## THEOREMS ON CESÀRO SUMMABILITY OF SERIES

## S. Muкнотi

1.1. We consider the Ces̀aro summability, for integral orders, of the series

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} a_{\nu} d_{\nu} \tag{1.1}
\end{equation*}
$$

In this paper we establish equivalence theorems for the series (1.1) which are valid for a substantial class of sequences $d_{\nu}$ including $e^{-\nu}$ and $\nu^{-\delta}$. Results of this character, but not overlapping with those in this paper, were given by Hardy and Littlewood and by Andersen. Andersen's result was extended by Bosanquet and Chow, and further extended by Bosanquet.

Notation. 1.2. We write $A_{n}^{0}=A_{n}=a_{0}+a_{1}+\cdots+a_{n}$,

$$
A_{n}^{k}=A_{0}^{k-1}+A_{1}^{k-1}+\cdots+A_{n}^{k-1}
$$

and we get the identities: See Hardy [8].

$$
\begin{align*}
& A_{n}^{k}=\sum_{\nu=0}^{n} B_{n-\nu}^{k-1} A_{\nu},  \tag{1.2}\\
& A_{n}^{k}=\sum_{\nu=0}^{n} B_{n-\nu}^{k} a_{\nu}, \tag{1.3}
\end{align*}
$$

where

$$
\begin{equation*}
B_{n-\nu}^{k}=\binom{n-\nu}{k} ; \tag{1.4}
\end{equation*}
$$

$E_{n}^{k}=A_{n}^{k}$ when $a_{0}=1, a_{n}=0$, for $n>0$, i.e., when $A_{n}=1$, for all $n$.
Hence

$$
\begin{equation*}
E_{n}^{k}=\binom{n+k}{k} \sim \frac{n^{k}}{k!} . \tag{1.5}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{A_{n}^{k}}{E_{n}^{k}} \rightarrow A, \text { when } n \rightarrow \infty, \tag{1.6}
\end{equation*}
$$

or equivalently if

$$
\begin{equation*}
\frac{k!A_{n}^{k}}{n^{k}} \rightarrow A, \text { when } n \rightarrow \infty, \tag{1.7}
\end{equation*}
$$

then we say that $\sum_{n=0}^{\infty} a_{n}$ is summable $(C, k)$ to sum $A$ and we write

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}=A(C, k) \tag{1.8}
\end{equation*}
$$

1.3. Statement of lemma and identiy. We write

$$
\Delta d_{n}=d_{n}-d_{n-1}, \Delta^{k} u_{n}=\Delta \Delta^{k-1} u_{n} \quad(k \geqq 2)
$$

and $\Delta^{0} u_{n}=u_{n}$.
We shall use the following well-known identity:

$$
\begin{equation*}
\Delta^{k}\left(u_{n} v_{n}\right)=\sum_{\nu=0}^{k}\binom{k}{\nu} \Delta^{\nu} u_{n} \Delta^{k-\nu} v_{n-\nu} \tag{1.9}
\end{equation*}
$$

Lemma A. In order that

$$
\begin{equation*}
t_{m}=\sum C_{m, n} S_{n} \rightarrow S(m \rightarrow \infty), \quad(m=0,1,2, \cdots) \tag{1.10}
\end{equation*}
$$

whenever

$$
S_{n} \rightarrow S \quad(n \rightarrow \infty)
$$

it is necessary and sufficient that

$$
\begin{equation*}
\sum\left|C_{m, n}\right|<H \tag{1.12}
\end{equation*}
$$

where $H$ is independent of $m$;

$$
\begin{equation*}
C_{m, n} \rightarrow 0, \tag{1.13}
\end{equation*}
$$

for each $n$, when $m \rightarrow \infty$;
(iii) $\quad \sum C_{m, n} \rightarrow 1$, when $m \rightarrow \infty$.

Lemma A is mentioned by Hardy [8, Th. 2], which is due to Toeplitz [12]. Toeplitz considers only triangular transformations, in which $C_{m, n}=0$ for $n>m$. The extension to general transformations was made by Steinhaus [11].

