CARTAN SUBALGEBRAS OF A LIE ALGEBRA AND ITS IDEALS

DAVID J. WINTER

The purpose of this paper is to describe, under suitable conditions which are always satisfied at characteristic 0, a close relationship between Cartan subalgebras of a Lie algebra \mathscr{L} and Cartan subalgebras of an ideal \mathscr{L}' of \mathscr{L} . Under the conditions referred to, a mapping α^* from the set of Cartan subalgebras of \mathscr{L} onto the set of Cartan subalgebras of \mathscr{L}' is described and the fibres of α^* are determined.

The main tools for the paper are N. Jacobson's generalization of Engel's Theorem [2; p. 33], and Theorem 5 of [4] which deals with Cartan subalgebras of the Fitting zero space of a derivation of a Lie algebra \mathscr{L} . In addition, general material on Lie algebras, to be found in [2], [3], is presupposed.

Throughout this paper, Lie algebras and vector spaces are finite dimensional.

If V is an \mathscr{N} -module where \mathscr{N} is a nilpotent Lie algebra over the field F, the null and one components of V are denoted $V_0(\mathscr{N})$, $V_*(\mathscr{N})$ respectively [cf. 2; pp. 37-43] and, for α a function from \mathscr{N} into F, $V_{\alpha}(\mathscr{N}) = \{v \in V \mid v(I - \alpha(x))^{\dim V} = 0 \text{ for all } x \in \mathscr{N}\}.$

If V is a vector space (respectively Lie algebra, respectively module for a Lie algebra, over F, then the extension $V \bigotimes_F K$ of V to an extension field K of F is denoted V_K .

2. Cartan subalgebras of a Lie algebra and its ideals. Throughout this section, \mathscr{L} denotes a Lie algebra over an arbitrary field F. The characteristic of F is denoted p, p = 0 being permissible. Let \mathscr{L}' be an ideal of \mathscr{L} and let the canonical short exact sequence determined by $\mathscr{L}, \mathscr{L}'$ be denoted

$$0 \longrightarrow \mathscr{L}' \stackrel{lpha}{\longrightarrow} \mathscr{L} \stackrel{eta}{\longrightarrow} \overline{\mathscr{L}} = \mathscr{L} / \mathscr{L}' \longrightarrow 0 \;,$$

where α is the inclusion mapping. The set of Cartan subalgebras of \mathscr{L} is denoted Cart \mathscr{L} . For $\mathscr{H} \in \operatorname{Cart} \mathscr{L}$, $(\mathscr{L}')_{\circ}(\operatorname{ad}(\mathscr{H} \cap \mathscr{L}'))$ is denoted $\alpha^{*}(\mathscr{H})$. Our main objective is to prove the following theorem.

THEOREM. Suppose that either p = 0, or $p \neq 0$ and $(\operatorname{ad}_{\mathscr{L}'} \mathscr{L}')^p \subset \operatorname{ad}_{\mathscr{L}'} \mathscr{L}'$ and $(\operatorname{ad}_{\mathscr{L}} \mathscr{L})^p \subset \operatorname{ad}_{\mathscr{L}} \mathscr{L}$. Then $\alpha^*(\operatorname{Cart} \mathscr{L}) = \operatorname{Cart} \mathscr{L}'$ and

 $\alpha^{*^{-1}}(\mathscr{H}') = \operatorname{Cart} \mathscr{L}_0(\operatorname{ad} \mathscr{H}') \text{ for } \mathscr{H}' \in \operatorname{Cart} \mathscr{L}'.$

We defer the proof for the moment, since it is convenient to have the following lemma at our disposal.

LEMMA. Let V be a vector space over F, \mathscr{L} a Lie subalgebra of $\operatorname{Hom}_F V$. If the characteristic of F is $p \neq 0$, suppose that \mathscr{L} is closed under p-th powers. Let \mathscr{N} be a nilpotent subalgebra of $\operatorname{Hom}_F V$ which normalizes \mathscr{L} . Suppose that $\mathscr{L}_0(\operatorname{ad} \mathscr{N})$ consists of nilpotent transformations of V. Then \mathscr{L} consists of nilpotent transformations of V.

