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PROJECTIVE DISTRIBUTIVE LATTICES

RAYMOND BALBES AND ALFRED HORN

It will be shown that a countable distributive lattice is
protective if and only if the product of any two join ir-
reducible elements is join irreducible, and every element of
the lattice is both a finite sum of join irreducible elements
and a finite product of meet irreducible elements. For an
arbitrary distributive lattice, necessary and sufficient condi-
tions for projectivity are obtained by adding to these condi-
tions a further condition on the set of join irreducible elements.

1* Definitions* We use sum and product notation for least
upper bounds and greatest lower bounds. If A and B are meet semi-
lattices, then a meet homomorphism / : A —* B is a function such that
f(xy) = f(x)f(y). An element x of a lattice is called join irreducible
if x = y + z implies x = y or x = z. x is called sub join irreducible
if x <L y + z implies x ^ y or x ^ z. In a distributive lattice these
two notions coincide. We define meet irreducible and super meet
irreducible in a dual manner. A lattice is called conditionally implica-
tive if whenever x Sv there exists a largest z such that xz ^ y.
The smallest and largest element of a lattice are denoted by 0 and 1
respectively. The cardinal of a set S is denoted by \S\. For
definitions of projective distributive lattice and retract, see [1].
Note that epimorphisms are understood to be homomorphisms which
are onto. If the term epimorphism is used as in the general theory
of categories, there are no projective distributive lattices.

2* Projective distributive lattices* Consider the following pro-
perties of a lattice.

(PI) Every element is a sum of finitely many sub join irreducible
elements.

(P2) Every element is a product of finitely many super meet
irreducible elements.

(P3) The product of any two sub join irreducible elements is
sub join irreducible.

(P4) The sum of any two super meet irreducible elements is
super meet irreducible.

(P5) The lattice is conditionally implicative.
(P6) The lattice is dually conditionally implicative.

THEOREM 1. Suppose A and B are lattices and A is a retract
of B. Then we have:
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( i ) If B satisfies (PI), then A satisfies (PI).
(ii) If B satisfies (PI) and (P3), then A satisfies (P4).
(iii) If B satisfies (P5), then A satisfies (P5).

Proof. By hypothesis, there exist homomorphisms f:B—>A and
g: A-+B such that fg = IA. Suppose B satisfies (PI). Let x be any
element of A. Then g(x) = Σ ( S ) , where S is a finite nonempty set
of sub join irreducible elements of B. Let T be the set of maximal
elements of the set f(S). Then x = Σ(T), and we claim that every
element a of T is sub join irreducible. Suppose a ^ u + v but a -^ u
and a ^ v. We have α = /(&) for some 6 e S. Then

^ g(u) + flf(v) + Σ (g(T - {a})) .

Hence 6 ^ #(w), or 6 ^ #(i;), or b ^ #(c) for some c e T — {a}. Applying
/, we find a ^ u, oτ a ^ v, or α ^ c. This contradicts the maximality
of a.

Suppose B satisfies (PI) and (P3). Let aγ and α2 be super
meet irreducible in A. Suppose aλ + α2 ^ α3α4 but αx + α2 ^ a3 and
at + a2^ α4. We have #(α3) = Σ (S) and #(α4) = Σ (2rr)» where S and
ϊ 7 are finite sets of sub join irreducible elements of B. Hence α3 =
Σ (f(S)) and α4 - Σ (f(T)). There exists xeS and y e T such that
f(x) S&ι + 2̂ and /(^/) S&1 + a%- Now αy ^ g(a<^g(ad ^ ^(^i) + #(α2).
By (P3), either ^ g ^(αj or ^ ^ g(a2). Therefore f(x)f(y) ^ αx or
f(x)f(y) ^ α2. Since aι and α2 are super meet irreducible, we have
f(x) ^ a1 + α2 or /(?/) ^ αx + α2, which is a contradiction.

The proof of (iii) is given in [2, Th. 2.9].

THEOREM 2. i^or any lattice A, we have:
( i ) If (PI) αwZ (P3), then (P4).
(ii) 1/ (P2) then (P5).
(iii) 7/ (PI), (P2) α^d (P3), ίfee^ (P4), (P5) α^d (P6).
(iv) If A is a retract of B, and B satisfies (PI), (P2) and (P3),

then A satisfies all six properties (P1)-(P6).

Proof, (i) follows immediately from Theorem 1 (ii). Suppose A
satisfies (P2). Let xyyeA and x ^ y. We have y = π(S), where S
is a finite set of super meet irreducible elements. Let

T = {aeSix^a} ,

and let z = π(T). If aeS-T, then a^x^xz. If αeΓ, then
a ^ z ^ xz. Hence xz ^ π(S) = ?/. Now suppose ^w ^ /̂. Then for
each ae T, we have a ^ αw, hence a^w. Therefore w ^ π(T) = z.
This proves (ii). (iii) follows from (i), (ii), and the dual of (ii).
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Suppose B satisfies (PI), (P2), (P3) and A is a retract of B. Then
by Theorem 1 (i) and its dual and by Theorem 1 (ii), A satisfies (PI),
(P2) and (P4). (iv) now follows from the dual of (iii).