## 2. Statement and proof of the theorem.

Theorem (the cases $k=1,2, \cdots$ ). Suppose that $d_{n}>$ for $n \geqq 0$, and

$$
\begin{equation*}
d_{n+1}^{k}=o\left(n^{k}\right) \text { as } n \rightarrow \infty, \tag{2.1}
\end{equation*}
$$

(ii) $\left(1 / B_{n}^{k}\right) \sum_{m=0}^{n} B_{m}^{k}\left|\Delta^{k}\left\{\Delta\left(1 / d_{m+k+1}\right) \sum_{\nu=m+k}^{n} B_{n \rightarrow \nu}^{k-1} d_{\nu+1}\right\}\right|=O(1)$, ( 4 operating on $m$ ).

Then necessary and sufficient conditions for
(2.3) ( I ) $\sum_{\nu=0}^{\infty} a_{\nu} d_{\nu}$ to be summable ( $C, k$ ) to $S$ are that
(2.4) (II) $-\sum_{\nu=0}^{\infty} S_{\nu} \Delta d_{\nu+1}$ should be summable ( $C, k$ ) to $S$
and
(2.5) (III)

$$
S_{n} d_{n+1}=o(1)(C, k) \text { as } n \rightarrow \infty,
$$

where
(2.6)

$$
S_{n}=\sum_{\nu=0}^{n} a_{\nu} .
$$

Proof. We have

$$
\begin{equation*}
\sum_{\nu=0}^{n} a_{\nu} d_{\nu}=S_{n} d_{n+1}-\sum_{\nu=0}^{n} S_{\nu} \Delta d_{\nu+1} \tag{2.7}
\end{equation*}
$$

i.e.,

$$
C_{n}=F_{n}-G_{n},
$$

and hence

$$
\begin{equation*}
C_{n}^{k}=F_{n}^{k}-G_{n}^{k} . \tag{2.8}
\end{equation*}
$$

The sufficiency follows immediately from (2.8).
Necessity. We are given that

$$
\begin{equation*}
C_{n}^{k} / B_{n}^{k} \rightarrow S \text { as } n \rightarrow \infty, \tag{2.9}
\end{equation*}
$$

and it will be enough to prove that

$$
\begin{equation*}
-G_{n}^{k} / B_{n}^{k} \rightarrow S \text { as } n \rightarrow \infty . \tag{2.10}
\end{equation*}
$$

From (2.7) we have

$$
\begin{align*}
\frac{C_{n} \Delta d_{n+1}}{d_{n+1}} & =S_{n} \Delta d_{n+1}-\frac{\Delta d_{n+1}}{d_{n+1}} G_{n},  \tag{2.11}\\
& =\frac{d_{n}\left(d_{n+1} \Delta G_{n}-G_{n} \Delta d_{n+1}\right)}{d_{n} d_{n+1}}=d_{n} \Delta\left(\frac{G_{n}}{d_{n+1}}\right) .
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{G_{n}}{d_{n+1}}=\sum_{\nu=0}^{n} \frac{C_{\nu}}{d_{\nu}} \frac{\Delta d_{\nu+1}}{d_{\nu+1}}, \tag{2.12}
\end{equation*}
$$

$$
-G_{n}=d_{n+1} \sum_{\nu=0}^{n} C_{\nu} \Delta\left(1 / d_{\nu+1}\right) \text {, }
$$

and hence

$$
\begin{align*}
-G_{n}^{k} & =\sum_{\nu=0}^{n} B_{n \rightarrow \nu}^{k-1} d_{\nu+1} \sum_{m=0}^{\nu} C_{m} \Delta\left(1 / d_{m+1}\right) \\
& =\sum_{m=0}^{n} C_{m} \Delta\left(1 / d_{m+1}\right) \sum_{\nu=m}^{n} B_{n-\nu}^{k-1} d_{\nu+1}  \tag{2.13}\\
& =\sum_{m=0}^{n}(-1)^{k} C_{m}^{k} \Delta^{k}\left\{\Delta\left(1 / d_{m+k+1}\right) \sum_{\nu=m+k}^{n} B_{n=\nu}^{k-1} d_{\nu+1}\right\} .
\end{align*}
$$

