixed sequence of unbounded sets {Sk}, is pre-
cisely the intersection of all cylinders in Ω determined by the sets
&{Sjy Sk),j < k. A characterization of &(S, T) directly in terms of
the relative gaps in the sets S and T is given by Theorem 6. The
set &(S, T) is closed and star-shaped with respect to the diagonal
0 ^ x = y ^ 1 and Theorem 7 shows that these are characteristic pro-
perties. Theorem 9 gives an especially simple necessary and sufficient
condition on S and T for the equivalence: S(E) = T(E) for all sets
Έ. The remaining theorems of § 4 show that for this equivalence, an
unbounded set S may be replaced by an increasing sequence {sn} and
that lim sn+1/sn = 1 is a necessary and sufficient condition that {sn} give
the ordinary Hausdorff dimension for all sets E.

I* Preliminaries* Let j ^ ~ be the collection of all real-valued
functions /, defined on (— oo, oo) with the property that x ίg y —»
0 <£ f(y) — f(x) Sy — x. The following elementary properties of ^
will be continually used without mention:

0

fe J?~ —*/ + a e J^a any constant

/e j ^ and 0 ̂  a ^ l-xxfej^;

f,gej^ and 0 ̂  α, β ^ 1, a + β ^ 1 — af+ βge

V/β G ^ - for /α G J^Γ if V/β(a?0) < - for some x

A/α G ^ for /α G J^ if Afa(Xo) > — °° for some x0 .

Let S, T, etc., denote unbounded sets in (0, oo) and let / G J ^ " .

Define S(f) = lim inf /(a?)/a?, over x -> oo, x G S. For / G ^ Γ S(/) satis-
fies: 0 ^ S(/) ^ 1. The number S(f) is called the Hausdorff dimen-
sion of / with respect to S. The following properties are immediate
consequences of the definition:

S(Afa) = AS(fa) over finite collections {fa}

S(af + βx) = aS(f) + β

S(f V βx) = S(/) V /5 .

L E M M A 1. Given ε > 0 , / G ^ 7 ΛTMZ unbounded sets S19 •• , S P ,

ί/^ere is βr G ̂ " suc/^ ίfeαί (i) 0(0) ̂  0, flr(a ) ^ (Sk(f) — e)x, for x e Sk,

k = 1, 2, , p; and (ii) S(g) = S(f) for all unbounded S.

Proof. Choose x0 > 0 large enough so t h a t f(x) ^ (Sk(f) — e)x for

x ^ a?0, x G SΛ, fc = 1, , p . Write #(&) = (f(x) V 0) + a?0. Then g e ^

and 0(0) ̂  0. Moreover, if 0 ^ x ^ x0, then g(x) ^x^ (Sk(f) - e)x.

For x ^ x0, and xeSk, g(x) ^ /(x) ̂  (Sk{f) - e)x, which proves (i).
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Finally, from the construction of g(x) it is clear that S(g) = S(f) for
all unbounded S.

LEMMA 2. Let fn e ̂  n = 1,2, and unbounded sets Sly S21

be given. There is fe^~ such that Sk(f) = lim inf Sk(fn) as n~>°°,
for each k = 1, 2, .

Proof. By Lemma 1, it can be assumed that for each n,fn(Q) ^
0 a n d fn(x) ^ (Sk(fn) — e n ) x , f o r x e S k , k <^n a n d ε n —* 0 a s w —> oo.
For each k and w choose xn>keSk such that #%>fc —> w as % ^ ~ and
Λ(a?.,*) ^ (S*(Λ) + eΛ)xΛfk. Let C» = V J U (a^f* -/»(«»,*)) and put ^(a) =
fn(x) V (x - Cn). Finally write / = \gn. Since gn(0) ^ 0, it follows
that fe^C Moreover, Sk(gn) = 1 for each k and n implies Sk(f) =
Sk(An^mQn) for all m. If & ̂  m, then A ^ ^ A(Sk(fn) - ε»)α over
n^m, so that S&(/) ̂  lim inf Sk(fn) as w —• oo. On the other hand,
from the construction of Cn, it follows that for k <L n, f(xn,k) S
(Sk(fn) + Sn)a?»,fc. Since xntk -^ oo as w -> CXD , Sk(f) ^ lim inf SΛ(/W) as