THEOREM 3. Let A be a projective distributive lattice. Then A
satisfies all six properties (P1)-(P6).

Proof. A is a retract of a free distributive lattice F. It is well
known that F satisfies (PI), (P2) and (P3), the sub join irreducible
elements being the products of free generators. The result now
follows from Theorem 2 (iv).

THEOREM 4. Let A be a distributive lattice satisfying (PI), and
let J be the set of join irreducible elements of A. Then any order
preserving map h: J ~^B, where B is a distributive lattice, can be
extended uniquely to a join homomorphism h: A—>B. If in addition,
A satisfies (P3) and h is a meet homomorphism, then h is a
homomorphism.

Proof. If x = xγ + + xn, where x{e J for all i, let

h(x) = h{x,) + . . . + h(xn) .

h is well defined because xι + + xn :g y1 + + ym implies each
.Xi is ^ some y5. It is obvious that h is a join homomorphism and
is unique. If h is a meet homomorphism, then it is easy to see that
h also preserves products.

THEOREM 5. Let J be any meet semi-lattice. There exists a
unique distributive lattice J such that J satisfies (PI) and (P3), and
J is the set of join irreducible elements of J. J is unique up to
isomorphism over J.

Proof. Let J be the set of all finite unions of principal ideals
of J. J is a ring of sets and the map /: J —> J such that f(x) =
{y eJ: y ^ x} is a meet-monomorphism. It is clear that /(J) is the
set of all join irreducible elements of /. The uniqueness of J follows
easily from Theorem 4.

In view of Theorems 3, 4 and 5, the study of projective distribu-
tive lattices can be reduced to the question: for which meet semi-
lattices J is J projective? An obvious condition is the following.

THEOREM 6. Let A be a distributive lattice which satisfies (PI)
<P3), and let J be the set of join irreducible elements of A. Then
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A is projective if and only if there exists a free distributive lattice
F, a homomorphism f:F—*A and a meet homomorphism h:J—>F
such that fh(x) = x for all xeJ.

Proof. If A is projective, it is a retract of a free distributive
lattice F. The necessity of the condition follows immediately. Con-
versely, given / and h, by Theorem 4, h can be extended to a
homomorphism h: A-+F. It is easy to see that fh = IA, and there-
fore A is projective.

Consider the following weakening of the condition of Theorem 6:
(P7) There exists a free distributive lattice F, a homomorphism

f:F—»A and an order preserving map h: J—+F such that fh(x) = x
for all xeJ.

THEOREM 7. Let A be a distributive lattice and let J be the set
of join irreducible elements of A. Then A is projective if and only
if A satisfies (PI), (P2), (P3) and (P7).

Proof. The necessity of the conditions follows from Theorems 3
and 6. Suppose A satisfies the conditions. Let f: F—>A and h: J-+F
be as in (P7). By Theorem 4, h can be extended to a join homo-
morphism h: A—*F. It is clear that fh = IA. For each x e J, there
exists a finite set S(x) of meet irreducible elements of A such that
x = π(S(x)). Define g:J—>F as follows: g(x) = π(h(S(x))). For any
xeJ, fg(x) = π(fh(S(x))) = π(S(x)) = x. If x, y e J, x ^ y and z e S(y),
then π(S(x)) ^ z. Since z is super meet irreducible, z must be ̂  some
member of S(x). Hence every member of h(S(y)) is ^ some member
of h(S(x)). Thus g(y) ̂ > g(x) and we have shown that g preserves,
order. The proof will be complete by Theorem 6 if we show that g
preserves products. Suppose x, y, zeJ and xy = z. Then π(S(z)) =
π(S(x) U S(y))y and therefore each member of S(z) is ^ some member
of S(x) U S(y). Therefore

g(z) - π(h(S(z))) ^ π(h(S(x) U S(y))) = g(x)g(y) .

Since g preserves order, we have g(z) < g(x)g(y), and the proof is
complete.

THEOREM 8. Let A be a countable distributive lattice and let
J be the set of join irreducible elements of A. If A satisfies (PI)
and (P3) then A satisfies (P7).

Proof. There exists an epimorphism f:F—>A, where F is a
free distributive lattice. For each xe J, select an element g(x) such
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that fg(x) = x. Arrange the members of / in sequence x0, x19

Define h: J-+F inductively as follows: h(x0) — g{x0), and

h(xn) = 9(%n) Π {h{Xi)\ i < n, xt > xn) + Σ W&*): i < n, x{ < xn} .

By induction, it is easy to see that fh(xn) = xn and h preserves order
on the set {x0, •••, xn}. This proves (P7).

THEOREM 9. // A is a countable distributive lattice, then A is
projective if and only if A satisfies (PI), (P2) and (P3).

Proof. This follows from Theorems 7 and 8.

COROLLARY ([I, Th. 7.1]). If A is finite, then A is projective
if and only if A satisfies (P3).

Proof. Every finite distributive lattice satisfies (PI) and (P2).