It follows that

$$
\begin{align*}
-\frac{G_{n}^{k}}{B_{n}^{k}} & =\frac{1}{B_{n}^{k}} \sum_{m=0}^{n}(-1)^{k} \frac{C_{m}^{k}}{B_{m}^{k}} \cdot B_{m}^{k} \Delta^{k}\left\{\Delta\left(1 / d_{m+k+1}\right) \sum_{\nu=m+k}^{n} B_{n=\nu}^{k-1} d_{\nu+1}\right\} \\
& =\sum_{m=0}^{n} T_{m} \gamma_{n, m}, \tag{2.14}
\end{align*}
$$

where

$$
\begin{equation*}
T_{m}=C_{m}^{k} / B_{m}^{k}, \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{n, m}=(-1)^{k} \frac{B_{m}^{k}}{B_{n}^{k}} \Delta^{k}\left\{\Delta\left(1 / d_{m+k+1}\right) \sum_{\nu=m+k}^{n} B_{n=\nu}^{k-1} d_{\nu+1}\right\} . \tag{2.16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\text { (i) } \sum_{m=0}^{n}\left|\gamma_{n, m}\right|=\left(1 / B_{n}^{k}\right) \sum_{m=0}^{n} B_{m}^{k}\left|\Delta^{k}\left\{\Delta\left(1 / d_{m+k+1}\right) \sum_{\nu=m+k}^{n} B_{n-\nu}^{k-1} d_{\nu+1}\right\}\right|<H \text {, } \tag{2.17}
\end{equation*}
$$

by hypothesis (ii).
Now, from (2.16), we have, for each $m$

$$
\begin{align*}
\gamma_{n, m}= & (-1)^{k}\left(B_{m}^{k} / B_{n}^{k}\right)\left[\Delta^{k+1}\left(1 / d_{m+k+1}\right) \sum_{\nu=m+k}^{n} B_{n-\nu}^{k-1} d_{\nu+1}\right. \\
& +\alpha_{k} \Delta^{k}\left(1 / d_{m+k}\right)\binom{n-m}{k-1} d_{m+k}+\cdots  \tag{2.18}\\
& +\alpha_{1}^{1} \Delta\left(1 / d_{m+1}\right)\binom{n-m}{k-1} \Delta^{k-1} d_{m+k} \\
& \left.+\cdots+\alpha_{k-1}^{1} \Delta\left(1 / d_{m+1}\right) \Delta^{k-1}\binom{n-m}{k-1} d_{m+1}\right]
\end{align*}
$$

using the identity (1.9).
Then from (2.18) it follows that for each $m$

$$
\begin{equation*}
\gamma_{n, m}=A_{n, m}+O\left(\frac{1}{n}\right)=A_{n, m}+o(1), \text { as } n \rightarrow \infty, \tag{2.19}
\end{equation*}
$$

where
(2.20) $\left|A_{n, m}\right|<\frac{k!}{n^{k}} B_{m}^{k}\left|\Delta^{k+1}\left(1 / d_{m+k+1}\right)\right| \sum_{\nu=0}^{n} B_{n-\nu}^{k-1} d_{\nu+1}<\frac{K}{n^{k}} d_{n+1}^{k}=o(1)$
for each $m$, as $n \rightarrow \infty$, by hypothesis (i).
Hence it follows from (2.19)-(2.20) that
(2.21) (ii) $\quad \gamma_{n, m} \rightarrow 0$ for each $m$, as $n \rightarrow \infty$.

