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BERGMAN KERNEL FUNCTIONS AND THE THREE
TYPES OF CANONICAL DOMAINS

SHOZO MATSUURA

The objects of this paper are to extend J. Mitchell's
theorems on minimal domains of moment of inertia for
sufficiently wider class Jf and to discuss the relations among
the three types of canonical domains in the ^"-equivalent
class. Some of the results are that, (i) a domain D is the
minimal domain of moment of inertia of the [0, In; 0]D~
equivalent class if and only if the following holds:

Mnn(Z, 0) = Z for ZeD,

where MD

 n(Z, 0) is the minimizing function of the (0, In; 0)D-
s, and (ii) if A, B and C are the sets of Bergman's

minimal domains, Bergman's representative domains and
Mitchell's minimal domains of moment of inertia with the
same center in the ^"-equivalent class respectively, and if
any one of the three relations AΓ\B Φ φ, An C Φφ and
BnC Φ φ holds, then it follows that A 3 B = C.

J. Mitchell [5] has recently proved the theorems of minimal
moment of inertia for complete circular domains in the space Cn. In
our paper [10] we have extended them for bounded Bergman's
minimal domains by making use of the Bergman kernel function.
But there are two restrictions which can be removed. One of them is
that the transformations W — F(Z) considered must belong to the class
^ 7 (the set of holomorphic mappings which preserve the volume of
the initial domain), and another is that the domains considered must
be Bergman's minimal domains.

In § 4 of this paper we shall remove these two restrictions and
extend the theorems of minimal moment of inertia for wider class
^ of transformations without volume preserving property.

In the case of several complex variables, the analogue of Riemann's
mapping theorem does not hold even for simply connected domains.
As the canonical domain corresponding to the unit circle in Riemann's
mapping theorem, the representative domain is introduced by S.
Bergman. Another object of this paper is to discuss the relations
among the three types of canonical domains, i.e., Bergman's minimal
domains, Bergman's representative domains and the minimal domains
of moment of inertia (abbreviated as the moment minimal domains)
in wider class j ^ ~ [§ 3, §4].

The main results are Theorem 5 in § 3 and Theorems 10 and 12
in § 4.
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Our theorems obtained in this paper can be extended to the
cases of m-minimal domains, m-representative domains [3], [4], [10]
and m-moment minimal domains [10] (m ̂  1). Therefore, for simplicity,
we treat the case of m = 1, which is our case.

In §'s 1, 2 and 3 we treat minimal, representative and moment
minimal domains and the relations among them under the restricted
initial conditions of transformations. In § 4 we shall discuss the
three types of canonical domains mentioned above under the extended
class ^ and in particular, we attach importance to the moment
minimal problem.

1* Preliminaries* In various extremal problems, mapping func-
tions which may be meromorphic or many-valued can be successfully
used. In order to treat such problems, we must extend the concept
of a domain and its Bergman kernel function.

We assume that each domain with which we deal is a generalized
domain (which is called a "domain" hereafter) in Cn following M.
Maschler [3, p. 503], [4, pp. 765-770], which can be mapped holo-
morphically onto a bounded univalent domain in Cn. By a holo-
morphic mapping (or holomorphic vector function) of a domain D
onto a domain A we mean a one-to-one mapping which, except in a
denumerable number of analytic segments of manifolds of complex
dimensions <̂  n — 1, can be described locally in the column vector

(1) W = W(Z) = (w^Z), w2(Z), -, wn(Z)Y ,

where Wi(Z)(ί = 1, 2, •••, n) are holomorphic scalar functions of
Z = (zu z2f , zn)

f e D with a nonvanishing Jacobian. But, in ac-
cordance with the remarks of M. Maschler [3], [4], we allow w^Z)
(i = 1, 2, , n) to be multi-valued meromorphic functions provided
that the Jacobian det (dW(Z)/dZ) is a single-valued meromorphic
function and does not vanish identically in D. In such a case we
identify in the image domain A the points which correspond to the same
point of D.

Hereafter, we shall use, except for Greek letters, upper-case
letters for vectors and matrices and lower-case letters for scalars.

It is known that such domains D and A possess Bergman kernel
functions kD(Z, X), Z,XeD and kά(W, Γ), W, Y = W(X) e A, and
the relation

( 2 > kB(z, x) = u w, Ϋ μ φ
CL/J cLJi.

holds. kD(Z, X) is holomorphic with respect to Z and X, and
belongs to ^f2(D) which is a class of single-valued holomorphic
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scalar functions f(Z) square integrable in the sense of Lebesgue in
D, namely

(3) (f9f)n= \ \f(Z)\2dvz< +00 ,

where dvz is the Euclidean volume element of the ϋΓ-space. If D is a
bounded domain, then ~kΏ(Z, Z) > 0, ZeD, holds.