2. The Hausdorfϊ dimension of sets* Let ^t be the set of
all continuous, real-valued, nondecreasing functions μ defined on [0, oo)
such that μ(0) = 0 and μ(x) = 1, for x Ξ> 1. Let ^ C α be the subset
of ^£ consisting of those μ in ^ C which are sub-additive, i.e.,
μ(x + y) ̂  μ(x) +μ(y). Finally, given a subset E of [0,1], let ^/ί{E)
be the subset of f̂" consisting of all functions μ in ^£ supported
by E, i.e., (a,b) Π E = φ implies μ(a) = /ί(b). The set ^f(E) may be
void. The operator z/, defined on ̂  by z//̂ (α;) = sup (μ(y + x) — μ(y))
over all y ^ 0, is clearly a projection of ^ ^ onto ^C α . The proper-
ties of subadditive functions needed here are given by

LEMMA 3. // μe ^C α , then (i) μ(tx) ^ μ(x)t/(t + 1) /or ί, a; ̂  0;
and (ii) /i(a ) > 0 for x > 0.

Proof. If £ = 0, (i) is obvious. Otherwise

= μ(txt~ι) S (tx(l + [t~1])) ̂  (1 +

where [2;] denotes the greatest integer <^z. This shows (i). Part (ii)
follows from (i), since μ(t) ̂  t/(t + 1).

Corresponding to each μ in ̂ ^ there is /^ G ^~" defined by fμ(x) ~
\/(x — y — log Jμ(e~y)) over y ^ x. The following estimates for /̂ (a?)
will be needed:

LEMMA 4. .Por μ e ̂ fy - log Δμ{erx) ^ /;ί(.τ) ^ log 2 - log Δμ{erx).
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Proof. The first inequality is trivial. By Lemma 3 Δμ(e~x) <̂
2ey~xΔμ(ery), which establishes the second inequality.

Using the correspondence μ—+fμ, the Hausdorίf dimension of func-
tions μ e ̂ € can be defined by writing S(μ) = S(fμ), for each unbound-
ed set S. Given any set E S [0,1], the Hausdorίϊ dimension of E
with respect to S is defined to be the number:

S(E) = sup {S(μ): μ e

taking S(E) = 0 in the case that ^£(E) = 0 . The connection between
S(E) and the classical Hausdorff dimension of E is given by

THEOREM 1. ([2], [4]) S(E) = sup {7: xs,r(E) > °}> where XStΐ(E) =
inf {Σ(l(Ij)y: U Is 3 E & -log 1(1 J e S}.

Proof. Let β < S(E) and {Ik} be a covering of E by intervals
such that -log l(Ij)eS. By Lemmas 1 and 4, 2β-3s ^ z/μ(e~s) for
s e S and some μe^f(E), so in particular

Σ(l(Ik)y^ 1/2 ΣJμ(l(Ik))^ 1/2.

It follows that λ5fA(jE) > 0, and hence S(E) ̂  sup {7: Xs,r(E) > 0}. To
show the reverse inequality, Xs,r(E) > 0 implies that

μ(x) = (\St7(E))-ι\St7(E Π [0, x])

belongs to ^£{E). Moreover μ(x + β"s) — μ(x) £ (Xs,r(E))~le~r8 f o r a 1 1

x, so that by Lemma 3, fμ(s)/s — (log (Xs>r(E))/s ^ 7 for all s e S; and
it follows that S(E) ̂  sup {7: Xs,r(E) > °ί

The fact that XS)Ϊ is a sub-additive and monotone set function
implies

THEOREM 2. Given any countable collection {En} of subsets of
[0,1], S(\jEn) = yS(En) for all unbounded sets S.