Let us take

$$
a_{0}=1, a_{\nu}=0, \text { for } \nu \geqq 1, \text { and } d_{0}=1
$$

in

$$
\begin{equation*}
C_{n}=\sum_{\nu=0}^{n} a_{\nu} d_{\nu} . \tag{2.22}
\end{equation*}
$$

Then we have, for $n \geqq 0, C_{n}=1$, and hence

$$
\begin{equation*}
C_{n}^{k} / B_{n}^{k}=1 . \tag{2.23}
\end{equation*}
$$

Next, since $C_{\nu}=1, d_{0}=1$, we obtain from (2.12)

$$
-G_{n}=d_{n+1} \sum_{\nu=0}^{n} \Delta\left(1 / d_{\nu+1}\right)=1-d_{n+1}
$$

and hence

$$
\begin{equation*}
-G_{n}^{k} / B_{n}^{l}=1-d_{n+1}^{k} / B_{n}^{k} \rightarrow 1 \text { as } n \rightarrow \infty, \tag{2.24}
\end{equation*}
$$

by hypothesis (i).
But this implies, from (2.14)-(2.15), that

$$
\begin{equation*}
-G_{n}^{k} / B_{n}^{k}=\sum_{m=0}^{n} \gamma_{n, m} \rightarrow 1 \text { as } n \rightarrow \infty \tag{2.25}
\end{equation*}
$$

It follows that conditions (i), (ii) and (iii) of Lemma A are satisfied, and hence

$$
\begin{equation*}
-G_{n}^{k} / B_{n}^{k} \rightarrow S \text { as } n \rightarrow \infty \tag{2.26}
\end{equation*}
$$

Note. Hypotheses (i) and (ii) of the Theorem are necessary. For suppose that $-G_{n}^{k} / B_{n}^{k} \rightarrow S$ as $n \rightarrow \infty$, whenever $C_{n}^{k} / B_{n}^{k} \rightarrow S$ as $n \rightarrow \infty$.

Then from (2.14)-(2.16), condition (i) of Lemma A must hold, but this implies (2.17) and hence hypothesis (ii) of Theorem 2.

Next, let us choose $C_{n}$ so that (2.23) holds. Then (2.3) holds, with $S=1$, and hence (2.24) holds. Hence it follows that $d_{n+1}^{k} / B_{n}^{k}=$
$o(1)$ as $n \rightarrow \infty$, and this implies hypothesis (i) of the theorem.
Further the summability $(C, k)$ of (2.4) can be improved to the summability ( $C, k-1$ ), by the following Lemma.

Lemma B. If $d_{n}$ is monotonically decreasing and

$$
\begin{align*}
n^{j} \Delta^{j} d_{n+1} & =O\left(d_{n+1}\right),  \tag{2.27}\\
n^{j} \Delta^{j} t_{n+1} & =O\left(t_{n+1}\right), \tag{2.28}
\end{align*}
$$

for $j=1,2, \cdots, k+1$, where

$$
\begin{equation*}
t_{n}=1 / d_{n}, \tag{2.29}
\end{equation*}
$$

then
(iii) $\quad S_{n} d_{n+1}=o(1)(C, k) \Rightarrow n S_{n} \Delta d_{n+1}=o(1)(C, k)$.

Proof. We have

$$
\begin{equation*}
H_{n}=S_{n} d_{n+1}=o(1)(C, k) . \tag{2.31}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
H_{n} g_{n}=o(1)(C, k), \tag{2.32}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n}=\frac{n \Delta d_{n+1}}{d_{n+1}}=n \Delta d_{n+1} t_{n+1} \tag{2.33}
\end{equation*}
$$

By a theorem of Bosanquet [6, Th. 1], which is an extension of another theorem of Bosanquet [4, Lemma 1], it will be enough to prove that

$$
\begin{equation*}
\Delta^{j} g_{n}=O\left(n^{-j}\right), \quad j=0,1, \cdots k-1, \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=1}^{n} \nu^{k}\left|\Delta^{k} g_{\nu}\right|=O(n) \tag{2.35}
\end{equation*}
$$