We first define the differentiation of matrix functions with respect
to vector variables. Let F(Z) be a matrix function

Ifn(Z)---flu(Z)\
F(Z) EE : :

\fiι(Z)-..fιm(Z)t

where fi5{Z) (i — 1, 2, , I; j — 1, 2, , m) are scalar differentiate
functions of Z = (zlf z2, •••, zn)', and d/dZ is the differential operator
of row vector type:

We define the differentiation as follows:

Here the Kronecker product of two matrices A and B = (6ίy) (nota-
tion: AxB) denotes

JAbn Ab12

Ax B = \ Ab21 Ab22 .

where A may be an operator of matrix type.
For convenience, we note here some differential formulas. Let

the functions A, B and b of Z = fo, «2, , sΛ)' be (fe x I), (I x m)
matrices and a scalar, respectively. The following formulas can be
easily calculated:

dA_ = dA_(dW_ A A = A { W )

(7) dZ dW\dZ 7 '

W =
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( R ϊ dAb - d A x b - d A v h 4- A v d δ

where /^ denotes an identity matrix of order k (k: positive integer).
Next we define the transposed conjugate differential operator

d/dZ* as follows:

A (** ±)' A(Z).
dZ* 1 2 j

Throughout this paper, vectors and matrices marked with the symbol
' or * denote the transposed or transposed conjugate vectors and
matrices, respectively.

Let us put

(10) TD(Z, X) = ζ logkD(Z, X), Z,XeD ,

then ds2 = dZ*TD(Z, Z)dZ is a Kahler metric of D and TD(Z, Z) is
positive definite. The quantities kD(Z, X) and TD(Z, X) play important
roles in this paper.

2* Bergman's minimum problems*

DEFINITION 1. (i) (Xo, Xx; P)i3-class denotes the class of holo-
morphic vector functions

W(Z) Ξ (Wl(Z), W2(Z), - ;Wn(Z))'

in a domain D in the Z = (zlf z2, , 2;π)'-space which satisfy, at a non-
branch point P = (p19 pz, , p%)' G JD, the following initial conditions:

(11) P

where XQ, Xί are (π x 1), (n x w) constant matrices, respectively.
And the class of image domains by the mappings belonging to the
(Xo, Xλ; P)z,-class is called the [Xo, Xx; P]^-equivalent class.

(ii) (x^ P)D-class denotes the class of holomorphic vector func-
tions W(Z) on D, which satisfy the following conditions:

(12) W(P) = 0, ^ ^

where xx is a scalar constant. The equivalent class of image domains
of D obtained by the mappings W{Z) belonging to the (x^ P)#-class
is called the [xγ\ P]^-equivalent class.
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REMARK 1. Because Xo denotes a parallel transformation and has
no influence upon the situation of our theory, we will assume here-
after that Xo = 0 without loss of generality. The (1; P)Z)-class contains
the (0, In; P)Z)-class, and therefore the [0, In; P]^-equivalent class is a
subclass of the [1; PJ^-equivalent class.

THEOREM 1. (i) There exists the unique function belonging to
the (0, Xx) P)D-class which minimizes the integral

(13) \\F(Z) \>dvz = \ F*(Z)F(Z)dvz ,

where F(Z) e (0, X{; P)D-class and dvz denotes the Euclidean volume
element of the Z-space.

Let MpXl(Z, P) be the minimizing function for (13) and λ^Xl(P)
the minimum value of (13) for M*D

Xι{Z, P), where P is not on a
branch manifold on D. Writing them as matrices, we have

(14) Mϊ?i(Z, P) = (0, XdiHniP, P))-ιLD{Z, P),

and

(15) λ°/i(P) = Spur [(0, X^H^P, P))-χ(0, X,)*] ,

where

HD(P, P) = / A W M

LD(Z, P) =
' 1, P)

and

< 1 8 ) kw(z, x) = JZ'MZ> χy>'
oZ%oX*3

(19) kj* = kiS.(P, P) , k00* = kD(P, P) .

(ii) For the {x1\P)D-class, the minimizing function W(Z) which
minimizes the integral

(20) (
dZ

satisfies

dvz , F{Z) e fa; P)D-class ,

det dW{2) = m^(z, P) = xJc^kB(Z, P)
dZt
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and the minimum value of (20) for (21) is

I Ύ
/OO\ \Xl(P\ — rγ> h-lV — ' ι

This theorem has been proved in [6] and our paper [10] for more
general initial conditions. Therefore, we omit the proof of this
theorem.

mxj}(Z, P) in (21) is the special case of (14) for the class of scalar
functions f(Z) with the initial condition f(P) = xx.

