SOME MATRIX FACTORIZATION THEOREMS

Robert C. Thompson

Abstract

The object of this paper is to make an exhaustive study of the matrix equation $C=A B A^{-1} B^{-1}$ when A, B, and C are normal matrices. We shall specialize these matrices in various ways by requiring that C, A, or B lie in one or more of the well-known subclasses of the class of normal matrices (Hermitian, unitary, real skew symmetric, etc.). We shall also demand from time to time that C commute with A, or B, or both.

In § 2 we present some notation. In §3, we prove a number of simple lemmas that will be frequently used. In $\S 4$ we discuss (1) when C is normal and A and B are Hermitian. In $\S 5$, we discuss (1) when C is real and normal and A and B are real and symmetric. In § 6 we present one theorem that is used several times in §7, where we discuss (1) when C is normal, A is Hermitian, and B is unitary. In $\S 8$ we complete a discussion of (1) when A is Hermitian and B unitary Hermitian that is partly presented in $\S \S 4,5$, and 7 . In §§ 4-7 cases are discussed in which C commutes with A or with B, but not with both. In $\S 9$ we analyse the situation when C commutes with both A and B.

Commutators of normal matrices have been investigated by a number of authors: Fan [1], Frobenius [2], Gotô [3], Marcus and Thompson [5], Taussky [7], Tôyama [9], Zassenhaus [10]. The results obtained in this paper will partly overlap results obtained in [5] but will, in the main, complement the results of [5]. Our principal tools are two elegant tricks due to Ky Fan, both of which appear in his paper [1].

As a consequence of our study of commutators of normal matrices, we are able, through use of the polar factorization theorem, to obtain factorization theorems for nonnormal matrices. It is interesting that we can achieve sharper results for real matrices than for nonreal matrices.

All matrices appearing in this paper, except for the zero matrix, are assumed to be nonsingular.
2. Notation and terminology. The words symmetric, positive definite symmetric, negative definite symmetric, skew symmetric, orthogonal, will imply that the matrix in question possessing the indicated property is a matrix of real numbers. We shall make use
of skew symmetric matrices over the complex number field as well. These will be called complex skew symmetric matrices. The letters N, H, S, K, U, O (perhaps with subscripts attached) will denote a matrix which is, respectively, normal, Hermitian, symmetric, skew symmetric, unitary, orthogonal. We let I, I_{1}, I_{α}, etc., denote identity matrices with an unspecified number of rows that will follow from context. If the subscript attached to I is to indicate the number of rows in I, this will be expressly stated.

The matrices $F(\phi)$ and $G(\phi)$ are, by definition,

$$
F(\varphi)=\left[\begin{array}{rr}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right], \quad G(\varphi)=\left[\begin{array}{rr}
\sin \varphi & \cos \varphi \\
\cos \varphi & -\sin \varphi
\end{array}\right] .
$$

The transpose of A is denoted by A^{T}, the complex conjugate by \bar{A}, and $A^{*}=\bar{A}^{T}$. We let

$$
A_{1}+\cdots+A_{n}=\operatorname{diag}\left(A_{1}, \cdots, A_{n}\right)=\sum_{i=1}^{n} \cdot A_{i}
$$

denote the direct sum of matrices A_{1}, \cdots, A_{n}. We set

$$
\left[A_{1}, \cdots, A_{k}\right]_{k}=\left[\begin{array}{lllll}
0 & A_{1} & 0 & 0 & \cdots \\
0 \\
0 & 0 & A_{2} & 0 & \cdots
\end{array}\right) 0 .\left[\begin{array}{lllll}
\\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

if $k>1$, and $\left[A_{1}\right]_{1}=A_{1}$. Here A_{1}, \cdots, A_{k} are square matrices and 0 denotes a matrix of zeros of an appropriate number of dimensions. The determinant of A is $\operatorname{det} A$. If square A has n rows, we say A is n-square or degree $A=n$.

If complex number λ has polar form $\lambda=r e^{i \varphi}$, we call $e^{i \varphi}$ the angular part of λ.
3. Some lemmas. The results contained in some of the lemmas below are special cases of known results.

Lemma 3.1. (i) Let $A=H_{1} H_{2}$ be a product of two Hermitian matrices. Then, whenever λ is a nonreal eigenvalue of A, with multiplicity m, it follows that $\bar{\lambda}$ is also an eigenvalue of A, with multiplicity m.
(ii) If in (i) H_{1} is positive definite then all eigenvalues of A are real.
(iii) If in (i) both H_{1} and H_{2} are positive definite then all eigenvalues of A are positive.

Proof. (i) From $A=H_{1} H_{2}$ follows $A^{*}=H_{2} H_{1}$. Since $H_{2} H_{1}$ has the same eigenvalues (including multiplicities) as $H_{1} H_{2}$, the result follows.
(ii) Let $H_{1}=X X^{*}$. Then $X^{-1} A X=X^{*} H_{2} X$ is Hermitian, hence all eigenvalues are real.
(iii) If H_{2} is positive definite so also is $X^{*} H_{2} X$. The proof now follows as in (ii).

