INDEFINITE MINKOWSKI SPACES

John K. Beem

Abstract

The purpose of this article is to characterize Minkowski general G-spaces. The unit sphere K is shown to have at most four components.

Assume the space R is not reducible. If K has one component, R is an ordinary Minkowski G-space. If K has two components they are quadrics and R is nearly pseudoeuclidean. When K has three components, one is a quadric and the other two are strictly convex. The unit sphere has four components only in dimension two.

The axioms of a general G-space have been given in [4] and the interesting two dimensional spaces have been investigated in [1]. We will denote the indefinite distance from x to y by $x y$. We refer to $x y$ as a metric even though it is not in general a true metric.

Definition 1.1. The general G-space R is called a Minkowski space if R is the real n-dimensional affine space A^{n}, the family of Arcs A consists of the affine segments and $w=(1 / 2)(x+y)$ implies $w x=$ $w y=(1 / 2) x y$.

If L^{r} is an r-dimensional flat in R, then L^{r} is an r-dimensional Minkowski space with the induced distance.

Let $e(x, y)$ be an associated euclidean metrization of A^{n}. Then for each line L in R there is a number $\phi(L)$ such that $x y=\phi(L) e(x, y)$ for all $x, y \in L$. If $\phi(L)=0$, we call L a null line. The number $\phi(L)$ depends continuously on L and $\phi(L)=\phi\left(L_{1}\right)$ if L_{1} is parallel to L, see [1]. It follows that the affine translations preserve the distance $x y$.

Let z always denote the origin in A^{n}. We call $C=\{x \mid x z=0\}$ the light cone and $K=\{x \mid x z=1\}$ the unit sphere. If K is given the distance $x y$ is uniquely determined.

For $x \neq y$ let $L(x, y)$ denote the line through x and y and let $\alpha(x, y)$ denote the affine segment from x to y. When $S \subset A^{n}$ define $-S=\{x \mid-x \in S\}$. If $S=-S$ the set S is called symmetric about z or simply symmetric. The sets C and K are symmetric.

Two general G-spaces R_{1} and R_{2} are said to be topologically isometric if there exists a topological map of R_{1} onto R_{2} that preserves the indefinite distance $x y$.

It is easily seen that if R_{1} and R_{2} are Minkowski spaces defined on A^{n} with unit spheres K and K^{*} respectively, then R_{1} and R_{2} are
topologically isometric if and only if there is an affinity mapping K onto K^{*}.
2. Two dimensional spaces. If R is A^{2}, then by [4, p. 241] one of the following must hold: (1) no null lines exist in R, (2) there is exactly one null line through each point of R, (3) there are exactly two null lines through each point of R, or (4) all lines in R are null.

In case (1) we call R a spacelike plane. By [4, p. 239], a spacelike plane is an ordinary Minkowski G-space with unit sphere a strictly convex closed curve.

In case (2) we call R a neutral plane. A neutral plane is topologically isometric to the (s, t) plane with distance from $\left(s_{1}, t_{1}\right)$ to $\left(s_{2}, t_{2}\right)$ given by $\left|t_{1}-t_{2}\right|$.

When R has exactly two null lines through each point it is called a doubly timelike (Minkowski) plane, see [1]. The unit sphere has four components each of which is strictly convex and not compact.

If all lines in R are null, we call R a null plane.
3. Reducible spaces. Let R be an n-dimensional Minkowski space. Then R is reducible to $R^{r} \times N^{n-r}$ for $r<n$, provided affine coordinates $x_{1}, x_{2}, \cdots, x_{n}$ may be chosen such that
(1) R^{r} is given by $x_{r+1}=x_{r+2}=\cdots=x_{n}=0$ and N^{n-r} is given by $x_{1}=\cdots=x_{r}=0$.
(2) The projection of R onto R^{r} preserves the metric $x y$.

The maximum possible value of $n-r$ is called the index of reducibility of R. A null plane has index 2 and a neutral plane index 1 . Spacelike and doubly timelike planes are not reducible.

Nonreducible spaces often contain reducible subspaces. In the three dimensional Lorentz space any plane tangent to the light cone is neutral and hence reducible.

Given a line N the parallel to N through x will always be denoted by N_{x}.

Definition 3.1. A line N through z is called a line of reduction of R if $x \in K$ implies $N_{x} \subset K$.

Lemma 3.2. The space R is reducible if and only if R has a line of reduction.

Proof. If N is a line of reduction of R and L^{n-1} is a hyperplane with $L^{n-1} \cap N=z$, the projection of R onto L^{n-1} along parallels to N preserves the metric.

On the other hand if R is reducible to $R^{r} \times N^{n-r}$ any line N through z and in N^{n-r} is a line of reduction of R.
4. The r-flat topology. If $\left\{M_{m}\right\}$ is a sequence of closed subsets of R, we say M_{m} converges to the closed set M if $\lim M_{m}=M$ in the sense of Hausdorff's closed limit, see [2]. This limit induces a topology on the closed subsets of R. If L^{r} is an r-flat and $W\left(L^{r}\right)$ is a neighborhood of L^{r} in this topology, let $W_{r}\left(L^{r}\right)$ denote the r-flats in $W\left(L^{r}\right)$.

