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ON NORMED RINGS WITH MONOTONE
MULTIPLICATION

SILVIO AURORA

It is shown that if a normed division ring has a norm
which is ‘““multiplication monotone” in the sense that N(x) <
N(z’) and N(y) < N(y’) imply N(zy) < N(xz'y’), and if the norm
is ‘‘commutative’’ in the sense that N(---xy---) = N(---yz---)
for all x and y, then the topology of that ring is given by an
absolute value. A consequence of this result is that if the norm
of a connected normed ring with unity is multiplication monc-
tone and commutative then the ring is embeddable in the
system of quaternions,

Pontrjagin has shown [7] that the only locally compact connected
fields are the field of real numbers and the field of complex numbers.
A theorem of A. Ostrowski [6] implies that if the topology of a con-
nected field is given by an absolute value then the field is (isomorphic
to) a subfield of the field of complex numbers. Both results are con-
tributions toward the solution of the problem of determining what
connected fields exist.

In this note the more restricted question of studying connected
normed fields is considered. (It is recalled that a mormed ring has
its topology induced by a morm function N; that is, N is a real-valued
function defined on the ring such that: (i) N(0) =0 and N(z) >0
for x = 0, (ii) N(—2) = N(z) for all x, (iii) N(x + ») < N(x) + N(¥)
for all  and y, (iv) N(zy) < N(x)N(y) for all  and y.) Ostrowski’s
results may be regarded as the treatment of the special case of this
problem in which the norm N satisfies the additional condition

N(zy) = N(x)N(y)

for all 2 and y. This extra requirement is replaced here by the
weaker condition that N be multiplication monotone in the sense that
whenever N(z) < N(2') and N(y) < N(y’) then N(xy) < N@'y').

Specifically, it is shown in the corollary of Theorem 3 that if a
commutative connected normed ring with unity has a multiplication
monotone norm then that ring is (algebraically and topologically is-
omorphic to) a subring of the field of complex numbers. (The version
of this statement which appears below actually includes the noncom-
mutative case as well.) The basic device employed in obtaining this
result is Theorem 2, which asserts that if a normed division ring has
a multiplication monotone norm N such that

N(---xy-++) = N(++-yx--+)
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for all x and y then there is an absolute value which induces the
topology of the ring.

2. Preliminaries. It is recalled that a norm for a ring 4 is a
real-valued function N on A such that: (i) N(0) = 0 and N(x) > 0 for
all nonzero x in A, (ii) N(—=x) = N(x) for all x in A4, (iii) N + ) <
N(x) + N(y) for all 2,y in A, (iv) N(zy) < N@)N(y) for all =,y
in A. If a norm N for a ring A also has the property that
N(xy) = N(x)N(y) for all ¢, y in A then N is called an absolute value
for A.

By a normed ring is meant a ring A, together with a norm N
for A. The norm for a normed ring induces a metric, and therefore
a topology, in A.

A topological ring is called a Q-ring of its set of quasiinvertible
elements is open; for a topological ring A with unity to be a Q-ring
it is necessary and sufficient that the set of invertible elements be
open. In particular, it can be shown that every complete normed
ring with unity is a Q-ring.

Further details on these concepts can be found in [1] and [4],
where the term metric ring is employed for a normed ring.

If a norm N for a ring A has the property that N(---xy-:-:) =
N(-+.yx---) for all z,y in A then N will be called a commutative
norm. For instance, absolute values are always commutative, and
every norm for a commutative ring is also commutative.

In addition to the above notions, we shall also refer to the con-
cepts which figure in [5], and we shall make use of the criteria given
by Kaplansky in that paper for a topological division ring to admit
an equivalent absolute value.

Two elementary lemmas will help to translate Kaplansky’s criteria
to the special case of normed division rings. The proofs are routine.

LEMMA 1. An element x of a mormed ring is topologically nil-
potent if and only if there exists a matural mumber n such that
N(z) < 1.

LEMMA 2. The set of topologically milpotent elements of a normed
ring 1S open.

Kaplansky’s criteria can now be rephrased to fit the needs of the
present discussion.

THEOREM 1. Let K be a normed division ring whose morm 1s
commutative. In order for K to admit an equivalent absolute value



ON NORMED RINGS WITH MONOTONE MULTIPLICATION 17

(that 1s, am absolute wvalue whose induced topology coincides with
the topology induced by the morm for K), it 1s mecessary and suf-
ficient that the set of elements which are either topologically nilpot-
ent or neutral be right bounded.

Proof. The necessity of the conditions is obvious. For the suf-
ficiency of the conditions, we first note that the commutativity of the
norm implies that N(x) = N(1) whenever z is an element of the com-
mutator subgroup of the multiplicative group of nonzero elements of
K; this commutator subgroup is therefore metrically bounded and is
consequently right bounded. Lemma 2 and [5; Th. 2] imply that there
is an equivalent absolute value for K.

3. Rings with maultiplication monotone norm. We shall
subject the norm for a normed ring to a menotonicity condition which
is of interest because it implies the existence of an absolute value
equivalent to the given norm.

DEFINITION. A norm N for a ring A is said to be multiplication
monotone provided that whenever N(z) < N(2') and N(y) < N(y') then
N(zy) = N(@'y").

Clearly every absolute value is multiplication monotone, while the
following theorem indicates that under suitable conditions a multiplica-
tion monotone norm for a division ring must have an equivalent absolute
value.