Theorem 7 suggests the following question: for which semi-
lattices J does S = J satisfy (P7) ? Theorem 8 states that countability
is a sufficient condition. Another sufficient condition is that J be
projective in the category of semi-lattices. Condition (P7) may be
replaced by a condition which refers more explicitly to J itself.
First, if A is projective, every epimorphism f: F-+A has a right
inverse. Therefore in Theorem 7, we may replace (P7) by

(P8) There exists a free distributive lattice F whose set of free
generators is T, a homomorphism f:F—*A such that f(T) = J, and an
order preserving map h: J—>F such that fh(x) = x for all xeJ.

THEOREM 10. Let J be a meet semi-lattice. Then A — J satisfies
(P8) if and only if for each xe J there exists a finite sequence
SXy0J •••, SXtPix) of nonempty finite subsets of J such that

( i ) π(Sx,0) = x.
(ii) π(SX}j) ^ x for all j .
(iii) if x ̂ y, there for every j there is a k such that

Sχ>j Ξ2 Sytk.

Proof. Assume (P8) holds. Let xeJ. Then

= π(TXt0)+ .-. + τr(ΓXfP(x)) ,

where each TXrj is a finite subset of T. Let SXtj = f(TXtj). Then
x = π(SXt0) + + π(SXtPix)). Since x is join irreducible, we have (i)
and (ii) after renumbering indices. If x ^ y, then h(x) ^ h(y). From
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this it follows that every Tx>j contains some TyΛ (see [1, Lemma 4.5])»
This proves (iii).

Assume (i), (ii) and (iii). Let F be a free distributive lattice
with a free generating set T with the same cardinal as J. There
exists a homomorphism f:F —>A which maps T onto J in a one-to-
one way. For each Sx>j let TXfj be the subset of T such that
f(TXtj) = Sx>j. Define h: J-+F as follows:

h(x) = π(Tx>0) + . . . + π(Tx,p{x)) .

By (i) and (ii), fh(x) = x for all xeJ, and by (iii) h is order pre-
serving. This completes the proof.

If P is a partially ordered set, there exists a distributive lattice
P* containing P such that P generates P* and every order preserving
map from P to a distributive lattice B can be extended to a homo-
morphism from P* to B. (See for example [2, Definition 1.10].) In
Lemma 3.8 of [2] it was shown that P* is projective if and only if
for each xeP there exists a finite sequence SX)Q, ---,XX)P{X) of non-
empty finite subsets of P such that

( i ) x e SX}Q and every member of Sx>0 is ^ x.
(ii) for each j , SXtj has a member ^ x
(iii) if x ^ y, then for every j there is a A: such that SXtS 3 Sy,k.
Comparing with the conditions of Theorem 9, we find the following*

THEOREM 11. // J is meet semi-lattice and J * is projective,
then J satisfies (P8).

A sufficient condition for the projectivity of J * is given in
[2, Th. 3.12].

3* Direct products.

LEMMA 1. Let Aι and A2 be projective distributive lattices. If
A1 and A2 have a 0 and 1, then Aι x A2 is projective.

Proof. We may assume | A{ \ > 1 for i — 1, 2. Let F be a free
distributive lattice with the free generating set 2\ U T2, where Tx

and T2 are disjoint and | T^ = | Ai|, i — 1, 2. There exists an
epimorphism / F ^ ^ x ^ such that f{Tx) = A, x {0} and /(Γ2) =
{0} x A2. Let i^i be the sublattice of F generated by T^ Then
f(Fγ) = A,x {0} and f(F2) = {0} x A2. Define UF^A* by /< =
TΓi ί/IJF7*), where ^1 Ax χ A2—>A< is the natural projection. Since Aζ

is projective, there exists a homomorphism g{: Ai—^Fi such that
fi9i = -Γii Define r̂: A : x A2-*F by
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fffa y) = gap) + 9z(y) + 0i(i)&(i) •

Then /#(#, y) = (α, 0) + (0, 3/) + (1, 0) (0, 1) = (x, y), and g is a homo-
morphism. Therefore Aι x i 2 is a retract of F, and the proof is
complete.

LEMMA 2. An element x of a direct product ILei-A* of dis-
tributive lattices is join irreducible if and only if for some ie I,
we have:

( i ) x(j) = 0 for all j Φ i.
(ii) x(i) is join irreducible.

Proof. The proof is easy and will be omitted.

THEOREM 12. Let <CA{: ίeiy be a family of distributive lattices.
Suppose 111 > 1 and \ A{ \ > 1 for all i. Then ILe/^4.; is projective
if and only if

( i ) A^ is projective for each i
(ii) I is finite, and
(iii) each Aι has a 0 and 1.

Proof. The sufficiency follows from Lemma 1. Suppose A is
projective. By hypothesis there exists xeA and ί19 i2e I such that
ix Φ i2, x(iί) Φ 0 and x(i2) Φ 0. Since x is a sum of join irreducible
elements, it follows from Lemma 2 that At has a 0 for all ieL By
duality, each A{ has a 1, which proves (iii). Finally if / is infinite,
then the 1 element of A cannot be a finite sum of join irreducible
elements by Lemma 2, since | A{ \ > 1 for all i.
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