Lemma 4.1. Let $\left\{L_{m}^{2}\right\}$ be a sequence of doubly timelike planes, each containing z, such that $\left\{L_{m}^{2}\right\}$ converges to the two flat L^{2}. Assume $x_{i}^{m} \in K \cap L_{m}^{2}$ and $x_{i}^{m} \rightarrow x_{i}$ for $i=1,2$.
(1) Let L^{2} be doubly timelike and let x_{1}, x_{2} lie on the same component [opposed components] of K. Then for sufficiently large m the points x_{1}^{m} and x_{2}^{m} always lie on the same component [opposed components] of $K \cap L_{m}^{2}$.
(2) If L^{2} is neutral, then for sufficiently large m the points x_{1}^{m} and x_{2}^{m} are always on the same or else always on opposed components of $K \cap L_{m}^{2}$.

Proof. The proofs are similar and consequently we only consider statement (2) in which L^{2} is neutral.

Without loss of generality assume x_{1} and x_{2} are on the same component of $K \cap L^{2}$ since if $x_{1}^{m} \rightarrow x_{1}$ then $-x_{1}^{m} \rightarrow-x_{1}$.

If $y \in \alpha\left(x_{1}, x_{2}\right)$ then $y \in K$ and $z y=1$. Therefore, there exists an open set V containing the set $\alpha\left(x_{1}, x_{2}\right)$ such that all $p \in V$ have $z p>0$. For sufficiently large m all points of $\alpha\left(x_{1}^{m}, x_{2}^{m}\right)$ lie in V and have positive distance from z. It follows that x_{1}^{m} and x_{2}^{m} lie on the same component of $K \cap L_{m}^{2}$ for large m.

The components of K are arcwise connected since they are connected and locally arcwise connected.

Lemma 4.2. Let x_{1} and x_{2} lie on the same component of K and let L^{2} be a two flat containing z, x_{1} and x_{2}. If S_{1} and S_{2} are the components of $K \cap L^{2}$ containing x_{1} and x_{2} respectively then either $S_{1}=S_{2}$ or else $S_{1}=-S_{2}$.

Proof. Let $x(t)$ for $0 \leqq t \leqq 1$ be a curve on K connecting x_{1} and x_{2} with $x(0)=x_{1}$ and $x(1)=x_{2}$.

Call the two flat $L^{2}(t)$ admissible if $z, x_{1}, x(t) \in L^{2}(t)$ and $K \cap L^{2}(t)$ has components S_{1} and $S(t)$ containing x_{1} and $x(t)$ respectively such that either $S_{1}=S(t)$ or else $S_{1}=-S(t)$. For sufficiently small t there must exist admissible $L^{2}(t)$. Set $M=\{t \in[0,1] \mid$ there exists an admissible $\left.L^{2}(t)\right\}$.

We now show M is closed. If $\left\{L^{2}\left(t_{m}\right)\right\}$ is a sequence of admissible planes and $t_{m} \rightarrow t_{0}$, then there is a convergent subsequence $\left\{L^{2}\left(t_{k}\right)\right\} \subset$ $\left\{L^{2}\left(t_{m}\right)\right\}$ such that $L^{2}\left(t_{k}\right) \rightarrow L_{0}^{2}$. Clearly $z, x_{1}, x\left(t_{0}\right) \in L^{2}\left(t_{0}\right)$. Statement (1)
of Lemma 4.1 implies L_{0}^{2} cannot be doubly timelike with x_{1} and $x\left(t_{0}\right)$ neither on the same nor on opposed components of $K \cap L_{0}^{2}$. Therefore, $t_{0} \in M$.

To show M is open let $\tau \in M$ and $L^{2}(\tau)$ be admissible. If $L^{2}(\tau)$ is spacelike there must exist a neighborhood $W_{2}\left(L^{2}\right)$ containing only spacelike planes. But this implies the existence of a neighborhood $U(\tau)$ of the number τ with $U(\tau) \subset M$. If $L^{2}(\tau)$ is a doubly timelike plane statement (1) of Lemma 4.1 implies the existence of a neighborhood $U(\tau) \subset M$. In case $L^{2}(\tau)$ is a neutral plane first construct a neighborhood $W_{2}\left(L^{2}(\tau)\right)$ in which no null planes exist. If only spacelike and neutral planes exist in $W_{2}\left(L^{2}(\tau)\right)$ there is nothing to show. If there is a sequence of doubly timelike planes $L^{2}\left(t_{m}\right)$ converging to $L^{2}(\tau)$, statement (2) of Lemma 4.1 guarantees that for large m the planes $L^{2}\left(t_{m}\right)$ are admissible. It follows that there is a neighborhood $U(\tau) \subset M$. Therefore, M is open as well as closed. Since $M \neq \phi, M=$ $[0,1]$ and the lemma is established.

Theorem 4.3. Let K_{1} and K_{2} be distinct components of K that are opposed (i.e., $K_{2}=-K_{1}$). Then K_{1} and K_{2} are convex hypersurfaces.