Let ^ be the collection of all sets E of the form: E = {f: ξ =
Σskξkf εk = 0 or 1} for some positive, nonincreasing sequence {fk} with
I'ffc ^ 1. For such sets E, the function μE, defined on [0, 00) by μE(x) =
sup {Σεk2~k: x ^ Jε^f fc}, belongs to ^£{E) and is sub-additive.

THEOREM 3. If Ee^, then S(E) = S(μE) for all unbounded
sets S.

Proof. Let Xe ̂ €(E) and consider se S such that ξk+1 ^ e~s ^



A GENERALIZED HAUSDORFF DIMENSION FOR FUNCTIONS AND SETS 73

ξk. Since E is contained in the union of the 2k+1 intervals:

I(Si, , ek+ι) = little^, Σfjβ^j + ζk+1] ,

and any two of these intervals intersect in at most one point, it fol-
lows that A\(e-S) ^ 2"*-1 ^ Jμ(e's)/2. By Lemma 4, fλ(s) ̂  log 4+/„(«)
for s e S, so that S(X) ̂  S(μE).

Since S(μ) = S(fμ), Theorem 3 shows that for Eβ1^, there is
such that S(E) = S(/) for all S. The converse is also true.

THEOREM 4. For each /eJ^Γ there is Efβ^ such that S(f) =
S(Ef) for all unbounded sets S.

Proof. If / is bounded, then S(f) = 0 and Ef can be taken to
be void. Thus assume f(x) —> oo as a? —• oo and without loss of genera-
lity, /(0) = 0. Select a positive, nonincreasing sequence ξk satisfying
/( — logffc) = klog2. Such sequences exist since / is continuous non-
decreasing and tends to oo as x—> oo. Moreover, since f(x) — x is
nonincreasing, ζx ̂  1/2 and ζk+1 ^ ξk/2, which implies Σξk ^ 1. Let
E = Ef be the set {ζ: ζ = Σεkζk, εk = 0 or 1}, and let μ = μE. For
seS and ξk+1^e-s^ζk, log μ(e~s) ̂  -log 2 - f(s), so that f(s) ^
— log 4 + /^(s) by Lemma 4. Also log μ(e~s) ̂  log 2 — /(s), which shows
/(s) ^ log2 + /^(s). Since these inequalities hold for all seS, this
proves S(f) = S(E).

If ^ = {(α5): for some # e 9T, α^ = S(JS?) for all S}, and if ^ ^ =
{(βs): for some fej^/3s = S(f) for all S}, then Theorems 3 and 4
show ££%? = ̂ r . The situation for arbitrary subsets of [0,1] is more
difficult and the results are restricted to countable collections {Sk} of
unbounded sets.

For any pair of unbounded sets S and T, let &{S, T) = {(a, β):
a = S(f), β = T(f) for some fe J?~}. From the properties of ^ and
S(f) for / e j ^ ~ listed in §1, it is clear that ^?(S, T) is star-shaped
with respect to each point (a, a), 0 ̂  a <̂  1. Moreover, Lemma 2 im-
plies that &(S, T) is always closed. Let

Ω = {(xr):0^xr^l,r = 1,2, ...} .

For each pair of natural numbers j , k with j <k, let Ai>& be the cy-
linder in Ω: Ajίk = {(xr): (xjy xk) e &(Sjf Sk)}. Finally, let 3ίf\{Sk\\ =
{(ak): for some E s [0,1], α4 - Sk(E), k = 1, 2, ...}.

THEOREM 5. Given any countable collection of unbounded sets
{Sk}, ^f[{Sk}] = ΠAj}k over j < k.

Proof. Suppose (ar) e £έf{{Sk}\. Let j < k and E C [0,1] such
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that a,- = Sj(E), ak = Sk(E). If αy = α* then (aj9 ak) e &(SS, Sk) so
(ar) e Aj>k. Thus assume aά Φ ak and by symmetry, consider only the
case aά < ak. Then given any ε > 0, there is f e ^ such that

Sk(E) - ε < Sk(f) ^ Sk(E) and S, (f) £

The function g = / V Sj(E)x belongs to ^ and

- ε < Sk(g) ^ Sk(E) .