Lemma 3.2. Let A be real and nonsingular. Then, if $A=S K$ with S real symmetric and K real skew symmetric, it follows that the eigenvalues of A partition into sets of the following types:

$$
\begin{equation*}
\alpha,-\alpha \text { with } \alpha \text { real } \tag{2}
\end{equation*}
$$

(3) $\alpha,-\alpha, \bar{\alpha},-\bar{\alpha}$, with α neither real nor pure imaginary.

Proof. If $A=S K$ then $A^{T}=-K S$. Thus A and $-A$ have the same eigenvalues. Hence, if α is a real eigenvalue of A with multiplicity m then $-\alpha$ is also an eigenvalue with multiplicity m. This also holds if α is a pure imaginary eigenvalue. If α is neither real nor pure imaginary then $-\alpha \neq \bar{\alpha}, \alpha \neq \bar{\alpha}$, hence $\alpha,-\alpha, \bar{\alpha}$ all appear with multiplicity m, and thus $-\bar{\alpha}$ also appears with multiplicity m.

Lemma 3.3. (i) $F(\theta) F(\phi)=F(\theta+\varphi)$;
(ii) $F(\varphi) G(\theta)=G(\varphi+\theta)$;
(iii) $G(\varphi) G(\theta)=F(\varphi-\theta)$;
(iv) $G(\theta) F(\phi)=G(\theta-\varphi)$.

Proof. Direct computation.
Lemma 3.4. Let X and Y be real nonsingular matrices, both square and of the same size. Let

$$
M=\left[\begin{array}{ll}
0 & X \\
Y & 0
\end{array}\right]
$$

Let the eigenvalues of $X Y$ be classified as follows: $r_{1}^{2}, r_{2}^{2}, \cdots, r_{\alpha}^{2}$ (positive reals); $-s_{1}^{2},-s_{2}^{2}, \cdots,-s_{B}^{2}$ (negative reals);

$$
t_{1}^{2}, \bar{t}_{1}^{2}, t_{2}^{2}, \bar{t}_{2}^{2}, \cdots, t_{r}^{2}, \bar{t}_{r}^{2}
$$

(all nonreal). Then the eigenvalues of M are:

$$
\begin{gather*}
r_{1},-r_{1}, \cdots, r_{\alpha},-r_{\alpha}, i s_{1},-i s_{1}, \cdots, i s_{\beta},-i s_{\beta} \\
t_{1}, \bar{t}_{1},-t_{1},-\bar{t}_{1}, \cdots, t_{r}, \bar{t}_{r},-t_{r},-\bar{t}_{\gamma} . \tag{4}
\end{gather*}
$$

Proof. Note that

$$
\left[\begin{array}{ll}
S & 0 \\
0 & S
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & X
\end{array}\right]\left[\begin{array}{ll}
0 & X \\
Y & 0
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & X
\end{array}\right]^{-1}\left[\begin{array}{ll}
S & 0 \\
0 & S
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0 & I \\
S X Y S^{-1} & 0
\end{array}\right]
$$

For a suitable S we may assume $S X Y S^{-1}$ is triangular with diagonal elements $r_{1}^{2}, \cdots, r_{\alpha}^{2},-s_{1}^{2}, \cdots,-s_{\beta}^{2}, t_{1}^{2}, \bar{t}_{1}^{2}, \cdots, t_{r}^{2}, \bar{t}_{\gamma}^{2}$. Suppose X and Y are n-square. We make the same permutation of the rows and of the columns of

$$
M_{1}=\left[\begin{array}{cc}
0 & I \\
S X Y S^{-1} & 0
\end{array}\right]
$$

This is a similarity transformation. We take the rows (and columns) in the order $1, n+1,2, n+2,3, n+3, \cdots, n, 2 n$. The effect of this is to convert M_{1} into a block triangular form in which the main block diagonal is

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
r_{1}^{2} & 0
\end{array}\right]+\cdots+\left[\begin{array}{ll}
0 & 1 \\
r_{\alpha}^{2} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
-s_{1}^{2} & 0
\end{array}\right]+\cdots+\left[\begin{array}{cc}
0 & 1 \\
-s_{\beta}^{2} & 0
\end{array}\right]} \\
& \quad+\left[\begin{array}{ll}
0 & 1 \\
t_{1}^{2} & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
\bar{t}_{1}^{2} & 0
\end{array}\right]+\cdots+\left[\begin{array}{ll}
0 & 1 \\
t_{\gamma}^{2} & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
\bar{t}_{\gamma}^{2} & 0
\end{array}\right] .
\end{aligned}
$$

The eigenvalues of these 2 -square matrices are easy to compute, completing the proof.