Proof. Let $K_{1}^{0}=\left\{y \mid \alpha(z, y) \cap K_{1} \neq \phi\right\}$. Then K_{1}^{0} has boundary K_{1} and $y \in K_{1}^{0}$ implies $z y \geqq 1$. If $y_{1}, y_{2} \in K_{1}^{0}$ let L^{2} be a two flat through z, y_{1} and y_{2}. Then L^{2} must either be neutral or doubly timelike. In either case $\alpha\left(y_{1}, y_{2}\right) \subset K_{1}^{0}$ if y_{1} and y_{2} lie on the same component of $K_{1} \cap L^{2}$. Clearly y_{1} and y_{2} lie on the same component for L^{2} neutral. If L^{2} is doubly timelike, then $K_{1} \neq K_{2}$ and Lemma 4.2 imply y_{1} and y_{2} lie on the same component of $K_{1} \cap L^{2}$. It follows that K_{1}^{0} is convex and that its boundary K_{1} is a convex hypersurface. In the same fashion one may show K_{2} is a convex hypersurface.

Lemma 4.4. Let K have a component K_{1} that is symmetric about z. Then for each $x \in K_{1}$ there is a two flat L^{2} through z and x that is spacelike.

Proof. Assume the statement is false. Any two flat containing $L(z, x)$ is then either neutral or doubly timelike. Orient $L(z, x)$ to get $L^{+}(z, x)$. If L_{1} is a line parallel to $L^{+}(z, x)$, orient L_{1}^{+}in the same direction. This gives an ordering $<$ on each line parallel to $L(z, x)$.

Let $x(t)$ for $0 \leqq t \leqq 1$ be a curve on K_{1} with $x(0)=x, x(1)=-x$ and $x(t) \notin L(x,-x)$ for $0<t<1$. Let $L^{+}(t)$ be the oriented line containing $x(t)$ and parallel to $L^{+}(z, x)$. The line $L^{+}(t)$ is never a null line.

In the ordering $<$ along $L^{+}(t)$ let $p(t)$ be the first element in $\left\{y \mid y \in L^{+}(t)\right.$ and $\left.z y=0\right\}$. Let $f(t)$ be the signed euclidean distance from $x(t)$ to $p(t)$ where $f(t)<0$ if $x(t)<p(t)$. If $z<x$ then $f(0)<0$
and $f(1)>0$.
The function $f(t)$ is continuous at 0 and 1 since $p(t) \rightarrow z$ for $t \rightarrow 0$ and $t \rightarrow 1$. To show $f(t)$ is continuous on $(0,1)$ let $0<t_{0}<1$ and $t_{m} \rightarrow t_{0}$. For $0<t<1$ let $L^{2}(t)$ denote the unique plane containing $L^{+}(t)$ and z. Clearly if $L\left(t_{0}\right)$ is neutral we have $L\left(z, p\left(t_{m}\right)\right) \rightarrow L\left(z, p\left(t_{0}\right)\right)$. If $L^{2}\left(t_{0}\right)$ is doubly timelike, one can show using (1) of Lemma 4.1 that $L\left(z, p\left(t_{m}\right)\right) \rightarrow L\left(z, p\left(t_{0}\right)\right)$. In either case $p\left(t_{m}\right) \rightarrow p\left(t_{0}\right)$ and $f(t)$ is continuous. But then $f(\tau)=0$ for some $0<\tau<1$ which implies $x(\tau)=p(\tau)$. This is impossible since $z x(\tau)=1$ and $z p(\tau)=0$.
5. Three dimensional spaces. In this section we only consider three dimensional Minkowski spaces.

Lemma 5.1. Let K have three components K_{1}, K_{2} and K_{3} with $K_{3}=-K_{3}$. Then $K_{1}=-K_{2}$ and K_{1} (hence also K_{2}) is strictly convex.

Proof. By Lemma 4.4 there is a two flat L^{2} through z that is spacelike with $L^{2} \cap K_{3} \neq \phi$. This flat separates A^{3} and does not intersect K_{2}. Hence $K_{2} \neq-K_{2}$. Consequently, $K_{1}=-K_{2}$.

To see that K_{1} is strictly convex let $x, y \in K_{1}$. If L_{0}^{2} is a two flat through x, y and z it must be doubly timelike since $L_{0}^{2} \cap L^{2} \neq \phi$. Then $L_{0}^{2} \cap K_{1}$ is a strictly convex curve. It follows that $u \in \alpha(x, y)-x-y$ implies $z u>1$. Therefore, K_{1} must be strictly convex.

If K_{i} is a component of K then so is $-K_{i}$. Consequently, if K has exactly three components there is always one, say K_{3}, that is symmetric about z.

Extend A^{3} to the real three dimensional projective space P^{3} by adding a plane L_{∞}^{2} at ∞. The projective lines that the light cone C determine intersect L_{∞}^{2} in a curve C_{∞}. Let K have exactly three components. Since spacelike planes exist in this case, there is a line $L_{0} \subset L_{\infty}^{2}$ with $L_{0} \cap C_{\infty}=\phi$. The set $L_{\infty}^{2}-L_{0}$ is an affine plane with L_{0} the line at ∞.

Let $p, q \in C_{\infty}$ with $p \neq q$. Let L^{2} be two flat in P^{3} that contains z, p, q. Then $L^{2} \cap A^{3}$ cannot be a null plane, since if it were it would separate A^{3} and K_{3} could not be symmetric. Consequently, $L^{2} \cap A^{3}$ must be a doubly timelike plane.