The minimizing functions Mi*Xι{Z, P), mxj}(Z, P) are relative in-
variant under any holomorphic mapping W(Z)(det (dW(P))/dZ Φ 0)
[3; p. 503], [4; pp. 765-770]; that is, putting Δ - W(D),

(23) Mfrx°(Z, P) = MJiγ°(W(Z), W(P)) det
dZ

(24) m2(Z, P) = m'Λ W(Z), W{P)) det ^^1 ,
a/j

where Yv (v = 0, 1) and y1 are determined for the function G(W)
such that G(W(Z)) det (dW(Z)/dZ) belongs to the (Xo, X,; P^-class
by the system of equations

G(^'(Q) = r , (v = of

and

and P is not on a branch manifold.
The system (25) has one and only one solution, because

det (dW(P)/dZ) Φ 0.
These minimum problems were treated originally by S. Bergman

3* Minimal domains, representative domains and moment
minimal domains*

D E F I N I T I O N 2. L e t W = W(Z) = (w^Z), w2(Z), •••, wn(Z))' be a

holomorphic mapping of D in Cn belonging to the (1; P)Z)-class and
making (20) a minimum. The image domain Aw of D under W(Z)
is called a (Bergman) minimal domain of [1; PJ^-equivalent class with
center at W{P) = 0 and W{Z) a minimal function.
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The next theorem is well known [4], [10].

THEOREM 2. (i) If W(Z) is a minimal function, then

(26) det
 ΛW
W = mUZ, P) =

 kD
\

Z
> ζ\ e

(LZ k ) Jr)

(ii) A domain D is a minimal domain of the [1; P]D-equivalent
class with center at PeD if and only if

(27) m1

D(Z,P) = l for ZeD,

that is,

(28) kD(Z, P) = kD(P, P) for ZeD .

(iii) A minimal domain D with center at P is characterized
by the following property: Any holomorphic mapping F(Z) belong-
ing to the (1; P)D-class maps D onto a domain whose volume is not
less than the volume of D.

REMARK 2. A minimal function which minimizes the integral
(20) is not uniquely determined. One of the minimal functions belong-
ing to the (0, In; P^-class ( c ί l P^-class) is, for instance, given by

fwAZ) \ ( Xw)1 if % . . . z p\rff _!_ f(? ... ? \^
I IV / \ \ [ΐOD\L, 62, , 6n, JΓJtlυ -Γ J \62, * , 6n)

w2(Z)

\wn(Z)J

where f(z2, , zn) is an arbitrary holomorphic scalar function of
(z2, , zn) and is equal to 0 at Z = P = (p19 p2, , pj [5, p. 230].

THEOREM 3. The function

(29) WD(Z, P) = M°in}^^ e (0, In; P)D-class
mι

D{Z, P)

is absolutely invariant under any mapping belonging to the (0, In; P)D-
class.

Proof. This theorem is easily obtained by (23), (24). If Xo =
(0, . . . , 0)' = 0, Xx = In, then we have Yo = 0 and Y1 = In for any
F(Z) G (0, In; P)jD-class by direct calculations (using (6), (7) and (8)).

DEFINITION 3. The image domain Δw = WD(D, P) is called the
(Bergman) representative domain of the [0, In; P]^-equivalent class
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with center at the origin, and WB(Z, P) the representative function.

The next theorem is known [8], [9].

THEOREM 4. ( i ) A domain D is a representative domain with
center at P if and only if

that is,

(31) TD(Z,P).= TD(P,P), ZeD.

(ii) A domain D is a minimal and also a representative domain
with the same center at P if and only if

(32) M%«(Z, P) = Z -P and mD(Z, P) = 1 , ZeD ,

that is,

(33) kn*(Z, P) = kn.(P, P) and kD(Z, P) = kD(P, P) , ZeD .

In the above, P denotes a parallel transformation of D. There-
fore we may take P — 0, without loss of generality. We shall take
P = 0 hereafter.

DEFINITION 4. The minimizing function W(Z) e (0, In; 0)Z)-class
which minimizes the integral

(34) / = ( F*(Z)F(Z)dvF ,

where F(Z) e (0, In; 0)jD-class and Δ = F(D), is called the minimal
function of moment of inertia (denoted as the moment minimal func-
tion of the (0, In; 0^-class), and the image domain Δw = W(D) the
moment minimal domain of the [0, In; 0]p-equivalent class with center
at the origin.

THEOREM 5. ( i ) The moment minimal function W{Z) of the
(0, In; 0)D-class, if it exists satisfies

(35) W(Z) det dW(Zϊ = JkZ>(Z, 0) .
dZ

The holomorphic function W(Z) which satisfies (35), if it exists,
is determined uniquely by the initial condition that W(Z) belongs
to the (0, In; 0)D-class.

(ii) A domain D is the moment minimal domain of the
[0, Γn; 0]D-equivalent class if and only if
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<36) M'MZ, 0) - Z for ZeD ,

that is, by the notation of (10)

ICQQ*

<37)

where k00* = JcD(O, 0).