Lemma 3.5. Let A be a nonsingular real or complex n-square matrix. Let the eigenvalues of $A A^{*}$ be $\lambda_{1}^{2}, \cdots, \lambda_{n}^{2}$ with

$$
\lambda_{1}>0, \cdots, \lambda_{n}>0
$$

Let γ be a nonzero number. Then the matrix

$$
\left[\begin{array}{ll}
0 & \gamma A \\
A^{*} & 0
\end{array}\right]
$$

is similar to a diagonal matrix and its eigenvalues are

$$
\begin{equation*}
\gamma^{1 / 2} \lambda_{1},-\gamma^{1 / 2} \lambda_{1}, \cdots, \gamma^{1 / 2} \lambda_{n},-\gamma^{1 / 2} \lambda_{n} \tag{5}
\end{equation*}
$$

Proof. This proof is similar to the proof of Lemma 3.4.
Lemma 3.6. Let $R=\operatorname{diag}\left(R_{1}, R_{2}, \cdots, R_{k}\right), T=\operatorname{diag}\left(T_{1}, \cdots, T_{k}\right)$. Suppose R_{i} and T_{j} do not have any common eigenvalue, whenever $i \neq j$. Then if $R X=X T$, it follows that $X=\operatorname{diag}\left(X_{1}, \cdots, X_{k}\right)$.

Proof. Partition $X=\left(X_{i j}\right)$. Then $R_{i} X_{i j}=X_{i j} T_{j}$. Since R_{i} and T_{j} do not have any common eigenvalue, it is known that this relation implies $X_{i j}=0 ; i \neq j$.

The following result is due to Hua [4]. We given a short proof.
Lemma 3.7. Let Z be a complex skew symmetric matrix. Then a unitary matrix U exists such that

$$
U^{T} Z U=\sum_{i=1}^{r} \cdot\left[\begin{array}{cc}
0 & \rho_{i} \\
-\rho_{i} & 0
\end{array}\right]+0, \quad \rho_{i}>0 \text { for } 1 \leqq i \leqq r .
$$

Proof. Since $\bar{Z} Z=-Z^{*} Z$, the matrix $\bar{Z} Z$ is negative semi-definite. Let $-\rho_{1}^{2}$ (with $\rho_{1}>0$) be an eigenvalue of $\bar{Z} Z$ and let v_{1} be an associated unit eigenvector:

$$
\bar{Z} Z v_{1}=-\rho_{1}^{2} v_{1}, \quad v_{1}^{*} v_{1}=1
$$

Set $v_{2}=-\rho_{1}^{-1} \bar{Z} \bar{v}_{1}$. Then

$$
-\rho_{1} v_{1}^{*} v_{2}=\bar{v}_{1}^{T} \bar{Z} v_{1}=\overline{\left(v_{1}^{T} Z v_{1}\right)}=0
$$

because Z is skew; also

$$
\begin{aligned}
\rho_{1}^{2} v_{2}^{*} v_{2} & =v_{1}^{T} \boldsymbol{Z}^{T} \bar{Z} \bar{v}_{1}=-v_{1}^{T} \boldsymbol{Z} \bar{Z} \bar{v}_{1}=-\left(\overline{\left(\bar{v}_{1}^{T} \overline{\boldsymbol{Z}} \boldsymbol{Z} v_{1}\right)}\right. \\
& \left.=\overline{-\left(\bar{v}_{1}^{T}\left(-\rho_{1}^{2}\right) v_{1}\right.}\right)=\rho_{1}^{2}
\end{aligned}
$$

Hence v_{1} and v_{2} are orthonormal unit vectors. We may therefore use v_{1} and v_{2} as the first two columns of a unitary U_{1}. Let v_{3}, v_{4}, \ldots be the remaining columns of U_{1}. Then for $i>2$ we have $v_{i}^{T} Z v_{1}=$ $-\rho_{1} v_{i}^{T} \bar{v}_{2}=0$ and $\rho_{1} v_{i}^{T} Z v_{2}=-v_{i}^{T} Z \bar{Z} \bar{v}_{1}=-v_{i}^{T} \overline{\left(\bar{Z} Z v_{1}\right)}=-v_{i}^{T}\left(-\rho_{1}^{2}\right) \bar{v}_{1}=0$. Hence $U_{i}^{T} Z U_{1}$ is block triangular, and because $U_{1}^{T} Z U_{1}$ is skew, we get

$$
U_{1}^{T} Z U_{1}=Z_{1}+Z_{2}
$$

where Z_{1}, Z_{2} are skew and Z_{1} is 2×2. Also $v_{1}^{T} \boldsymbol{Z} v_{2}=-\rho_{1}^{-1} v_{1}^{T} \boldsymbol{Z} \bar{Z} \bar{v}_{1}=$ $-\rho_{1}^{-1} v_{1}^{T} \overline{\left(\bar{Z} Z v_{1}\right)}=-\rho_{1}^{-1} v_{1}^{T}\left(-\rho_{1}^{2}\right) \bar{v}_{1}=\rho_{1}$. Hence

$$
Z_{1}=\left[\begin{array}{cc}
0 & \rho_{1} \\
-\rho_{1} & 0
\end{array}\right]
$$

We may now carry on by inducting on the degree of Z.
4. The Commutator of two Hermitian matrices.