Since ^?(S3 , Sk) is closed, this shows (ar) e Ajfk, and hence Sίf\{Sk\\ S
Πi i ) f e over j <. k. Now suppose (#r) e lΊA^. Then for every pair

i < k, there is /,,* e ^ with a?y = Sj(fd,k) and % = Sk(fj>k). For each
pair of natural numbers p,n, write

By Lemma 2, for each p, there is ^ e ^ ^ such that Sk(gp) = lim inf
Sk{gP,n) as w—> oo, for each k = 1, 2, . Now write i£ = U ^ p over
p = 1, 2, . By Theorems 2 and 4, for each k9 Sk(E) = \/Sklgp) ^
lim% inf Sk(gk,n) — xk. On the other hand, if pφk, then either 0Pfn ^
/*,!» o r ^,^ ^ fP,k f° r n ^t k, depending whether p<k or p > fe. Thus
iSfcί-Ê ) = Sk(gk) V VJ,^Λlimninf Sk(gp>n) ^ %, for each fc, which shows
(xr)

In general, if the sequence {Sk} contains more than two terms,
the set £ίf[{Sk}\ properly contains the set {(xk): for some fe<βζxk =
Sk(f),k = 1,2, ...}.

3. The set &(S, T). The results of § 2 show that the set
is determined by the sets &(Sj9 Sk),j < k. This section

lists a few of the properties of &(S, T). The first of these is a
characterization of ^ ( S , T) solely in terms of the sets S and T.

For each x, let A(x, S, Γ) consist of all pairs (α, /9) with 1 > a ^
/5 > 0 and (a?/3/α, x(l - β)/(l -a))ΠS= 0. Let B(x, S, T) be the set
of all pairs (a, β) with (β,a)eA(x, T, S). Finally let J^(S, Γ) =
lim sup A(t, S,T) as t — oo, ί e y, and ^ ( S , Γ) = lim sup B(s, S, T) as

THEOREM 6. For every pair of unbounded sets S and T,

, T) - Gl (J^(S, T) U &(S, T)) .

Proof. Suppose (a, β) e J*f(S, T). Ita=β, then (a, β) e &(S, T).
Thus assume β < a. Then for some unbounded subset TQ of Γ, the
intervals It = (tβ/a, ΐ(l - /3)/(l - a)) do not intersect S for t e To. De-
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fine a function / in J^ by

[βt V (x - (1 - β)t) , if xeIt,teT0
fix) —

[ax, otherwise .
Then S(f) = a and f(t)/t = /3 for t e To, and so T(f) ^ £. It follows
that βS(f) ^ αΓ(/) and (1 - β)(l - S(f)) ^ (1 - α)(l - Γ(/)). Since
^(Sy T) is closed and star-shaped with respect to (0, 0) and (1,1) it
follows that Cl (J^(S, T)) S &{S, T). A similar argument shows
Cl (&(S, T)) S ^ ( S , Γ). On the other hand, let / belong to J C If
S(/) - Γ(/), then (S(/), T(/)), belongs to Cl (J^(S, T) U ̂ ( S , Γ)).
Thus assume S(/) ^ T(f) and by symmetry in S and Γ, assume S(/) >
T(f). It suffices to show that S(f) >a>β> T(f) implies (a, β) e j*f{S, T).
In this case, it can be assumed by Lemma 1, that f(s) > as for all
se S and that there is an unbounded subset To of T on which f(t)<
βt. Since fej^f(s) ^ ((s - ί) V 0) + /(*) for all pairs s and ί. If
t e To and s ^ ί, this implies as < /3ί. If s ^ ί, then as<s — t + βt.
These last two inequalities imply (tβ/a, ί(l - /3)/(l - <z)) Π S = 0 or
(α, /9) G A(t, S, T) for each t e To. It follows that (a, β) e JZf(S, T).