It follows that $L^{2} \cap\left(L_{\infty}^{2}-L_{0}\right)$ is an affine line in $L_{\infty}^{2}-L_{0}$ that intersects C_{∞} in only the two points p and q. But C_{∞} is a closed curve. Hence, C_{∞} is a strictly convex curve in $L_{\infty}^{2}-L_{0}$.

Theorem 5.2. Let $\operatorname{dim} R=3$. If K has three components K_{1}, K_{2} and K_{3} with $K_{3}=-K_{3}$, then K_{3} is a hyperboloid of one sheet.

Proof. Let $u \in L_{\infty}^{2}-L_{0}$ and let u be exterior to the convex set
in $L_{\infty}^{2}-L_{0}$ whose boundary is C_{∞}. Then there are lines L_{1} and L_{2} through u that are supporting lines of C_{∞}. Let L_{i}^{2} be the projective plane containing z and L_{i} for $i=1$, 2. Then $L_{i}^{2} \cap C_{\infty}$ is a single point and hence $L_{i}^{2} \cap A^{3}$ is a neutral plane.

The set $L_{i}^{2} \cap A^{3} \cap K$ consists of two parallel lines which must be on K_{3} since K_{1} and K_{2} are strictly convex. For any $q \in K_{3}$ let $u=$ $L(z, q) \cap L_{\infty}^{2}$ and without loss of generality assume $u \notin L_{0}$. Then u must be exterior to C_{∞}. By the above arguments there must be two straight lines on K_{3} through q. By [5, p. 272] the set K_{3} is a hyperboloid of one sheet.

Notice that the above theorem gives the additional information that C is elliptic and C_{∞} is an ellipse in $L_{\infty}^{2}-L_{0}$.

Lemma 5.3. K can have at most four components. If K does have four components, R is reducible and no component of K is symmetric about z.

Proof. Let K_{1} be a component of K. Assume $K_{1}=-K_{1}$, then there is a spacelike plane L_{0}^{2} through z with $L_{0}^{2} \cap K_{1} \neq \phi$. Take $K_{2} \neq K_{1}$ and $x \in K_{2}$. Let $L^{2}(\theta)$ be a two flat containing $L(z, x)$ that revolves continuously in θ and sweeps out A^{3} for $0 \leqq \theta \leqq \pi$. Each $L^{2}(\theta)$ intersects L_{0}^{2} in a line through z so that $L^{2}(\theta) \cap K_{1} \neq \phi$ for all θ. Therefore, each $L^{2}(\theta)$ is doubly timelike and intersects K in four components. Two of these components lie on K_{1}, and the other two are subsets of K_{2} and $-K_{2}$. Since this holds for all $\theta \in[0, \pi], K$ can have at most three components. Therefore, $K_{1} \neq-K_{1}$ if K has four components.

By the above, it must be possible to find at least two components K_{1} and K_{2} of K with $K_{1} \neq-K_{1}, K_{2} \neq-K_{2}$ and $K_{1} \neq-K_{2}$. Set $K_{3}=$ $-K_{1}$ and $K_{4}=-K_{2}$. Let $y \in K_{1}$ and let $L^{2}(\psi)$ be a two flat through $L(z, y)$ that sweeps out A^{3} continuously for $0 \leqq \psi \leqq \pi$. It can be assumed without loss of generality that $L^{2}(0) \cap K_{2} \neq \phi$. Therefore, let x_{2} belong to $L^{2}(0) \cap K_{2}$. $L^{2}(\psi)$ cannot be doubly timelike for all ψ or else x_{2} and $-x_{2}$ would be on the same component of K. Therefore, there is a first ψ_{0} with $L^{2}\left(\psi_{0}\right)$ neutral. Let $N \subset L^{2}\left(\psi_{0}\right)$ be the null line through z. Claim N is a line of reduction of R.

It is clear that if $x \in K_{1} \cup K_{3}$ then $N_{x} \subset K_{1} \cup K_{3}$ since these are convex surfaces and $N_{y} \subset K_{1}$ as well as $N_{-y} \subset K_{3}$. For $x \in K_{2} \cup K_{4}$ consider the following argument. Let $L^{2}(\gamma)$ be a plane through $L\left(z, x_{2}\right)$ sweeping out A^{3} continuously for $0 \leqq \gamma \leqq \pi$ with $y \in L^{2}(0)$. By the same reasoning as before, there is a first γ_{0} with $L^{2}\left(\gamma_{0}\right)$ neutral. The above N must be in $L^{2}\left(\gamma_{0}\right)$ since $N_{y} \subset K_{1}$ and K_{1} is not flat. This implies $N_{x} \subset K_{2} \cup K_{4}$ whenever $x \in K_{2} \cup K_{4}$.

It is now possible to show K has at most, four components. If L_{1}^{2} is a two flat containing the above N either L_{1}^{2} is neutral or null.

If it is null, it intersects $L^{2}(\gamma)$ for $\gamma=0$ in a null line. If it is neutral, it intersects either K_{1} and K_{3} or else K_{2} and K_{4}. In any case it cannot contain a point of K not on $K_{1} \cup K_{2} \cup K_{3} \cup K_{4}$.