Theorem 4.1. Let N be normal. Then

$$
\begin{equation*}
N=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1} \tag{6}
\end{equation*}
$$

with H_{1} and H_{2} Hermitian if and only if N is unitarily similar to a direct sum of the following five types (7), (8), (9), (10), (11) of matrices:

$$
\begin{equation*}
\operatorname{diag}\left(r, r^{-1}\right), \quad r>0 ; \tag{7}
\end{equation*}
$$

$$
\operatorname{diag}\left(-r,-r^{-1}\right), \quad r>0 ;
$$

$$
\begin{equation*}
\operatorname{diag}\left(r_{1} e^{i \varphi}, r_{1}^{-1} e^{i \varphi}, r_{2} e^{-i \varphi}, r_{2}^{-1} e^{-i \varphi}\right), \quad r_{1}>0, r_{2}>0, \varphi \text { real } \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{diag}\left(e^{i \varphi}, e^{-i \varphi}\right), \quad \varphi \text { real } ; \tag{10}
\end{equation*}
$$

the identity matrix.

Theorem 4.2. Let N be normal.
(i) If N is a commutator (6) of two Hermitian matrices such that

$$
\begin{equation*}
N H_{1}=H_{1} N \tag{12}
\end{equation*}
$$

then N is unitarily similar to a direct sum of types (7), (8), and (11).
(ii) If N is unitarily similar to a direct sum of types (7), (8), (11) then N can be expressed as a commutator (6) of two Hermitian matrices, such that (12) holds, and such that H_{2} is also unitary.

Proofs of Theorems 4.1 and 4.2. From (6) one obtains (compare Fan [1])

$$
\begin{equation*}
N^{*-1}=\left(H_{2} H_{1}\right)^{-1} N\left(H_{2} H_{1}\right) \tag{13}
\end{equation*}
$$

Thus, if γ is an eigenvalue of N with a certain multiplicity, so also is $\bar{\gamma}^{-1}$, with the same multiplicity. Note that $\gamma=\bar{\gamma}^{-1}$ if and only if $|\gamma|=1$. After a simultaneous unitary similarity of N, H_{1}, H_{2}, we may take N diagonal, so let

$$
\begin{align*}
N= & {\left[\begin{array}{cc}
\gamma_{1} I_{1} & 0 \\
0 & \bar{\gamma}_{1}^{-1} I_{1}
\end{array}\right]+\cdots+\left[\begin{array}{cc}
\gamma_{k} I_{k} & 0 \\
0 & \bar{\gamma}^{-1} I_{k}
\end{array}\right] } \tag{14}\\
& +\omega_{k+1} I_{k+1}+\cdots+\omega_{s} I_{s} .
\end{align*}
$$

Here we choose our notation so that $\gamma_{1}, \bar{\gamma}_{1}^{-1}, \cdots, \gamma_{k}, \bar{\gamma}_{k}^{-1}, \omega_{k+1}, \cdots, \omega_{s}$ are the distinct eigenvalues of N, with

$$
\left|\gamma_{1}\right| \neq 1, \cdots,\left|\gamma_{k}\right| \neq 1, \quad\left|\omega_{k+1}\right|=1, \cdots,\left|\omega_{s}\right|=1
$$

Then, writing (13) as

$$
\begin{equation*}
\left(H_{2} H_{1}\right) N^{*-1}=N\left(H_{2} H_{1}\right), \tag{15}
\end{equation*}
$$

we obtain

$$
H_{2} H_{1}=\left[\begin{array}{ll}
0 & A_{1} \tag{16}\\
B_{1} & 0
\end{array}\right]+\cdots+\left[\begin{array}{ll}
0 & A_{k} \\
B_{k} & 0
\end{array}\right]+A_{k+1}+\cdots+A_{s}
$$

Taking the * of each side of (16), we get

$$
H_{1} H_{2}=\left[\begin{array}{ll}
0 & B_{1}^{*} \tag{17}\\
A_{1}^{*} & 0
\end{array}\right]+\cdots+\left[\begin{array}{ll}
0 & B_{k}^{*} \\
A_{k}^{*} & 0
\end{array}\right]+A_{k+1}^{*}+\cdots+A_{s}^{*} \cdot
$$