As was noted before ^P(S, T) is always closed and star-shaped
with respect to all points (α, a), 0 ^ a: ^ 1. These two properties
actually characterize the shape of ^ ( S , T) as is seen by

THEOREM 7. Let & be a closed set in the unit square, 0 ^
a, β ^ 1, star-shaped with respect to (0, 0) <mc£ (1, 1). There are un-
bounded sets S and T such that & — &(S, T).

Proof. The theorem is obvious if & is the diagonal 0 ^ a = β ίg 1,
since for S = T, &(S, T) is this diagonal. Otherwise, there is a
sequence (an, βn), 0 < an, βn < 1, an Φ βn which is everywhere dense
in &. Select a sequence of intervals (αn, bn) such that αΛ —> c>o as
^ —• co f bn ^ α n + 1 a n d

bjan = (a-1 - l)/(^-1 - 1), if an < /Sn

^ - 1), if αn > /5n

If an < βn, the interval (αΛ, 6W) is called an interval of type I. If
#* > βn, the interval (αΛ, δ%) is said to be of type II. In each interval
of type I, let sn = anβjani and in each interval of type II, let tn =
anajβn. In either case the constructed point belongs to (an9 bn). Let
S consist of all the points an, bn and the points sn. Let T consist
of all the points ani bn and the points tn. Assume first that {a, β) e &.
If a = β, then (a, β) e &(S, T). Thus suppose a Φ β and by sym-
metry in S and T assume a > β. Select a sequence of intervals In =
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(αΛ, bn) of type II, such that an—>a and βn~-+ β. Define / in &~ by

(aan V (x - (1 - α)6»), if a; e JΛ, n = 1, 2,
/(a?) = , ,, .

[ax, otherwise .
Then S(f) = a and for tn e In, f(tn)/tn = aβjan V (1 - (1 - α)(l - βn)/
(1 — an)) which tends to β as n —• oo. Thus Γ(/) = /9, which shows
^ S ^ ( S , T). To show the reverse containment it is sufficient, by
Theorem 6, to show J^(S, T) S ^ . If (α, /S) e Jf(S, T), then for a
subsequence tk of {£„}, (tkβ/a, tk(l — β)/(l — a)) f) S = 0 . This implies
βk/ak £ β/a and (1 - β)/(l -a)^(l~ βk)/(l - ak). Since ^ is star-
shaped with respect to (0,0) and (1,1), this shows (a,β)e&.

4* Equivalence of unbounded sets* By Theorem 5 of § 2 the
statement, S(E) = T(E) for all # g [0,1], is the same as, S(f) = T(f)
for all / e ^ Γ The induced equivalence relation, S = T, deserves some
study.

THEOREM 8. For all unbounded sets S, S = Cl (S).

Proof. Since S g C1(S), it is clear that S(f) ^ C1(S)(/) for all
fejK On the other hand, there is a map ψ:G\(S)-^S such that
11 - x/ψ(x) I ̂  1/x for each x e Cl (S). If fe ^ then

/(s) ^ [(8 - x) V 0] + /(£)

for every pair s, a?. Hence f(ψ(x))/ψ(x) ^ I/a; + (1 + l/x)/(ίc)/eτ for all
x e Cl (Si). It follows that S(f) £ Cl (S)(f) for / e ^ ^ and so S = Cl(S).

The related partial ordering: S g Γ, if and only if, S(/) ^ Γ(/)
for all / e ^ Γ again equivalent to S(£7) £ T(E) for all E'S [0,1], has
the following characterization.

THEOREM 9. A necessary and sufficient condition that S ^ T, is
that there exist a function φ: T-+ S such that lim t/φ(t) = 1, as £—• oo,

Proo/. It φ:T-+S and ί/^(ί) -> 1 as ί -> oo, t e T, then for fe J ^
/(?>(«)) ^ [(φ(t) - ί) V 0] + f{t), which implies

f(φ(t))/φ(t) ^ I 1 - ί/9>(ί) I + (t/φ(t))(f(t)/t) .