An immediate consequence is that if K has four components $R=$ $R^{2} \times N^{\prime}$ where R^{2} is a doubly timelike plane.

Consider now the case of K having one component. If R has no null lines, then by [4, p. 239] it is a Minkowski G-space and K must be strictly convex.

Lemma 5.4. Let K have one component and not be strictly convex. Then K is a cylinder and $R=R^{2} \times N^{1}$ where R^{2} is a spacelike plane.

Proof. Let K contain a segment α and consider the two flat L_{0}^{2} through z and α. L_{0}^{2} must be neutral, hence the line containing α must lie on K. Let N be the null line in L_{0}^{2} through z. Since K has only one component, there is a spacelike plane L^{2} through z. Any two flat L_{1}^{2} containing N must intersect L^{2} in a line through z.

The plane L_{1}^{2} cannot be a doubly timelike because of Lemma 4.2 and the fact that K has only one component. Therefore, L_{1}^{2} is neutral and contains two lines on K parallel to N. It follows K must be a cylinder with generators parallel to N.

Projecting R onto L^{2} along parallels to N gives $R=R^{2} \times N^{1}$ for R^{2} the spacelike plane L^{2}.

If K has two components K_{1} and K_{2} in dimension three, then $K_{1}=$ $-K_{2}$ since otherwise there would be a spacelike plane L^{2} through z intersecting only one component of K yet separating A^{3}. Both K_{1} and K_{2} must be flat since if $x, y \in K_{1}$ with $x \neq y$, the two flat L_{1}^{2} containing x, y and z would have to be neutral.

It can easily be shown that for K having two components, the space is always topologically isometric to (x_{1}, x_{2}, x_{3})-space with the distance from $\left(a_{1}, a_{2}, a_{3}\right)$ to (b_{1}, b_{2}, b_{3}) given by $\left|a_{1}-b_{1}\right| . K$ consists of two parallel planes and $R=R^{1} \times N^{2}$ for R^{1} the real line.
6. Higher dimensional spaces. The n dimensional situation is now investigated by the use of r-flats.

Lemma 6.1. K_{1}, K_{2}, K_{3} be three distinct components of K, then two are reflections through z of each other.

Proof. Consider $p_{i} \in K_{i}$ for $i=1,2,3$ and let L^{3} be a three flat containing z, p_{1}, p_{2}, and p_{3}. Let $S_{i}=K_{i} \cap L^{3}$, then S_{1}, S_{2}, and S_{3} are disjoint components of $K \cap L^{3}$. By the last section $K \cap L^{3}$ has either three or four components, and in any case, any three of the components
of $K \cap L^{3}$ contain a pair that are symmetric to each other. If we assume $S_{1}=-S_{2}$ then clearly $K_{1}=-K_{2}$.

Lemma 6.2. K has at most four components. If K does have four components K_{1}, K_{2}, K_{3} and K_{4}, without loss of generality, one may assume $K_{1}=-K_{3}$ and $K_{2}=-K_{4}$.

Proof. Assume K has five components $K_{1}, K_{2}, K_{3}, K_{4}$ and K_{5}. Then lemma 6.1 applied to K_{1}, K_{2} and K_{3} allows the assumption $K_{3}=-K_{1}$. Applying Lemma 6.1 to K_{1}, K_{2} and K_{4} yields $K_{2}=-K_{4}$.

Let $p_{1} \in K_{1}, p_{2} \in K_{2}$ and $p_{5} \in K_{5}$, then let L_{3} be a three flat containing p_{1}, p_{2}, p_{5} and z. $K \cap L^{3}$ then contains five disjoint components, which is impossible by Lemma 5.3.

Lemma 6.3. Let $N_{x} \subset K$ then if one of the following holds, N_{z} is a line of reduction.
(1) K has exactly one component.
(2) K has exactly two components K_{1} and K_{2} that are symmetric to each other.
(3) K has exactly three components K_{1}, K_{2}, K_{3} with $K_{3}=-K_{3}$ and $N_{x} \subset K_{1} \cup K_{2}$.
(4) K has four components.

Proof. The proofs of the above four cases all follow the same general pattern. Therefore, the first case is the only one discussed.

If $N_{x} \subset K$ and K has one component, consider $y \in R$ and let L^{3} be a three flat containing z, y and N_{x}. Either $N_{y} \subset K$ or else $K \cap L^{3}$ has three components. If $K \cap L^{3}$ has three components, there is a two flat $L^{2} \subset L^{3}$ through z that is doubly timelike. But then $K \cap L^{2}$ has four components, and Lemma 4.2 would imply K had more than one component.

For convenience the following notation is adopted. If k, p, \cdots, m are r distinct integers from the set $1,2, \cdots, n$ let $L_{k p \cdots m}^{r}$ be the unique r-flat through the $x_{k}, x_{p}, \cdots, x_{m}$ axes. If L_{0} is a line with $L_{0} \not \subset L_{k p \cdots m}^{r}$ let $L_{k k_{p} \cdots m}^{r+1}$ be the $r+1$ flat containing L_{0} and $L_{k p \cdots m}^{r}$. Here we assume $L_{0} \cap L_{k p \cdots m}^{r} \neq \dot{\phi}$.