The equation $N\left(H_{2} H_{1}\right)=H_{1} H_{2}$ now yields $B_{1}^{*}=\gamma_{1} A_{1}, \cdots, B_{k}^{*}=\gamma_{k} A_{k}$, $\omega_{k+1} A_{k+1}=A_{k+1}^{*}, \cdots, \omega_{s} A_{s}=A_{s}^{*}$. Thus A_{k+1}, \cdots, A_{s} are each normal. If we make a simultaneous unitary similarity of N, H_{1}, H_{2} using a U of the form $U=\operatorname{diag}\left(I_{1}, I_{1}, \cdots, I_{k}, I_{k}, U_{k+1}, \cdots, U_{s}\right)$, we can leave $A_{1}, B_{1}, \cdots, A_{k}, B_{k}$ unchanged and diagonalize A_{k+1}, \cdots, A_{s}. Having accomplished this, we now change notation, and let

$$
\begin{align*}
N= & {\left[\begin{array}{cc}
\gamma_{1} I_{1} & 0 \\
0 & \bar{\gamma}_{1}^{-1} I_{1}
\end{array}\right]+\cdots+\left[\begin{array}{cc}
\gamma_{k} I_{k} & 0 \\
0 & \bar{\gamma}^{-1} I_{k}
\end{array}\right] } \tag{18}\\
& +\operatorname{diag}\left(\omega_{k+1}, \cdots, \omega_{s}\right), \\
H_{1} H_{2}= & {\left[\begin{array}{cc}
0 & \gamma_{1} A_{1} \\
A_{1}^{*} & 0
\end{array}\right]+\cdots+\left[\begin{array}{cc}
0 & \gamma_{k} A_{k} \\
A_{k}^{*} & 0
\end{array}\right] } \tag{19}\\
& +\operatorname{diag}\left(\xi_{k+1}, \cdots, \xi_{s}\right) .
\end{align*}
$$

Here $\omega_{k+1}, \cdots, \omega_{s}$ now denote the not necessarily distinct eigenvalues of N on the unit circle. We find

$$
\begin{equation*}
\omega_{j}=\xi_{j} / \bar{\xi}_{j}, \quad k<j \leqq s \tag{20}
\end{equation*}
$$

Because of Lemma 3.5, the eigenvalues of (19) are positive multiples of the numbers

$$
\begin{align*}
\gamma_{1}^{1 / 2}, \cdots, \gamma_{1}^{1 / 2}, & -\gamma_{1}^{1 / 2}, \cdots,-\gamma_{1}^{1 / 2}, \cdots, \gamma_{k}^{1 / 2}, \cdots, \gamma_{k}^{1 / 2}, \tag{21}\\
& -\gamma_{k}^{1 / 2}, \cdots,-\gamma_{k}^{1 / 2}, \xi_{k+1}, \cdots, \xi_{s}
\end{align*}
$$

Lemma 3.1 (i) now asserts that the angular parts of numbers (21) must be real or must appear in complex conjugate pairs.

We now change notation once more, and rewrite the eigenvalues of N as $\gamma_{1}, \bar{\gamma}_{1}^{-1}, \cdots, \gamma_{k}, \bar{\gamma}_{k}^{-1}, \omega_{k+1}, \cdots, \omega_{s}$, where $\gamma_{1}, \bar{\gamma}_{1}^{-1}, \cdots, \gamma_{k}, \bar{\gamma}_{k}^{-1}$ are the eigenvalues of N, not necessarily distinct, not on the unit circle, and $\omega_{k+1}, \cdots, \omega_{s}$ are the eigenvalues of N, not necessarily distinct, on the unit circle. Thus we now know that the angular parts of numbers $\gamma_{1}^{1 / 2},-\gamma_{1}^{1 / 2}, \cdots, \gamma_{k}^{1 / 2},-\gamma_{k}^{1 / 2}, \xi_{k+1}, \cdots, \xi_{s}$ are real or appear in complex conjugate pairs. Moreover, (20) holds.

Let

$$
\begin{aligned}
\gamma_{j} & =r_{j} e^{i \varphi_{j}}, & & 1 \leqq j \leqq k \\
\omega_{j} & =e^{i \rho_{j}}, & & k<j \leqq s,
\end{aligned}
$$

be the polar factorizations of the γ_{j} and the ω_{j}. Then (20) yields

$$
\xi_{j}=p_{j} \varepsilon_{j} e^{i \rho_{j} / 2}, \quad k<j \leqq s
$$

where $p>0$ and $\varepsilon= \pm 1$. Thus we get that the numbers

$$
\begin{equation*}
e^{i \varphi_{1} / 2},-e^{i \varphi_{1} / 2}, \cdots, e^{i \varphi_{k} / 2},-e^{i \varphi_{k} / 2}, \varepsilon_{k+1} e^{i \rho_{k+1} / 2}, \cdots, \varepsilon_{s}^{i \rho_{s} / 2} \tag{22}
\end{equation*}
$$

are real or appear in complex conjugate pairs. The argument now splits into several cases.

$$
\text { Case 1. } \quad \overline{e^{2 c_{1} / 2}}=e^{i c_{1} / 2}
$$

Then $e^{i c_{1} / 2}$ is real, hence $\gamma_{1}=r_{1}$, and $\operatorname{diag}\left(\gamma_{1}, \bar{\gamma}_{1}^{-1}\right)=\operatorname{diag}\left(r_{1}, r_{1}^{-1}\right)$. This yields type (7). Moreover, $-e^{i c_{1} / 2}$ is its own conjugate; hence the numbers remaining in (22) after deleting $\pm e^{i c_{1} / 2}$ are real or come in conjugate pairs.