Proof of lemma. Since $\mathscr{L}_0(\mathrm{ad} \ \mathscr{N})$ consists of nilpotent transformations and is closed under brackets, $\mathscr{L}_0(\mathrm{ad} \ \mathscr{N})_K = (\mathscr{L}_K)_0(\mathrm{ad} \ \mathscr{N}_K)$ consists of nilpotent transformations where K is the algebraic closure of F. Moreover, if the characteristic of F is $p \neq 0$, \mathscr{L}_K is closed under p-th powers [cf. 2; p. 190]. Thus, we may assume without loss of generality that F is algebraically closed.

Now $\mathscr{L} = \sum \mathscr{L}_{\alpha}(\operatorname{ad} \mathscr{N})$ and $V = \sum V_{\beta}(\mathscr{N})$. For all α, β , we have $V_{\beta}(\mathscr{N})\mathscr{L}_{\alpha}(\operatorname{ad} \mathscr{N}) \subset V_{\beta+\alpha\circ\operatorname{ad}}(\mathscr{N})$ [cf. 2; p. 63]. Thus, if the characteristic of F is 0, $\mathscr{L}_{\alpha}(\operatorname{ad} \mathscr{N})$ consists of nilpotent transformations for all α : for $\alpha = 0$ by hypothesis and for $\alpha \neq 0$ by the above observation. Suppose next that the characteristic of F is $p \neq 0$. Let $x \in L_{\alpha}(\operatorname{ad} \mathscr{N})$. Then $x^{p} \in \mathscr{L} \cap (\operatorname{Hom}_{F}V)_{0}(\operatorname{ad} \mathscr{N}) = \mathscr{L}_{0}(\operatorname{ad} \mathscr{N})$, for if t is the semi-simple part of an element y of \mathscr{N} , t ad $x = -\alpha(y)x$ so that $0 = t(\operatorname{ad} x)^{2} = \cdots = t(\operatorname{ad} x)^{p} = [t, x^{p}]$. Thus, x^{p} , hence x, is nilpotent. Thus, the $\mathscr{L}_{\alpha}(\operatorname{ad} \mathscr{N})$ again consist of nilpotent transformations for all α . We now can apply [2; p. 33] to the weakly closed set $\cup \mathscr{L}_{\alpha}(\operatorname{ad} \mathscr{N})$ of nilpotent transformations. This implies that the Lie algebra generated by $\cup \mathscr{L}_{\alpha}(\operatorname{ad} \mathscr{N})$, namely \mathscr{L} itself, consists of nilpotent transformations.

Proof of theorem. We first show that $\alpha^*(\operatorname{Cart} \mathscr{L}) \subset \operatorname{Cart} \mathscr{L}'$. Thus, let, $\mathscr{H} \in \operatorname{Cart} \mathscr{L}$. Then $\mathscr{H} \cap \mathscr{L}' = \mathscr{L}_0(\operatorname{ad} \mathscr{H}) \cap \mathscr{L}' = (\mathscr{L}')_0(\operatorname{ad} \mathscr{H})$. Now $\mathscr{N} = \operatorname{ad} \mathscr{H}|_{\mathscr{L}'}$ is a nilpotent Lie algebra of derivations of \mathscr{L}' and $\mathscr{H} \cap \mathscr{L}'$ is trivially a Cartan subalgebra of $(\mathscr{L}')_0(\mathscr{N}) = \mathscr{H} \cap \mathscr{L}'$. Thus, Theorem 5 of [4] applies and shows that $(\mathscr{L}')_0(\operatorname{ad}(\mathscr{H} \cap \mathscr{L}')) = \alpha^*(\mathscr{H})$ is a Cartan subalgebra of \mathscr{L}' .