Repeated application of the last lemma gives the following partial description of the nonreducible spaces:

Theorem 6.4. In all cases K has at most four components. Let R be nonreducible.
(1) If K has one component, then R is a Minkowski G-space.
(2) If K has two components that are opposed to each other then. R is isometric to the real line.
(3) If K has three components, then one is symmetric about z
and the other two are strictly convex.
(4) If K has four components, then R is a doubly timelike plane.

The case where K has two components which are not opposed is discussed in Theorem 6.13 and additional information on the case of three components is found in Theorem 6.8.

Lemma 6.7. Let $n=3$ and K have three components. Assume coordinates x_{1}, x_{2}, x_{3} are chosen such that the light cone is given by $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$. Then the plane $x_{3}=0$ intersects K_{3} in a set $x_{1}^{2}+x_{2}^{2}=a^{2}$ for some $a>0$.

Proof. Let p lie on K_{3} and in the plane $x_{3}=0$. For some $a>0$ the point p lies on $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a^{2}$. We claim that the only hyperboloid of one sheet containing p that has C as light cone is $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a^{2}$.

Since p is contained in exactly two planes tangent to C, the two lines on K_{3} through p are determined. For any q on one of these two lines, the same argument yields that the two lines on K_{3} through q are determined. It follows K_{3} is determined by p and C.

Consider now $n>3$ and extend A^{n} to P^{n} by adding a hyperplane L_{∞}^{n-1} at ∞. Let the projective lines that contain the lines of the light cone C intersect L_{∞}^{n-1} in a set C_{∞}.

If R is nonreducible and K has three components, let L_{0}^{n-1} be a supporting hyperplane to K_{1}. If L^{n-1} is the hyperplane parallel to L_{0}^{n-1} through z, then $L^{n-1} \cap C=z$. Otherwize $L^{n-1} \cap C$ would contain a line N. For $p \in L_{0}^{n-1} \cap K_{1}$ then the two flat L^{2} through p and N would be neutral or doubly timelike. It could not be neutral because of Lemma 6.3. It could not be doubly timelike since then N_{p} would not be a supporting line of K_{1}.

Set $L^{n-1} \cap L_{\infty}^{n-1}=L_{\infty}^{n-2}$ an $n-2$ dimensional flat. By taking L_{∞}^{n-2} as the $n-2$ flat at ∞ of L_{∞}^{n-1} the set $L_{\infty}^{n-1}-L_{\infty}^{n-2}$ becomes an $n-1$ dimensional affine space. Let $x, y \in C_{\infty}$ for $x \neq y$ and let L_{1}^{2} be the two flat containing x, y and z. Then $L_{1}^{2} \cap A^{n}$ is a doubly timelike plane. In the same manner as the argument after Lemma 5.1, we conclude C_{∞} is a strictly convex $n-2$ dimensional surface in the space $L_{\infty}^{n-1}-L_{\infty}^{n-2}$.

LEMMA 6.6. C_{∞} is an ellipsoid in $L_{\infty}^{n-1}-L_{\infty}^{n-2}$.
Proof. Let L_{∞}^{2} be a two flat in L_{∞}^{n-1} with $L_{\infty}^{2} \cap C_{\infty}$ containing more than one point. Let L^{3} be the three flat containing z and L_{∞}^{2}. Then $L^{3} \cap A^{n}$ is an indefinite metric space whose unit sphere has three components. By Theorem 5.2, $L_{\infty}^{2} \cap C_{\infty}$ is an ellipse and hence by [2, p. 91] C_{∞} is an ellipsoid.

Take now coordinates $x_{1}, x_{2}, \cdots, x_{n}$ in A^{n} such that C has the form
$x_{n}^{2}=x_{1}^{2}+\cdots+x_{n-1}^{2}$ and let L_{1}^{n-1} be the hyperplane $x_{n}=0$.
Lemma 6.7. $\quad L_{1}^{n-1} \cap K$ has the form $x_{1}^{2}+\cdots+x_{n-1}^{2}=a^{2}$ for $a>0$.
Proof. Let L^{2} be any two flat in L_{1}^{n-1} passing through z. Let L^{3} be the three flat containing L^{2} and the x_{n} axis. Since $L^{3} \cap K$ always has three components, $L^{2} \cap K$ is always an ellipse of center z. Therefore, $L_{1}^{n-1} \cap K$ is an ellipsoid in L_{1}^{n-1} of center z.

If L^{2} contains the x_{i} and x_{j} axis Lemma 6.5 implies $L^{2} \cap K_{3}$ has the form $x_{i}^{2}+x_{j}^{2}=a_{i j}^{2}$. If p_{i} and p_{j} are points of $L^{2} \cap K_{3}$ that lie on the $i^{\text {th }}$ and $j^{\text {th }}$ axes respectively, $\left|p_{i}\right|^{2}=\left|p_{j}\right|^{2}=a_{1 j}^{2}$. Therefore, $a_{i j}$ is independent of i and j. Setting $a=a_{i j}$ yields the desired result.