Case 2.

$$
\overline{e^{2 c_{1} / 2}}=-e^{i c_{1} / 2}
$$

Then $e^{i c_{1}}=-1$, hence $\gamma_{1}=-r_{1}$, and $\operatorname{diag}\left(\gamma_{1}, \bar{\gamma}_{1}^{-1}\right)=\operatorname{diag}\left(-r_{1},-r_{1}^{-1}\right)$. This yields type (8). Moreover, the conjugate of $-e^{i c_{1} / 2}$ is $e^{i c_{1} / 2}$; hence the remaining numbers (22) are real or appear in conjugate pairs.

Case 3.

$$
\overline{e^{i c_{1} / 2}}=e^{i c_{2} / 2}
$$

Hence, $e^{i \varphi_{2}}=e^{-\tau c_{1}}$. Thus

$$
\operatorname{diag}\left(\gamma_{1}, \bar{\gamma}_{1}^{-1}, \gamma_{2}, \bar{\gamma}_{2}^{-1}\right)=\operatorname{diag}\left(r_{1} e^{\tau_{1}}, r_{1}^{-1} e^{i c_{1}}, r_{2} e^{-i c_{1}}, r_{2}^{-1} e^{-i c_{1}}\right) .
$$

This yields type (9). And here the conjugate of $-e^{i c_{1} / 2}$ is $-e^{i c_{2} / 2}$, hence the numbers remaining in (22) after deleting $\pm e^{i c_{1} / 2}, \pm e^{i c_{2} / 2}$ are real or come in conjugate pairs.

Case 4.

$$
\overline{e^{i c_{1} / 2}}=-e^{i c_{2} / 2}
$$

Hence again $e^{i_{2}}=e^{-i_{1}}$. This case again yields type (9). The conjugate of $-e^{i_{c_{1}} / 2}$ is $e^{i i_{2} / 2}$, so that the remaining numbers (22) are real or come in conjugate pairs.

Case 5. The conjugate of $e^{i c_{1} / 2}$ is not any of the numbers

$$
\pm e^{i c_{1} / 2}, \cdots, \pm e^{i c_{k} / 2}
$$

Then, with suitable notation,

$$
e^{-i \varphi_{1} / 2}=\varepsilon_{k+1} e^{i \rho_{k+1} / 2},-e^{-i \varphi_{1} / 2}=\varepsilon_{k+2} e^{i \rho_{k+2} / 2}
$$

It then easily follows that

$$
\operatorname{diag}\left(\gamma_{1}, \bar{\gamma}_{1}^{-1}, \omega_{k+1}, \omega_{k+2}\right)=\operatorname{diag}\left(r_{1} e^{i \varphi_{1}}, r_{1}^{-1} e^{i \varphi_{1}}, e^{-i \varphi_{1}}, e^{-i \varphi_{1}}\right),
$$

which falls into the form (9) with $r_{2}=1$. Once again, after deleting $\pm e^{i \rho_{1} / 2}, \varepsilon_{k+1} e^{i \rho_{k+1} / 2}, \varepsilon_{k+2} e^{i \rho_{k+2} / 2}$ from (22), the remaining numbers in (22) must be real or come in conjugate pairs.

$$
\text { Case 6. } \quad \overline{\varepsilon_{k+1} e^{i \rho_{k+1} / 2}}=\varepsilon_{k+1} e^{i \rho_{k+1} / 2} .
$$

Then $e^{i \rho_{k+1}}=1$, hence $\omega_{k+1}=1$. This yields (11).
Case 7. $\quad \varepsilon_{k+1} e^{-i \rho_{k+1} / 2}=\varepsilon_{k+2} e^{i \rho_{k+2} / 2}$.
Then $e^{-i \rho_{k+1}}=e^{i_{\rho_{k+2}}}$. Then $\omega_{k+2}=\overline{\omega_{k+1}}$. Thus we obtain type (10).
This completes the proof of half of Theorem 4.1. Before completing the proof of Theorem 4.1, we start the proof of Theorem 4.2. We prove that if (12) holds then N is Hermitian. Following the part of the proof of Theorem 4.1 just given, we obtain (14) and (17), where in (17) we have $B_{1}^{*}=\gamma_{1} A_{1}, \cdots, B_{k}^{*}=\gamma_{k} A_{k}$, and we can take A_{k+1}, \cdots, A_{s} diagonal. Condition (12) now implies that H_{1} partitions in the form

$$
\begin{equation*}
H_{1}=\operatorname{diag}\left(T_{1}, W_{1}, T_{2}, W_{2}, \cdots, T_{k}, W_{k}, T_{k+1}, T_{k+2}, \cdots, T_{s}\right) \tag{23}
\end{equation*}
$$