Proof. ( i ) For a function G (0, In; 0^-class,

- ( F*(Z)F(Z)dvF = [ F*(Z)F(Z) det
dZ

dvz ,

where A = F(D). It is clear that ^(Z) det {dF(Z)jdZ) belongs to the
(0, In; 0)z>-class, thus by Theorem 1 the minimizing function W(Z), if
it exists, satisfies (35).

Conversely, if W(Z) satisfies (35), then for an arbitrary function
F(Z) 6 (0, In; 0)Z)-class, we have

F*(Z)F(Z)dvF = [ F*{Z)F{Z)

F(Z) det

dvz

" L
W(Z) det

dZ
dvz =

n(Z, 0) \2dvz

W(Z) \2dvw .

This shows that W(Z) is a moment minimal function belonging to
the (0, In; 0)Z)-class.

Now we shall prove the uniqueness of the moment minimal func-
tion which satisfies (35). For simplicity, without loss of generality,
we treat the case of W(Z) - {u(Z), v(Z))', Z = (x, y)'.

Suppose that there exists the unique function W = W(Z), which
satisfies (35) and belongs to the (0, J2; 0)ί)-class, on the representative
domain D, and let the function Z = Z(Z°) be the representative func-
tion (uniquely determined by Theorem 3) which maps DQ (an arbitrary
domain belonging to the [0, J2; 0]D-equivalent class) onto the repre-
sentative domain D, then we have

W(Z) det
dZ

d e t
dZ

det
dZ

On the other hand, by (23) we have

, 0) = °, 0) detdZ°
dZ

Thus from (35) we obtain the unique function W(Z(Z0)) = W\Z°)
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(ε(0, /2; O^o-class) which satisfies

W°(Z°) det dw°(fϊ = M°MZ°, 0)

This shows that in (35) we may assume a domain D to be the
representative domain with center at origin, without loss of generality.

Now, on the representative domain D we have

, 0) = Zmi(Z, 0) - (xmi(Z, 0), ymi(Z, 0))'

by Theorem 4. Thus, in place of (35), we have

(38) u(Z) det m W = xmi(Z, 0), v(Z) det dW}^ = ymi(Z, 0) .

As W(0) = 0 and dW(Q)/dZ = I2, in the neighborhood of the origin
we see that

(39) u(Z) = xu{Z), β(0) - 1 v(Z) = yv(Z), v(0) = 1

and from (38) and (39) we have

(40) u(Z) - v(Z) .

From (38) and (40), we obtain

(41) u(Zγ(u(Z) + x4~u(Z) + yJLu(Z)) = mi(Z, 0) .

V ox oy J

We may assume that

(42) mi(Z, 0) = 1 + Σ caβx"yt ,

(43) ffi(Z) = 1 + Σ o. ί*V ,
8

where caβ(a + /? ̂  1) are given coefficients and aaβ(a + /3 ̂  1) have
to be determined. Substituting (42) and (43) into (41), we have

( l + Σ aaβXaVβ)U + Σ (α + β + l)α«^ V ) - 1 + Σ <?«/#V .
\ α + ̂ S l̂ / \ α + jS^l / α + yS^l

In comparing the coefficients of xayβ on both sides, we obtain

16

α02 = - ^ - — cg1? etc.
5 lb

Generally, as each aaβ is a polynomial in caβ and a w (i + j < a + /3Γ.
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i ^oc, j <̂  β), we can thus determine aaβ(a + β :> 1) uniquely by
recurrence.

If W(Z) exists in the neighborhood of the origin, by the method
of analytic continuation we can obtain tne unique holomorphic solution
of (35) on D except in a denumerable number of analytic segments
of manifolds of complex dimensions ^ n — 1.

(ii) Let D be a moment minimal domain. Putting

W(Z) = Ze (0, In; O^-class ,

by Theorem 5 (i) we have

Z = MϊI*(Z,0) for ZeD.

Conversely, if Z = M¥»(Z, 0) for ZeD, for any F(Z) e (0, In; 0)D-
class we have

= ( Z*Zdv = \ Mlx»*(Z, 0)M0

D

τκ(Z, 0)dv

^ \ F*(Z) det ^P-F(Z) det ^βdvz = \ F*(Z)F(Z)dvF ,
JD dZ dZ JF(D)

because F(Z) det (dF(Z)/dZ) belongs to the (0, In; 0)i)-class. This
shows that D is a moment minimal domain.

From (ii), if D is a moment minimal domain, then

fΰ00*

where TD(0, 0) = (fc00Jfeu — k01*k10*)/k2

Q0*. Differentiating both sides of
the above, we have (37). The converse is proved by integration.

REMARK 3. At the origin the condition (37) is satisfied by an
arbitrary domain, but in general it may not hold on D.