ThEOREM 6.8. Let R be nonreducible and K have three components. If K_{3} is the components of K symmetric about z it is a quadric. In proper affine coordinates K_{3} is given by

$$
x_{1}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2}=a^{2}
$$

Proof. Using the same notation as in Lemma 6.9 define

$$
S=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid x_{1}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2}=a^{2}\right\}
$$

If L^{3} contains the x_{n} axis then $L^{3} \cap S=L^{3} \cap K_{3}$. The result follows by letting L^{3} sweep out A^{n}.

In order to investigate nonreducible spaces in which K has two components, we first consider nondegenerate central quadrics that have z as a center. The general form in affine space is

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=1 \text { where } a_{i j}=a_{j i} \text { and } \operatorname{det}\left(a_{i j}\right) \neq 0
$$

If two such quadrics E_{1} and E_{2} are given respectively by

$$
\sum a_{i j} x_{i} x_{j}=1 \text { and } \sum a_{i j} x_{i} x_{j}=-\lambda^{2} \text { for } \lambda>0
$$

they will be called semiconjugate. We will refer to E_{1} as the λ semiconjugate to E_{2}. For $\lambda=1$ the quadrics are conjugate in the usual sense. Notice that one of the quadrics does not have a real locus if the quadric form is definite.

Lemma 6.9. Suppose the nonempty sets B_{1} and B_{2} contained in $\bigcup_{i \neq j} L_{i j}^{2}$ are such that the locus $B_{2} \cap L_{i j}^{2}$ is always the λ semiconjugate quadric to $B_{1} \cap L_{i j}^{2}$ for fixed λ. Then there are exactly two central quadrics E_{1} and E_{2} such that $E_{1} \cap L_{i j}^{2}=B_{1} \cap L_{i j}^{2}$ and $E_{2} \cap L_{i j}^{2}=$ $B_{2} \cap L_{i j}^{2}$ for all $i \neq j$. Furthermore, E_{2} is the λ semiconjugate to E_{1}.

Lemma 6.10. Let $n=4$ and K have two components K_{1} and K_{2}
each symmetric about z. Let L^{3} be a three flat through z such that $L^{3} \cap K$ has three components. Then $L^{3} \cap K$ consists of two semiconjugate quadrics.

Proof. By Theorem 5.2 one component of $L^{3} \cap K$ must be a hyperboloid of one sheet. Choose coordinates x_{1}, x_{2}, x_{3} in L^{3} such that $L^{3} \cap C$ takes the form $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$. Let $L^{3} \cap K$ have components S_{1}, S_{2}, S_{3} with $S_{3}=-S_{3}$. For some $a>0, S_{3}$ is given by $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a^{2}$. Let L_{0} be a line through z in L_{12}^{2}.

In R let L^{2} be a spacelike plane containing the x_{3} axis, so $L^{2} \not \subset L^{3}$. Choose the x_{4} axis in L^{2}. Assume K has components K_{1} and K_{2} with $S_{3} \subset K_{1}$, then $L_{\mathrm{c} 34}^{3} \cap K_{2}$ is a hyperboloid of one sheet in L_{034}^{3}. Consequently, $L_{03}^{2} \cap K_{2}$ is a hyperbola. This hyperbola is determined given only the intersection of K_{2} with the x_{3} axis and the intersection of L_{03}^{2} with the surface $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$ in L^{3}.

Revolving L_{0} in the plane L_{12}^{2} shows $L^{3} \cap K_{2}$ consists of a hyperboloid of two sheets that is a semiconjugate of $L^{3} \cap K_{1}$.

Lemma 6.11. If $n=4$ and K has two symmetric components, they are semiconjugate quadrics.

Proof. Let the notation and coordinates be the same as in the last proof. Set $B_{1}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{1}\right)$ and $B_{2}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{2}\right)$.

If $L^{3} \cap K_{2}$ is the λ semiconjugate to $L^{3} \cap K_{1}$ in L^{3}, then $L_{034}^{3} \cap K_{2}$ is the λ semiconjugate to $L_{034}^{3} \cap K_{1}$ in L_{034}^{3} for the same λ. This follows since L_{03}^{2} is common to both three flats and intersects both components of K. Therefore, B_{1} and B_{2} satisfy the hypothesis of Lemma 6.9. Let E_{1} and E_{2} be the semiconjugate quadrics determined by B_{1} and B_{2}.
$L^{3} \cap E_{1}=L^{3} \cap K_{1}$ since each are quadrics in L^{3} determined by $B_{1} \cap L^{3}$ and $B_{2} \cap L^{3}$. By the same reasoning, $L^{3} \cap E_{2}=L^{3} \cap K_{2}$. Also $L_{124}^{3} \cap K_{i}=L_{124}^{3} \cap K_{i}$ for $i=1,2$.

Therefore, $L_{0 j}^{2} \cap K_{i}=L_{0 j}^{2} \cap E_{i}$ for $i=1,2$ and $j=3,4$. But then using Lemma 6.11 one last time, we find $L_{034}^{3} \cap E_{i}=L_{034}^{3} \cap K_{i}$. By revolving L_{0} in L_{12}^{2} it follows $E_{i}=K_{i}$ for $i=1,2$.

Lemma 6.12. Let $n=5$ and K have two components K_{1} and K_{2} symmetric about z. If R is not reducible, K_{1} and K_{2} are semiconjugate quadrics.