Since H_{1} is nonsingular and Hermitian, each diagonal block in (23) is nonsingular and Hermitian. Then for $H_{1} H_{2}$ to have the form (17), we must have

$$
H_{2}=\left[\begin{array}{cc}
0 & P_{1} \tag{24}\\
P_{1}^{*} & 0
\end{array}\right]+\cdots+\left[\begin{array}{cc}
0 & P_{k} \\
P_{k}^{*} & 0
\end{array}\right]+P_{k+1}+\cdots+P_{s}
$$

with

$$
\begin{equation*}
T_{i} P_{i}=\gamma_{i} A_{i}, W_{i} P_{i}^{*}=A_{i}^{*}, \quad 1 \leqq i \leqq k \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{i} P_{i}=A_{i}^{*}, \quad k<i \leqq s \tag{26}
\end{equation*}
$$

Thus $A_{i}=P_{i} T_{i}$, for $k<i \leqq s$, is a product of two Hermitian matrices P_{i} and T_{i}. To relieve the notation let us fix our attention on $A_{k+1}=$ $P_{k+1} T_{k+1}$. We took A_{k+1} diagonal, so let $A_{k+1}=\operatorname{diag}\left(\bar{\xi}_{1}, \bar{\xi}_{2}, \cdots\right)$. Then

$$
\begin{equation*}
\omega_{k+1}=\xi_{1} / \bar{\xi}_{1}=\xi_{2} / \bar{\xi}_{2}=\cdots \tag{27}
\end{equation*}
$$

Since A_{k+1} is a product of two Hermitian matrices, its eigenvalues
are real or occur in conjugate pairs. If $\bar{\xi}_{1}$ is real then (27) gives $\omega_{1}=1$. If $\bar{\xi}_{1}$ is not real, let ξ_{2} be the conjugate of $\xi_{1} ; \xi_{2}=\bar{\xi}_{1}$. Then (27) yields $\omega_{k+1}=\bar{\omega}_{k+1}$, hence ω_{k+1} is real.

Thus $\omega_{k+1}, \omega_{k+2}, \cdots$ are all real (and in fact ± 1). Next, from (25) we obtain (using the fact that the W_{i} are Hermitian),

$$
\begin{equation*}
P_{i}^{-1} T_{i} P_{i}=\gamma_{i} W_{i}, \quad 1 \leqq i \leqq k . \tag{28}
\end{equation*}
$$

Equation (28) yields
(29) $\quad \gamma_{i}\left(\right.$ an eigenvalue of $\left.W_{i}\right)=$ an eigenvalue of T_{i}.

Since W_{i} and T_{i} are nonsingular and Hermitian, we get from (29) that γ_{i} is a quotient of two reals, hence real.

Thus, we now know that all eigenvalues of N are real. Therefore N is Hermitian. We already know from the established part of Theorem 4.1 that N is unitarily similar to a direct sum of the five types (7), (8), (9), (10), (11). In type (9), $e^{i,}= \pm 1$, thus type (9) can be reclassified into type (7) or type (8). Similarly type (10) can be reclassified into types (7) or (8). This completes the proof of half of Theorem 4.2.

To establish the converse parts of Theorems 4.1 and 4.2 , we let N be, in turn, each of the types (7), (8), (9), (10), (11).

In type (7) we have $N=\operatorname{diag}\left(r, r^{-1}\right)$. Set $H_{1}=\operatorname{diag}(r, 1)$ and

$$
H_{2}=\left[\begin{array}{ll}
0 & 1 \tag{30}\\
1 & 0
\end{array}\right] .
$$

Then (6) and (12) hold, and moreover H_{2} is also unitary.
In type (8) we have $N=\operatorname{diag}\left(-r,-r^{-1}\right)$. Set $H_{1}=\operatorname{diag}(-r, 1)$ and define H by (30). Then again (6) and (12) hold, and again H_{2} is also unitary.

In type (11) $N=$ I. Set $H_{1}=H_{2}=$ I. Then (6) and (12) hold, and, once more, H_{2} is also unitary.