EXAMPLE 1. In the case of a complex variable, (35) is reduced to

ψ mi(Z9 o) .
dz

Integrating the above, we have

wdw = I m°£(z, 0)dz ,

o Jo

consequently
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\ (koo*kol*(z, 0) — kol*kD(z, 0))dz .
Jo2 Λϊo TΛO, 0)

Thus the moment minimal function w = w(z) is a two-valued func-
tion, but from the initial condition of w(z) (belonging to the (0, 1; 0)^-
class) the only one moment minimal function is determined.

If D is the unit circle, by [1]

By

and

simple

hence

calculations we

0) =

0) =

0) =

have

π

π

7Γ(1 -

u 0 0 * 9

.(0, 0) =

π /

0 ,

- 2 ,

[λ.(-2-z)dz = [zdz .
2 Jo 7Γ \ 7Γ / Jo

Therefore the unit circle is the moment minimal domain of the
[0, 1; 0]p-equivalent class with center at the origin, and the moment
minimal function is

— = —, i.e., w = z e (0, 1; 0^-class .
Δ Δ

Thus for the unit circle the identity mapping is the only one moment
minimal function belonging to the (0, 1; 0)jD-class. Further the unit
circle is an example of a minimal and also a representative domain
with the same center at the origin from (28) and (31).

THEOREM 6. If D is (a) a minimal and also (b) a representa-
tive domain with the same center at the origin, then D is (c) a
moment minimal domain with the same center.

In this theorem, we may exchange (a) or (b) for (c), respectively.

Proof. By Theorem 2, Theorem 4, and Theorem 5, necessary
and sufficient conditions for (a), (b) and (c) are
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mi,(Z, 0) = 1, M»<Z' °) = z and M¥«(Zt 0) - Z for ZeD ,
mi(Z, 0)

respectively. Therefore, any two of the above conditions are sufficient
conditions for the remainder.

It is known that there exists a minimal but not representative
domain with the same center, or a representative but not minimal
domain with the same center [3], [4].

Example of minimal and also representative domains with the
same center at the origin are Cartan irreducible symmetric domains
or more generally bounded complete Caratheodory circular domains.
Furthermore, they are simultaneously moment minimal domains with
the same center [3], [10].

4* Extended class* Let us consider the (0, Xx) 0)Z)-class, where
XL is an arbitrary constant (n x n) matrix satisfying det X1 Φ 0.

LEMMA 1. The [0, Xx; 0]D-equivalent class is equal to the [0, In; 0]J-
equivalent class, where A — F(D), F(Z) e (0, Xx; 0)D-class.

Proof. Let W^Z), W2(Z) belong to the (0, X,; 0)jD-class, and
ΔWί, ΛF2 be the images of D by the mappings WΊ(Z), W2(Z), respec-
tively. We may assume the existence of the mapping ηiW^Z)) =
W2(Z) which maps AWl onto Aw%. Because from the hypothesis on
domains, it may be assumed that D is a bounded univalent domain
and the existence of an inverse holomorphic mapping Z = Z( WΊ) in
the neighborhood of ^ = 0 follows from άet(dW1{Z)ldZ)\z=Q =
detXx Φ 0. Then we can define a function Z = Z(W^ on AWι by the
method of analytic continuation. Put ΎJ — rj{W^) = WtffiWx)), then
we have a desired holomorphic mapping rj{W^ = W2 on ΔWι} which
maps ΔWι onto ΔWi. Since Wι(Z)f W2(Z) belong to the (0, Xx; 0)D-
class, we have

37(^(0)) = η(0) = Wt(0) = 0 .

Differentiating both sides of η( W,(Z)) = W2(Z) with respect to Z and
putting Z = 0 yields that

dη{Wd
=0 dZ

_ dWt(Z)
dZ

that is,
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Thus we have

dy(0) _ T

dW,

From the above, we see that ΎJ = η(WΊ) belongs to the (0, In; 0)Jw -
class. Thus we have the following:

THEOREM 7. The image domain A of D under the mapping

(44) W = X1MΪΛξi3. e (0, Xx; 0)D-cla88
m^Z, 0)

is the representative domain of the (0, In; Q)Δ-equivalent class with
center at the origin. Thus we call (44) the representative function
of the (0, Xλ; 0)D-class and A = W{D) the representative domain of
the [0, X±) 0]D-equivalent class.

Proof. It is clear from Lemma 1 that W(Z) belongs to the
(0, Xx', 0)I)-class. By the holomorphic invariance of minimizing func-
tions (see (23), (24)) we have

dW

' «"

Differentiating both sides of

Mϊf'iZ, 0) = M2TKW, 0) det 4^
dZ

with respect to Z, and putting Z = 0, we have

) det
dZ dZ

+ ikf,OFl(O, 0)-^- det ^ M = YXXX det X,

and thus

Y, = XrVdet X, .