Now

$$
\begin{equation*}
g_{n}=n \Delta d_{n+1} t_{n+1} \leqq K d_{n+1} t_{n+1} \leqq K \tag{2.36}
\end{equation*}
$$

by (2.44).
Next, using the identity (1.9), we have

$$
\begin{align*}
& \left|\Delta^{k-1} g_{n}\right|=\alpha_{1} n\left|\Delta d_{n+1}\right|\left|\Delta^{k-1} t_{n+1}\right|+\cdots+\alpha_{k-1} n\left|\Delta^{k} d_{n+1}\right| t_{n+1-k+1}  \tag{2.37}\\
& +\alpha^{1}\left|\Delta d_{n+1}\right|\left|\Delta^{k-2} t_{n+1}\right|+\cdots+\alpha^{k-2}\left|\Delta^{k-1} d_{n+1}\right| t_{n-1-k+2} \\
& \leqq K / n^{k-1} \text {. ( } \alpha \text { various constant) }
\end{align*}
$$

The other conditions in (2.34) are easily obtained similarly, but it is well known that the inequalities for $j=0$ and $k-1$ imply those for $j=1,2, \cdots, k-2$ : See Hardy and Littlewood [9].

Next we have

$$
\begin{align*}
\left|\Delta^{k} g_{n}\right| \leqq & \alpha_{1} n\left|\Delta d_{n+1}\right|\left|\Delta^{k} t_{n+1}\right|+\cdots+\alpha_{k} n\left|\Delta^{k+1} d_{n+1}\right| t_{n+1-k} \\
& +\alpha^{1}\left|\Delta d_{n+1}\right|\left|\Delta^{k-1} t_{n+1}\right|+\cdots+\alpha^{k-1}\left|\Delta^{k} d_{n+1}\right| t_{n+1-k+1}  \tag{2.38}\\
& \leqq K / n^{k} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\sum_{v=1}^{n} \nu^{k}\left|\Delta^{k} g_{\nu}\right| \leqq \sum_{v=1}^{n} \nu^{k} \frac{K}{\nu^{k}}<K n \tag{2.39}
\end{equation*}
$$

and this completes the proof the lemma.
Next we will consider the case $k=0$.
Now we have

$$
n S_{n} \Delta d_{n+1} \leqq K d_{n+1} S_{n}
$$

by (2.27), and since

$$
\begin{equation*}
S_{n} d_{n+1}=o(1) \text { as } n \rightarrow \infty, \tag{2.40}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
n S_{n} \Delta d_{n+1}=o(1) \text { as } n \rightarrow \infty . \tag{2.41}
\end{equation*}
$$

Next since

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} S_{\nu} \Delta d_{\nu+1} \tag{2.42}
\end{equation*}
$$

is convergent, it follows from the definition that (2.42) is summable (C,-1).

In conclusion I wish to acknowledge my debts of gratitude to Prof. L. S. Bosanquet for suggesting the problem to me and for his valuable guidance and comments throughout the course of my work. I also appreciate several comments made by Mr. M. C. Austin and wish to record my appreciation of several suggestions for improvement made by Prof. D. Borwein.

## References

1. A. F. Andersen, Comparison theorems in the theory of Cesàro summability, Proc. London Math. Soc. (2) 27 (1928), 39-71.
2. L. S. Bosanquet, Note on the Bohr-Hardy theorem, J. London Math. Soc. 17 (1942), 168-173.
3. -, Note on convergence and summability factors, J. London Math. Soc. 20 (1945), 39-48.
4. -, On convergence and summability factors in a Drichlet series, J. London Math. Soc. 23 (1948), 35-38.
5.     - An extension of a theorem of Andersen, J. London Math. Soc. 25 (1950), 72-80.
6.     - On convergence and summability factors in a sequence, Mathematika 1 (1954), 24-44.
7. L. S. Bosanquet and H. C. Chow, Some analogues of a theorem of Andersen, J. London Math. Soc. 16 (1941), 42-48.
8. G. H. Hardy, Divergent Series, Oxford, 1949.
9. G. H. Hardy and J. E. Littlewood, Proc. London Math. Soc. (2) 11 (1913), 411-478.
10. , A theorem in the theory of summable divergent series, J. London Math. Soc. (2) 27 (1928), 327-348.
11. Steinhaus, Prace Matematyczno-fizyczne (Warsaw) 22 (1911), 121-134.
12. Toeplitz, Prace Matematyczno-fizyczne 113-119.

Received January 12, 1968, and in revised form January 29, 1969.
Indian Institute of Technology
New Delhi