THEOREM 2. Let K be a mormed division ring whose mnorm 1is
commutative and multiplication monotone. Then there is an equiv-
alent absolute value for K.

Proof. The theorem obviously holds for discrete division rings,
so we may confine our attention to nondiscrete division rings.

Let x be a fixed element of K such that 0 < N(z) < N(1)~*. Then
if N(y) > N(z7®) it follows that N(y~') < N(x) < 1, and y is therefore
inversely nilpotent. Thus whenever y is topologically nilpotent or
neutral we have N(y) < N(x%), so that the set of elements of K
which are topologically nilpotent or neutral is metrically bounded and
therefore right bounded. Theorem 1 yields the desired result.

It is possible to relax the requirement that the ring in question
be a division ring, provided that the ring is connected. In order to
achieve this we introduce the notion of generalized zero-divisors.
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DEFINITION. An element b of a normed ring A will be called a
generalized left zero-divisor (gemeralized right zero-divisor) provided
that the greatest lower bound of the set {N(bx)/N{(x)|x # 0} ({N(xb)/
N(x)|x =+ 0}) is zero.

These are essentially the definitions which were employed in [1],
but we may also note that b is a generalized left zero-divisor (gener-
alized right zero-divisor) if and only if there exists a sequence {x,} of
nonzero elements of A such that

lim N(b,)/N(z,) = 0 (lim N(2,b)/N(z,) = 0) .

Although normed rings usually have many generalized zero-divisors
it can be shown that a connected normed ring whose norm is multi-
plication monotone has no generalized zero-divisors other than zero.

LEMMA 3. Let A be a connected normed ring with unity such
that the norm for A is multinlication monotone. Then A has no
generalized left zero-divisors or gemeralized right zero-divisors other
than zero.

Proof. Suppose b is a generalized left zero-divisor in A. Let
{z,} be a sequence of nonzero elements of A such that

lim N(bz,)/N(z,) = 0.

Choose a sequence {y,} in A such that (1/2)N(x,) < N(y,) < N(z,) for
every natural number n.
If I is the set of all elements ¢ of A such that

lim N(cy.,.)/N(y,) = 0

then I is clearly a left ideal in A. Also, whenever ¢ is an element
of A such that N(¢) < N(b) then N(cy,)/N(y,) < N(bx,)/((1/2)N(z,)) for
all n, so that ¢ is an element of I. Thus, if & were not zero then
an entire neighborhood of zero would be contained in the left ideal I,
and I would therefore be open and closed in the connected ring A;
consequently I would coincide with A, in contradiction to the fact
that I can not contain the unity of A. We conclude that b is zero.
Similarly, every generalized right zero-divisor is zero.

In order to obtain the desired results concerning connected normed
rings we first dispose of a special case in the following lemma.

LEMMA 4. Let A be a connected ring with unity such that the
set A* of momzero elements of A is disconnected. Then A is a division
ring.
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Proof. If ¢ is a nonzero element of A then the mapping « — cx
is clearly a continuous endomorphism of the additive group of A, so
that its image H is a connected nonzero subgroup of the additive
group of A. But it can be shown that the additive group of A is
continuously isomorphic to the additive group of real numbers (for
instance, a proof is outlined in [3; Chap. 5, p. 28, Exercise 4]), and H
must therefore coincide with the additive group of A. Thus, 1 is in
H, so that 1 = ¢d for some d in A, and ¢ has a right inverse in A.

Since every nonzero element of A has a right inverse in A we
conclude that A is a division ring.

It is now possible to pass to the general case.

THEOREM 3. Let K be a connected normed Q-ring with unity
such that the norm for K is commutative and multiplication monot-
one. Then A 1is algebraically and topologically isomorphic to the
Sield R of real numbers, a dense comnected subfield of the field € of
complex numbers, or a dense connected division subring of the division
ring Q of all real quaternions.

Proof. If the set A% of nonzero elements of A is not connected
then Lemma 4 implies that A is a division ring. On the other hand,
if A* is connected then A is a division ring according to [1; Th. 1]
since Lemma 3 implies that 4 has no generalized zero-divisors other
than zero. In either case A is a division ring.

There is an equivalent absolute value for the normed division ring
A by Theorem 2. Ostrowski’s characterization of connected division
rings with absolute value (see for instance [2; Th. 2, p. 131]) may
then be applied to obtain the desired result.

COROLLARY. Let A be a connected normed ring with unity such
that the morm for A is commutative and wmultiplication monotone.
Then A is algebraically and topologically isomorphic to R, to a dense
connected subring of €, or to a dense connected subring of Q.

The corollary is obtained by applying the theorem to the comple-
tion of A.

REMARK. Another kind of monotonicity condition could be in-
troduced in normed division rings. The norm of a normed division
ring can be described as inversion monotone provided that whenever
N(x) < N(y) for nonzero elements «, y then N(x*) = N(y~'). Theorem
2 remains valid if “multiplication monotone” is replaced by “inversion
monotone” in the hypothesis, although some details of the proof must
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be modified. Similarly, the corollary of Theorem 3 continues to hold
if “multiplication monotone” is replaced by “inversion monotone” in
the statement of the corollary, provided that it is assumed that the
ring is a division ring.

This note evolved from the consideration of some peripheral ques-
tions related to a problem which was investigated with the support
of the Research Council of Rutgers University; the author wishes to
express his appreciation to the Research Council for that support.
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