For

we have
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yλ = 1/detX,

as well as the above. Hence we obtain

W - X M^W> °) - X YiM°MW, 0) _ M?*(W, 0)
lmp(lf0) ' yM(W, 0) mJ(TF0)

Recalling Theorem 4, this shows that the domain Δ = W(D) is the
representative domain of the [0, In; 0]J-equivalent class.

COROLLARY 1. The unique mapping function W = W(Z) which
maps the representative domain D of the [0, In; 0]D-equivalent class
onto the representative domain A of the [0, Xx) 0]L}-equivalent class
(the [0, In; 0]J-equivalent class) with the same center at the origin,
where W(D) = Δ, is

(45) W=X1Z.

Proof. If D is the representative domain of [0, In; 0]^-equivalent
class, then

M > ^ °) = Z for ZeD.
mι

D(Z, 0)

Thus by Theorem 7 we have the result.

THEOREM 8. If F(Z) belongs to the (â ; ϋ)D-class normalized by
Fφ) — 0 and \ xL \ = 1, then the [x^ 0]D-equivalent class becomes the
[1; ϋ\Δ-equivalent class, where F(D) = A. The image domain Aw =
W(D) by a mapping such that

(46) det dWW = a .miίZ, 0) for ZeD
dZ

is a minimal domain of the [1; 0]J-equivalent class with center at
the origin. Hence we shall call W(Z) a minimal function of the
[x^ 0]D-equivalent class with center at the origin.

Proof. For arbitrary two functions ξ = F(Z) and η = G(Z)
belonging to the (x^ 0^-class normalized by 1^1 = 1, we have the
relation

G(Z) - V(ξ) = η(F(Z)) .

Differentiating both sides of the above with respect to Z, we have
dG(Z)/dZ = (dη/dξ)(dF(Z)/dZ) and so
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^i = det^det^X
dZ dζ dZ

Since det (dG(0)/dZ) = det (dF(0)/dZ) = x19 we have

dξ

Thus η = )?(£) belongs to the [1; O]J-equivalent class, where A =
By (21), (24) and (46), for a minimizing function W(Z) e (x,; 0)D-

class we have

d e t dW(Z) = ^ 0 ) =

that is,

mi^TΓ, 0) = 1 for WeAw.

This shows that zί̂  is a minimal domain of the [x,; 0]β-equivalent
class, i.e., the [1; 0]J-equivalent class with center at the origin (by-
Theorem 2 and the above).

Existence of the mappings which satisfy the equation (46) is
shown in Remark 2.

COROLLARY 2. The mapping function W(Z) (belonging to the
(αv, 0)D-class) which maps a minimal domain D of the [1; 0]D-
eqivalent class with center at the origin onto another minimal
domain A of the [1; O\Δ-equivalent class, where A = W(D), satisfies
the conditions

(47) W(0) = 0 , det dW}Z) = Xl for Ze D ,
dZ

and vice versa. This mapping is a volume preserving one. One
such mapping, for instance, is

(48) W=XiZ, det Xλ = x, .

Proof. By (21) and (24) we have

mx

D\Z, 0) - xλmUZ, 0) - my/(W, 0) det ^L = Vιm\(W, 0) det ^
cίZi aZi

where yι = l since W(Z) belongs to the (xt; 0)^-class. Since D and A
are minimal domains of the [1; OJ^-equivalent class and the [1; 0]J-
equivalent class respectively, by (27) we have mι

D{Z, 0) = 1 for ZeD
and ra}(TF, 0) = 1 for We A. Thus we obtain (47). The converse is
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clear from (24). The volume preserving property for W(Z) e fa; 0)D-
class, I xx I = 1, is the consequence of the following:

vol {A) = i dvw = I det dvz ~\ \x^ \2dvz = I dvz = vol (D) .

It is clear that W = XγZ, det Xx = xL, satisfies (46).

Hereafter we shall use the initial condition (0, X; 0)D normalized
by I det-XΊ = 1. Cx denotes the set of (n x n) square constant matrices
X such that | det X \ = 1. Let us introduce the wider class

(49) &- = | u (0, X; O^-class \XeCx\ .

This extended class contains the (0, In; 0^-class and admits a group of
transformations of D with a subgroup of the (0, In; 0)Z)-class. ^ con-
tains ^l = {Uχi(0, Xι\ 0)i)-class I det Xλ = 1} as a subclass, too. It holds

(50) &- =) ̂ 7 =) (0, JΓΛ; OĴ -class ,

where ^ 7 is equal to the (1; 0)Z)-class (see Definition 2).

THEOREM 9. ( i ) All minimal domains in the ^-equivalent
class have the same volume, which is equal to the volume of a
minimal domain of the ^\-equivalent class.