Next suppose that $\mathscr{H}' \in \operatorname{Cart} \mathscr{L}'$ and that $\mathscr{N} \in \operatorname{Cart} \mathscr{L}_0(\operatorname{ad} \mathscr{H}')$. Since $\mathscr{L}_0(\operatorname{ad} \mathscr{H}')$ normalizes $\mathscr{L}_0(\operatorname{ad} \mathscr{H}') \cap \mathscr{L}' = (\mathscr{L}')_0(\operatorname{ad} \mathscr{H}') = \mathscr{H}'$, we have:

(1)
$$\mathcal{N}$$
 normalizes \mathcal{H}' .

In view of (1), we have $\mathcal{H}' = \mathcal{H}'_0 \oplus \mathcal{H}'_*$ where $\mathcal{H}'_0 = (\mathcal{H}')_0 (\text{ad } \mathcal{N})$

and $\mathscr{H}'_{*} = (\mathscr{H}')_{*}(\mathrm{ad} \ \mathcal{N})$. Note that $\mathscr{H}'_{0} = \mathscr{H}' \cap \mathcal{N}$ since $\mathcal{N} \in \mathrm{Cart} \ \mathscr{L}_{0}(\mathrm{ad} \ \mathscr{H}')$ and $\mathscr{H}' \subset \mathscr{L}_{0}(\mathrm{ad} \ \mathscr{H}')$. Let $V = (\mathscr{L}')_{0}(\mathrm{ad} \ \mathscr{H}_{0}')$. Since $\mathscr{H}'_{0} \subset \mathscr{H}'$ and $\mathscr{H}'_{0} \subset \mathscr{N}$, V is stable under ad \mathscr{H}' and ad \mathcal{N} [cf. 2; p. 58]. Now we prepare the way for applying the above lemma to $(V, \mathrm{ad} \ \mathscr{H}'|_{V}, \mathrm{ad} \ \mathcal{N}|_{V})$. Thus, note that ad $\mathscr{H}'|_{V}$ is a subalgebra of $\mathrm{Hom}_{F}V$ normalized by the nilpotent subalgebra ad $\mathscr{N}|_{V}$ and that, if the characteristic of F is $p \neq 0$, ad $\mathscr{H}'|_{V}$ is closed under p-th powers. (In fact, $\mathrm{ad}_{\mathscr{L}'} \ \mathscr{H}'$ is closed under p-th powers since $\mathrm{ad}_{L'} \ \mathscr{L}'$ is closed under p-th powers and since $\ \mathscr{H}'$ is a Cartan subalgebra of \mathscr{L}' : for $x \in \ \mathscr{H}'$, $(\mathrm{ad} \ x)^{p} = \mathrm{ad} \ y$ for some $y \in \ \mathscr{L}'$, and $y \in \ \mathscr{H}'$, since $\ \mathscr{H} \supset \ \mathscr{H}$ (ad $x)^{p} = [\ \mathscr{H}, \ y]$). Moreover

$$(\mathrm{ad}\ \mathscr{H}'|_{\mathcal{V}})_{0}(\mathrm{ad}\ (\mathrm{ad}\ \mathscr{N}|_{\mathcal{V}})) = \mathrm{ad}\ \mathscr{H}'_{0}|_{\mathcal{V}}$$

and ad $\mathscr{H}'_{0}|_{V}$ consists of nilpotent transformations by the definition of V. Thus, by the lemma, ad $\mathscr{H}'|_{V}$ consists of nilpotent transformations. Thus, $(\mathscr{L}')_{0}(\operatorname{ad} \mathscr{H}'_{0}) = ((\mathscr{L}')_{0}(\operatorname{ad} \mathscr{H}') = \mathscr{H}'$. We therefore have:

$$(2) \qquad \qquad \mathcal{H}' = (\mathcal{L}')_{0}(\mathrm{ad}\,(\mathcal{H}' \cap \mathcal{N})) \,.$$