Proof. Two cases are considered.
Case 1. Let there exist a three flat L^{3} through z such that $L^{3} \cap K$ has one component. Assume $L^{3} \cap K_{2} \neq \phi$. Choose coordinates x_{1}, x_{2}, x_{3} in L^{3}. We may assume that $L_{12}^{2}, L_{13}^{2}, L_{23}^{2}$ are spacelike planes. Choose
coordinates x_{4}, x_{5} such that L_{45}^{2} is spacelike and intersects K_{1}. By arguments as in Lemma 6.10 and Lemma 6.11, it is possible to show $L_{i j}^{2} \cap K_{1}$ and $L_{i j}^{2} \cap K_{2}$ are always semiconjugate quadrics for fixed λ. Therefore, $B_{1}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{1}\right)$ and $B=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{2}\right)$ satisfy the hypothesis of Lemma 6.9.

Let E_{1} and E_{2} be the quadrics determined by B_{1} and B_{2}. Let L_{0} be a line through z in L_{12}^{2}. Since $L_{12 j}^{2} \cap E_{i}=L_{12 j}^{3} \cap K_{i}$, clearly $L_{0 j}^{2} \cap E_{i}=$ $L_{0 j}^{2} \cap K_{1}$ for $i=1,2$ and $j=3,4,5$. Therefore $L_{0345}^{4} \cap E_{i}=L_{i 345}^{4} \cap K_{i}$. By revolving L_{0} in L_{12}^{2} it follows that $E_{i}=K_{i}$.

Case 2. Assume no L^{3} through z exists with $L^{3} \cap K$ having only one component. We will show this leads to a contradiction.

Choose coordinates $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ such that L_{12}^{2} and L_{34}^{2} are spacelike planes intersecting respectively K_{1} and K_{2}. By Theorem 6.8, the set $K \cap L_{2345}^{4}$ cannot have exactly three components. Consequently, $L_{2345}^{3} \cap K$ consists of two symmetric components. The same must also be true of $L_{1235}^{4} \cap K$.

By Lemma 6.11 the sets $L_{1234}^{4} \cap K, L_{2345}^{4} \cap K$ and $L_{1235}^{4} \cap K$ each consists of two quadrics. In each of the three sets one quadric is the semiconjugate of the other for some fixed λ. Define

$$
B_{1}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{1}\right) \quad \text { and } \quad B_{2}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{2}\right) .
$$

Let E_{1} and E_{2} be the quadrics determined.
Let L_{0} be a line through z in L_{12}^{2}. Then $L_{0 j}^{2} \cap K_{i}=L_{0 j}^{2} \cap E_{i}$ for $j=3,4,5$ and $i=1,2$. Therefore, $L_{0345}^{4} \cap E_{i}=L_{0345}^{4} \cap K_{i}$ and revolving L_{0} in L_{12}^{2} gives $E_{i}=K_{i}$ for $i=1,2$.

Then in proper affine coordinates $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ the components of K are given by $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-y_{4}^{2}-y_{5}^{2}=1$ and $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-y_{4}^{2}-y_{5}^{2}=$ $-\lambda^{2}$. This contradicts the assumption of Case 2.

The n dimensional case now follows using induction.
Theorem 6.13. If R is not reducible and K has two components which are not opposed, then $n \geqq 4$ and the components are semiconjugate quadrics.

Proof. Assume $n \geqq 6$. Take L^{n-1} to be a hyperplane containing L_{1}^{2} and L_{2}^{2}, which are spacelike two flats through z with $L_{i}^{2} \cap K_{i} \neq \phi$. Then $L^{n-1} \cap K$ has exactly two symmetric components. Because of Lemma 6.12, there exists an L^{3} through z and contained in L^{n-1} with $L^{3} \cap K$ having one component. Take the x_{1}, x_{2}, x_{3} affine coordinates in L^{3} and $x_{1}, x_{2}, \cdots, x_{n-1}$ affine coordinates in L^{n-1}. For $p \in K-L^{n-1}$ let the x_{n} axis be $L(z, p)$. Take L_{0} to be a line through z in L_{12}^{2}. By
induction $L_{0,34-\ldots n}^{n-1} \cap K_{i}$ must consist of two semiconjugate quadrics. The argument is the same as before, letting L_{0} revolve in L_{12}^{2}.

An interesting result of this section is the following.
Corollary 6.14. If R is a nonreducible Minkowski space and not a G-space, then any spacelike plane in R is euclidean.

References

1. J. K. Beem and P. Y. Woo, Doubly timelike surfaces, Amer. Math. Soc. Memoir 92, 1970.
2. H. Busemann, The geometry of geodesics, Academic Press, New York, 1955.
3. —— Timelike spaces, Dissertationes Mathematicae, Warszawa 53 (1967).
4. H. Busemann and J. K. Beem, Axioms for indefinite metrics, Circolo Matematico di Palermo (1966), 223-246.
5. H. Busemann and P. J. Kelly, Projective geometry and projective metrics, Academic Press, New York, 1953.

Received August 25, 1969. This paper is part of a Ph. D. dissertation written under the direction of Professor H. Busemann at the University of Southern California.

University of Missouri
Columbia, Missouri