(ii) All representative domains in the J?~-equivalent class have
the same volume, which is equal to the volume of the representative
domain of the [0, In; 0]D-equivalent class.

Proof. ( i ) By Theorem 8 and Corollary 2, the mapping func-
tion W(Z) of a minimal domain D of the J?~[ -equivalent class onto
an arbitrary minimal domain A in the .^-equivalent class satisfies

det dW(z) = det Xmι

D(Z, 0) = det X, X e Cx

Therefore

det d W ^ \dvz
dZ I

vol (Δ) = ί dvw = [

= f I det X \2dvz =[ dvz = vol (D) .

(ii) By Corollary 1, the mapping function W(Z) of the repre-
sentative domain D of the [0, In; 0^-equivalent class onto an arbitrary
representative domain Δ in the ^^-equivalent class is

W=XZ, XeCx.
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Thus we obtain

dZ
dvz — vol (D) .

COROLLARY 3. Let A, B and C denote the sets of minimal
domains, representative domains and moment minimal domains in the
^"-equivalent class, respectively. If Af] B Φ φ, then B = Api C.
(cf. Theorem 12).

Proof, An arbitrary domain D e A f] B belongs to C (by Theorem
6). By Theorem 9 (ii), Be A holds. Thus we have Ba(Af) C). On
the other hand, it is clear that an arbitrary domain DeAf]C belongs
to B (by Theorem 6). Thus we have the result.

THEOREM 10. Suppose in the ^-equivalent class no domain
exists which is simultaneously a minimal and representative with
respect to the same point {which can be chosen as the origin 0).
Then there does not exist in that class a domain which is simul-
taneously a minimal and moment minimal. Further there does not
exist a domain which is simultaneously a representative and moment
minimal with respect to 0.

Proof. Let A, B, and C denote the sets mentioned in Corollary
3. By hypothesis we have A n B = φ. If A n C Φ ψ (or B n C Φ φ),
that is, if a domain D belongs to Af] C, then by Theorem 6, D must
belong to B. Thus A Π B Φ φ. This is a contradiction.

REMARK 4. If A n C = Φ, then Af]B = φ and B n C = Φ hold,
and if B n C = Φ, then A Π B = φ and A Π C = Φ hold.

THEOREM 11. ( i ) The moment minimal function W(Z) of the
(0, Xx; 0)D-class (where Xx e Cx is fixed) exists if and only if

(51) W(Z) det d W ^ = Xλ det XMlIn(Z, 0) for ZeD.
aZt

(ii) Suppose that a moment minimal function η(Z) of the
extended class j^~ exists, then

(52) η(Z) det d ^ = Xdet XM'J^Z, 0) ,

dZ

where

(53) X - (det ΩDγι**UΩ»11* = C/Π2(0, 0)/(det ^ ( 0 , 0))1/2w .
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Here

(54) ΩD = (0, In)(HD(0, 0))-1(0, IJ = 2^(0, 0)/k00*

is a positive definite Hermitian matrix and U is an arbitrary
constant unitary matrix.

Let Dz and Δη be the moment minimal domain of the [0, In; Q]D-
equivalent class and a moment minimal domain of the J^~-equivalent
class respectively, then the following inequality holds:

ψ ηdvη ^ \ Z*Zdvz

(iii) Δ is a moment minimal domain of the
class if and only if

-equivalent

(55)

and

(56)

that is,

(57)

M°/*(η, 0) = η for ηeA

ΩΔ = (det ΩΔ)
ιlnIn (scalar matrix) ,

, 0) = (det 1̂ (0, 0))1/wJw {scalar matrix)

Proof. ( i ) From (23) and (45)

MF'iZ, 0) - M,°'xr1/de

dZ

and

W(Z) det
dZ

hold. Hence we have

= χχ det

= X, det

W(Z) = M

, 0)

, 0) det
dZ

This shows that, from (36), A = W(D) is the moment minimal domain
of the [0, In; 0]J-equivalent class ([0, Xλ; 0]D-equivalent class).

Conversely, suppose that W(Z) is the moment minimal function
of the (0, Xx; OVclass. Since W(Z) det (d W/dZ) belongs to the
(0, Xγ det Xΰ 0)Z)-class, we have

W(Z) det
dZ

, 0) = X, det , 0) .
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(ii) This has been essentially proved in our paper [10].
(iii) By (2)

MO, 0) - MO, 0) , kD,l0* = kΔtl*X,
j~ _ γ*h h — Ϋ*h Ϋ
ΓvDfOl* — Ά- ^i/,01* y i^Dfll* — " ^ to4,11*Ά

hold, where A = ΐ](D). Therefore we have

ΩΔ = XΩDX* , X = (det ΩD)ll2nUΩD-ίl2 ,

and

(det ΩJY^ΩJ1 = [det(XΩDX*)]1In(XΩDX*)-1

= (det ΩDyι*(det ΩD)-^Izι = In ,

because Ω% — ΩD.
Ii A = f)(D) is a moment minimal domain of the ^

class, then A is the moment minimal domain of the [0, In; 0]J-equivalent
class. Furthermore from (36)

Mϊz»(η, 0) = η for η e A ,

and the converse is true.