We show that (2) implies $\mathscr{H}' = (\mathscr{L}')_0(\mathrm{ad}\,(\mathscr{H}\cap\mathscr{L}))$ for substable $\mathscr{H} \in \mathrm{Cart}\,\mathscr{L}$. Thus, let $\mathscr{H} = \mathscr{L}_0(\mathrm{ad}\,\mathscr{N})$. Then $\mathscr{H} \in \mathrm{Cart}\,\mathscr{L}$, by Theorem 5 of [4], since \mathscr{N} is a Cartan subalgebra of $\mathscr{L}_0(\mathrm{ad}\,\mathscr{H}')$. Since $\mathscr{H}' \cap \mathscr{N} \subset \mathscr{L}' \cap \mathscr{H}$, (2) implies that

$$\alpha^*(\mathscr{H}) = (\mathscr{L}')_{\scriptscriptstyle 0}(\mathrm{ad}\,(\mathscr{L}'\cap \mathscr{H})) \subset (\mathscr{L}')_{\scriptscriptstyle 0}(\mathrm{ad}\,(\mathscr{H}'\cap \mathscr{N})) = \mathscr{H}'\,.$$

Thus, since $\alpha^*(\mathscr{H}) \in \operatorname{Cart} \mathscr{L}'$, by the preceding paragraph, $\alpha^*(\mathscr{H}) = \mathscr{H}'$, by the maximal nilpotency of Cartan subalgebras. Thus, we have:

(3)
$$\mathscr{L}_{0}(\mathrm{ad}\,\mathscr{N})\in\mathrm{Cart}\,\mathscr{L}\,\mathrm{and}\,\,\alpha^{*}(\mathscr{L}_{0}(\mathrm{ad}\,\mathscr{N}))=\mathscr{H}'\,.$$

We have $\alpha^*(\operatorname{Cart} \mathscr{L}) \subset \operatorname{Cart} \mathscr{H}'$, from the first paragraph. Thus, it follows from (3) that $\alpha^*(\operatorname{Cart} \mathscr{L}) = \operatorname{Cart} \mathscr{L}'$. Note, however, that the existence of $\mathscr{N} \in \operatorname{Cart} \mathscr{L}_0$ (ad \mathscr{H}') is used for this conclusion. But ad $\mathscr{L}_0(\operatorname{ad} \mathscr{H}')$ is a linear Lie *p*-algebra for $p \neq 0$, as the null component of the linear Lie *p*-algebra ad \mathscr{L} with respect to the subalgebra ad \mathscr{H}' . Thus, ad $\mathscr{L}_0(\operatorname{ad} \mathscr{H}')$ has a Cartan subalgebra, by [3; p. 121], so that $\mathscr{L}_0(\operatorname{ad} \mathscr{H}')$ has a Cartan subalgebra.

Finally, we suppose that $\mathscr{H}' \in \operatorname{Cart} \mathscr{L}'$. Let $\mathscr{H} \in \alpha^{*^{-1}}(\mathscr{H}')$. Then $\mathscr{H} \subset \mathscr{L}_0(\operatorname{ad}(\mathscr{H} \cap \mathscr{L}'))$, so that \mathscr{H} normalizes

$$\mathscr{H}' = \mathscr{L}_0(\mathrm{ad}\,(\mathscr{H} \cap \mathscr{L}')) \cap \mathscr{L}'$$
.

Thus, $\mathscr{H} \subset \mathscr{L}_0$ (ad \mathscr{H}'), so that $\mathscr{H} \in \operatorname{Cart} \mathscr{L}_0$ (ad \mathscr{H}'). Suppose, conversely, that $\mathscr{N} \in \operatorname{Cart} \mathscr{L}_0$ (ad \mathscr{H}'). By (3), \mathscr{L}_0 (ad $\mathscr{N}) \in \operatorname{Cart} \mathscr{L}$