Hence S(/) ^ φ(T){f) ^ Γ(/). On the other hand, assume S(f) ^ T(f)
for all / G ^ Γ In particular this is true for #(#) = V(s/2 A (a? - s/2))
over seCl(S). Here, S(g) = 1/2 ^ T(g). For each ί e Γ, let s(ί) -
sup {s: s e S, s ^ ί} and s'(ί) = inf {s: s e S, s ^ ί}. Then s(t) and s'(ί)
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belong to Cl (S) and it is easy to see that g(t) = s(t)/2 V (ί - s'(ί)/2).
Now let θ: T-*C1(S) be defined by

θ(t) = \
\s'(t), otherwise .

If 0 < ε < 1/2, then for teT,t sufficiently large, 1/2 - ε ^ g(t)/t, which
means 1 - 2ε ^ s(t)/t or s'(ί)/ί ^ 1 + 2ε. Since 0 satisfies: 1 ^ £/0(ί) ^
s'(t)/t or 1 ^ ί/0(ί) ^ s(ί)/ί, it follows that 11 - t/θ(t) \ S 2ε and so
t/θ(t)—+1 as ί ^ o o ^ e ϊ 1 . If ψ: Cl (S)-+S is the mapping introduced
in the proof of Theorem 8, then the composition, φ = ψθ, satisfies
the required property, i.e., t/φ(t)—>l as t —> oo, te T.

Given any unbounded S, let 7fc = [nk, nk + 1), for wfc nonnegative
integers, be a sequence of intervals such that S c U/* and /̂  n >S is
nonempty. Let sk = inf {s: s e S Π I*,}. Then {sj S Cl (S) and so {sj ^
S. On the other hand the map φ: S —>{sk} defined by φ(s) = sk, if
seSnlk, clearly satisfies the condition of Theorem 9. This proves

THEOREM 10. Given any unbounded S, there is an increasing
sequence {sk} such that S = {sk}.

The final result concerns the classical Hausdorff dimension H{f),
where H = (0, oo)#

THEOREM 11. If S = {sn} and sn ^ sn+1, then S = H, if and only
if, limsΛ+1/sn = 1, α s w ^ o o ,

Proof. If sn ^ x ^ sn+1, then for fe J^, f(sn+1) ^ sn+1 - x + /(»),
so that f(sn+1)/sn+1 ^ sΛ+i/sΛ - 1 + f(x)/%. In the case that s%+1/sw —> 1
as n — oo, it follows that S(f) ^ H(f) for all / e J^T Since Sgff , this
shows S = H. Conversely, if S ^ H, then for g = \/(asΛ(x — (l — a)s)
over s e S, H(g) ^ S(/) = a, for a fixed a,0 < a < 1. Thus, in par-
ticular for the points

xn = asn + (1 - a)sn+ι, lim inf g(xn)/xn = lim inf
(1 — a)sn+jsn) ^ a as w —• oo. Thus sn+Jsn —• 1 as w -> oo.

5* Connection with other dimension functions* Dimension
can be defined for more general classes of intervals, ^J? cf. [1], i.e.,
where ^ need not be closed under translations. It is known that
if ^ is the class of r-adic intervals, then the dimension H'(E) de-
termined by ^ coincides with the usual Hausdorff dimension H(E),
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as an easy application of Theorem 11 shows, taking

For which classes ^ does the dimension S(E), where

coincide with that determined by ^ ? More generally, for which
do there exist unbounded sets S, such that S(E) coincides with H\E)
determined by ^fi In general, the solution of these problems is not
known. Notice that for such classes ^ the dimension Hr{E) is neces-
sarily a translation invariant dimension, so that one might ask if this
property is also sufficient.

The author is indebted to Professor F. Bohnenblust for his advice
and guidance during the preparation of this paper, which formed a
part of the author's Doctoral dissertation submitted to the California
Institute of Technology.
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