COROLLARY 4. ( i ) If Dz and Dw are the moment minimal
domains of the [0, In; 0]Dz-and the [0, In; Q]Dw-equivalent classes,
respectively, and W = W(Z) (which maps Dz onto Dw) belongs to
the (0, Xλ; 0)Dz-class, then the moment minimal function W(Z) is
uniquely given by

(58) W = W(Z) = XΣZ .

(ii) If Δη is a moment minimal domain of the ^-equivalent
class, then the moment minimal function η = η(Z) (which maps Dz

onto Aη) is given by

(59) η = η(Z) = XZ , X= (det ΩDz)^ UΩ»f ,

where X is defined in Theorem 11.

Proof. Since Dz is the moment minimal domain of the [0, In; 0]Dz-
equivalent class,

MfyiZtO) = Z for ZeDz

holds. From Theorem 11 (ii) it follows that

(60) W(Z) det ά W ^ = (det X^XMn^Z, 0) =
dZ
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is a necessary and sufficient condition that W(Z) (if it exists) is the
moment minimal function of the [0, X^ 0] ̂ -equivalent class. On the
other hand, the function (58) satisfies (60) for ZeDz. Thus from
Theorem 5, (58) is the unique and holomorphic moment minimal
function of the [0, In; 0] ̂ -equivalent class.

(ii) As in (i), by (52) of Theorem 11, (59) is the unique moment
minimal function of ^~ up to the constant unitary matrices.

COROLLARY 5. All moment minimal domains in the ^-equiva-
lent class preserve their volumes (cf. Theorem 9 (i), (ii)).

Proof. By Corollary 4, if W = W(Z) is the mapping which
maps a moment minimal domain D onto another moment minimal
domain Δ in the ^-equivalent class, then we have

W= W(Z) = X,Z , |detX,| - 1.

Since

vol (Δ) = [ dvw = ( det dw(z) *dvz = [ | det X, \2dvz = vol (D) ,

W = W(Z) is a volume preserving mapping.

THEOREM 12. Let A, B and C denote the sets of minimal,
representative and moment minimal domains in the ^-equivalent
class, respectively. If any one of the relations A f] B Φ φ, ApiC Φ φ
and B f] C Φ φ holds, then AIDB = C (cf. Corollary 3).

Proof. If A Π B Φ Φ, then all domains belonging to B are minimal
domains by Theorem 9 (ii) and all domains belonging to B belong to
C by Theorem 6. Further, by Corollary 5, CaA and hence by
Theorem 6, CaB. Thus we obtain AIDB = C. In the case AΠCΦ φ
or B ΠC Φ φ, we have an analogous result.

EXAMPLE 2. The Car tan domains (bounded irreducible symmetric
domains of the four main types) are defined as follows: The first
three types Dlf D2 and D3 are represented by

{Z\In-ZZ*>0},

where Z denotes an (n x m)-matrix on D19 Z denotes an (n x n)-
symmetric matrix with diagonal elements multiplied by Λ/ 2 on D2

and Z denotes an (n x π)-skew-symmetric matrix on D3. The fourth
type DA is the set of ^-dimensional row vectors Z such that

\ZZ'\<1, 1 - 2ZZ* + \ZZ'\2>0.
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They are all minimal and also representative domains [7], [10].
Therefore by Theorem 6 they are moment minimal domains of the
[0, In; 0]^-equivalent classes (ί = 1, 2, 3, 4), respectively. Further,

2^.(0, 0) = (fcoo*&n* - kol*k1Q*)/klo* = AW&oo* = At (i = 1, 2, 3, 4)

hold, where

A1 = (m + n)Imn , A2 = 2{n + l)Jn ( Λ + 1 ) / 2 , A3 = 2(n - l)Jn(n_1)/2

and At = 2nln (property (57)). Therefore, they are moment minimal
domains with respect to ^~(Di) (i = 1, 2, 3, 4), respectively. Further
in the .^-equivalent class of each one of Car tan domains, the set of
all representative domains and the set of all moment minimal domains
coincide and they are a subset of the set of minimal domains.

EXAMPLE 3. Bounded complete circular domains are minimal and
also representative domains with center at the origin [3]. Thus
each domain D of them is the moment minimal domain with respect
to the [0, JΛ; 0]^-equivalent class, but it may not be a moment
minimal domain of the ^^(Z))-equivalent class without property (57),
which is equivalent to the "property A" mentioned in J. Mitchell's
paper [7] in the case of bounded complete circular domains.
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