539

and $\alpha^*(\mathscr{L}_0(\mathrm{ad} \ \mathcal{N})) = \mathscr{H}'$. Thus, by first part of this paragraph, $\mathscr{L}_0(\mathrm{ad} \ \mathcal{N}) \subset \mathscr{L}_0(\mathrm{ad} \ \mathcal{H}')$. But then

$$\mathscr{L}_{0}(\mathrm{ad}\;\mathscr{N})=\mathscr{L}_{0}(\mathrm{ad}\;\mathscr{H}'))_{0}(\mathrm{ad}\;\mathscr{N})=\mathscr{N},$$

since $\mathcal{N} \in \operatorname{Cart} \mathcal{L}_0(\operatorname{ad} \mathcal{H}')$ [cf. 2; p. 57-58]. Thus, \mathcal{N} is a Cartan subalgebra of \mathcal{L} , by [2; p. 57-58]. Now

$$\alpha^*(\mathcal{N}) = \alpha^*(\mathscr{L}(\mathrm{ad}\ \mathcal{N})) = \mathscr{H}'$$

by (3), and $\mathcal{N} \in \alpha^{*^{-1}}(\mathcal{H}')$. Thus, $\alpha^{*^{-1}}(\mathcal{H}') = \operatorname{Cart} \mathscr{L}_{0}(\operatorname{ad} \mathcal{H}')$.

We now turn to two related results. The first is concerned with the fibres of α^* . The second is concerned with the relations between the sequences

$$\operatorname{Cart} \mathscr{L}' \xleftarrow{\alpha^*} \operatorname{Cart} \mathscr{L} \xleftarrow{i} \operatorname{Cart} \mathscr{L}_0(\operatorname{ad} \mathscr{H}')$$
$$\operatorname{Cart} \beta^{-1}(\overline{\mathscr{H}}) \xrightarrow{i} \operatorname{Cart} \mathscr{L} \xrightarrow{\beta_*} \operatorname{Cart} \overline{\mathscr{L}}$$

where *i* is inclusion, $\mathscr{H} \in \operatorname{Cart} \mathscr{L}, \mathscr{H}' = \alpha^*(\mathscr{H}), \overline{\mathscr{H}} = \beta(\mathscr{H})$ and β_* is defined by $\beta_*(\mathscr{I}) = \beta(\mathscr{I})$ for $\mathscr{I} \in \operatorname{Cart} \mathscr{L}$.

PROPOSITION 1. Let the hypothesis be as in the theorem, and let $\mathscr{H} \in \operatorname{Cart} \mathscr{L}, \mathscr{H}' \in \operatorname{Cart} \mathscr{L}'$. Then the following conditions are equivalent.

- (1) $\mathscr{H}' = \alpha^*(\mathscr{H});$
- (2) \mathcal{H} normalizes \mathcal{H}' ;
- (3) $\mathscr{H} \cap \mathscr{L}' \subset \mathscr{H}'$.

Proof. If $\mathcal{H}' = \alpha^*(\mathcal{H})$, then $\mathcal{H} \subset \mathcal{L}_0(\mathrm{ad}\,(\mathcal{L}' \cap \mathcal{H}))$ and \mathcal{H} normalizes $\mathcal{H}' = \mathcal{L}_0(\mathrm{ad}(\mathcal{L}' \cap \mathcal{H})) \cap \mathcal{L}'$. Thus, (1) implies (2). If \mathcal{H} normalizes \mathcal{H}' , then $\mathcal{H} \subset \mathcal{L}_0(\mathrm{ad}\,\mathcal{H}')$ and

$$\mathscr{H} \cap \mathscr{L}' \subset (\mathscr{L}')_{\scriptscriptstyle 0}(\mathrm{ad}\ \mathscr{H}') = \mathscr{H}'$$

Thus, (2) implies (3). Suppose, finally, that $\mathcal{H} \cap \mathcal{L}' \subset \mathcal{H}'$. Then $\mathcal{H}' = (\mathcal{L}')_0(\mathrm{ad} \, \mathcal{H}') \subset (\mathcal{L}')_0(\mathrm{ad}(\mathcal{H} \cap \mathcal{L}')) = \alpha^*(\mathcal{H})$. But $\alpha^*(\mathcal{H}) \in \mathrm{Cart} \, \mathcal{L}'$ and \mathcal{H}' is, a Cartan subalgebra of \mathcal{L}' , maximal nilpotent in \mathcal{L}' . Thus, $\mathcal{H}' = \mathcal{L}(\mathcal{H})^*(\mathcal{H})$. Thus (3) implies (1), and the conditions (1)-(3) are equivalent.

PROPOSITION 2. Let the hypothesis be as in the theorem. Let $\mathcal{H} \in \operatorname{Cart} \mathcal{L}, \mathcal{H}' = \alpha^*(\mathcal{H}), \overline{\mathcal{H}} = \beta(\mathcal{H}).$ Then \mathcal{H} normalizes $\mathcal{H}',$ Cart \mathcal{L} contains Cart $(\mathcal{H} + \mathcal{H}')$, Cart $\mathcal{L}_0(\operatorname{ad} \mathcal{H}')$ and Cart $\beta^{-1}(\overline{\mathcal{H}}),$ and (Cart $\mathcal{L}_0(\operatorname{ad} \mathcal{H}')) \cap \operatorname{Cart} \beta^{-1}(\overline{\mathcal{H}}) = \operatorname{Cart} (\mathcal{H} + \mathcal{H}').$

Proof. \mathcal{H} normalizes \mathcal{H}' , by Proposition 1. Since

$$eta^{-1}(\overline{\mathscr{H}})=\mathscr{H}+\mathscr{F}',\,\mathscr{L}_{\scriptscriptstyle 0}(\mathrm{ad}\ \mathscr{H}')\capeta^{-1}(\overline{\mathscr{H}})=\mathscr{H}+\mathscr{H}'$$
 .

Thus, it suffices to show that Cart \mathscr{L} contains Cart $\mathscr{L}_0(\operatorname{ad} \mathscr{H}')$, Cart $\beta^{-1}(\overline{\mathscr{H}})$ and Cart $(\mathscr{H} + \mathscr{H}')$. The first two sets are contained in Cart $\mathscr{L} - \operatorname{Cart} \mathscr{L}_0(\operatorname{ad} \mathscr{H}')$ by the theorem and Cart $\beta^{-1}(\overline{\mathscr{H}})$ by [1]. Thus, it remains only to show that

$$\operatorname{Cart}(\mathscr{H} + \mathscr{H}') \subset \operatorname{Cart} \mathscr{L}_{0}(\operatorname{ad} \mathscr{H}')$$
.

But $\mathscr{H}' = \mathscr{L}_0(\mathrm{ad} \ \mathscr{H}') \cap \mathscr{L}'$ is an ideal of $\mathscr{L}_0(\mathrm{ad} \ \mathscr{H}')$ and $\mathscr{H} \in \operatorname{Cart} \mathscr{L}_0(\mathrm{ad} \ \mathscr{H}')$. Thus, $\operatorname{Cart} (\mathscr{H} + \mathscr{H}') \subset \operatorname{Cart} \mathscr{H}_0(\mathrm{ad} \ \mathscr{H}')$, by [1], since $\mathscr{H} + \mathscr{H}'$ is the preimage in $\mathscr{L}_0(\mathrm{ad} \ \mathscr{H}')$ of the Cartan subalgebra $(\mathscr{H} + \mathscr{H}') | \mathscr{H}'$ of $\mathscr{L}_0(\mathrm{ad} \ \mathscr{H}') | \mathscr{H}'$.

References

1. D. W. Barnes, On Cartan subalgebras of Lie algebras, Math. Zeit. **101** (1967), 350-355.

2. N. Jacobson, Lie algebras, Interscience, New York, 1962.

3. G. Seligman, Modular Lie algebras, Springer, New York, 1967.

4. D. J. Winter, On groups of automorphisms of Lie algebras, J. of Algebra 8 (1968).

Received February 11, 1969. This research was done while the author was a National Science Foundation Postdoctoral Fellow at the University of Bonn.

UNIVERSITY OF BONN UNIVERSITY OF MICHIGAN