The proof of Theorem 4.2 is now complete.
In type (9) we have $N=\operatorname{diag}\left(r_{1} e^{i \varphi}, r_{1}^{-1} e^{i \varphi}, r_{2} e^{-i \varphi}, r_{2}^{-1} e^{-i \varphi}\right)$. Set

$$
\begin{align*}
& H_{1}=\left[\begin{array}{cccc}
0 & 0 & r_{1}^{1 / 2} e^{i \varphi} & 0 \\
0 & 0 & 0 & r_{2}^{-1 / 2} \\
r_{1}^{1 / 2} e^{-i \varphi \varphi} & 0 & 0 & 0 \\
0 & r_{2}^{-1 / 2} & 0 & 0
\end{array}\right], \tag{31}\\
& H_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & r_{2}^{1 / 2} r_{1}^{-1 / 2} \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
r_{2}^{1 / 2} r_{1}^{-1 / 2} & 0 & 0 & 0
\end{array}\right] .
\end{align*}
$$

Then

$$
H_{1} H_{2}=\left[\begin{array}{cc}
0 & r_{1}^{1 / 2} e^{i \varphi} \\
r_{1}^{-1 / 2} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & r_{2}^{1 / 2} e^{-i \varphi} \\
r_{2}^{-1 / 2} & 0
\end{array}\right]
$$

Taking the * of each side of this expression for $H_{1} H_{2}$, we compute $H_{2} H_{1}$. Then it is easy to verify that $N\left(H_{2} H_{1}\right)=H_{1} H_{2}$.

In type (10) with $N=\operatorname{diag}\left(e^{i \varphi}, e^{-i \varphi}\right)$, note that N is unitarily similar to $F(\varphi)$. Set $S_{1}=G\left(\theta_{1}\right), S_{2}=G\left(\theta_{2}\right)$. Then S_{1} and S_{2} are both orthogonal symmetric. Moreover, using Lemma 3.3, we find that $F(\phi) S_{2} S_{1}=S_{1} S_{2}$ if $\theta_{1}-\theta_{2}=\phi / 2$.

The proof of Theorem 4.1 is now complete.

Theorem 4.3. Let N be normal.

(i) If N is a commutator (6) of two Hermitian matrices with H_{1} positive definite then N is positive definite Hermitian with the eigenvalues γ of N for which $\gamma \neq 1$ occurring in reciprocal pairs γ, γ^{-1}. (That is, N is unitarily similar to a direct sum of types (7) and (11).)
(ii) If positive definite Hermitian N has its eigenvalues γ for which $\gamma \neq 1$ occurring in reciprocal pairs γ, γ^{-1} then N is a commutator (6) of two Hermitian matrices with H_{1} positive definite and commutative with N and H_{2} unitary Hermitian.

Proof. Suppose that (6) holds with H_{1} positive definite. We follow the proof of Theorem 4.1 until we reach the point where

$$
\begin{align*}
H_{1} H_{2}= & {\left[\begin{array}{cc}
0 & \gamma_{1} A_{1} \\
A_{1}^{*} & 0
\end{array}\right]+\cdots+\left[\begin{array}{cc}
0 & \gamma_{k} A_{k} \\
A_{k}^{*} & 0
\end{array}\right] } \tag{32}\\
& +A_{k+1}^{*}+\cdots+A_{s}^{*},
\end{align*}
$$

with A_{k+1}, \cdots, A_{s} diagonal. By Lemma 3.1, the eigenvalues of $H_{1} H_{2}$ are real. Thus A_{k+1}, \cdots, A_{s} are each real and diagonal. Then using (20), we get that each $\omega_{j}=1$. By Lemma 3.5, the eigenvalues of

$$
\left[\begin{array}{cc}
0 & \gamma_{1} A_{1} \\
A_{i}^{*} & 0
\end{array}\right]
$$

are positive multiples of $\pm \gamma_{1}^{1 / 2}$. Since the eigenvalues of $H_{1} H_{2}$ are to be real, we must have $\gamma_{1}>0, \cdots, \gamma_{k}>0$. Hence each eigenvalue of N is positive, therefore N is positive definite. In this case type (8) must be absent in N, type (9) can be reclassified under type (7), and type (10) under type (11). Thus the condition of Theorem 4.3 is necessary. For the converse one need only note that if $N=\operatorname{diag}\left(r, r^{-1}\right)$ with $r>0$, then with $H_{1}=\operatorname{diag}(r, 1)$ and H_{2} given by (30), we have
(6) and (12) and here H_{1} is positive definite and H_{2} is unitary Hermitian, as required.

The following Theorem 4.4 is a special case of Theorem 1 of [5].
Theorem 4.4. Let N be normal, let H_{1} be positive definite Hermitian, let H_{2} be Hermitian such that

$$
\begin{equation*}
N H_{2}=H_{2} N \tag{33}
\end{equation*}
$$

and suppose that (6) holds. Then $N=I$.
Proof. We follow the proof of Theorem 4.1 until (14) and (32) are obtained, with A_{k+1}, \cdots, A_{s} diagonal. Then (33) yields

$$
H_{2}=\left[\begin{array}{cc}
C_{1} & 0 \tag{34}\\
0 & D_{1}
\end{array}\right]+\cdots+\left[\begin{array}{cc}
C_{k} & 0 \\
0 & D_{k}
\end{array}\right]+C_{k+1}+\cdots+C_{s} .
$$

Then for $H_{1} H_{2}$ to be given by (32), we must have

$$
H_{1}=\left[\begin{array}{cc}
0 & M_{1} \\
M_{1}^{*} & 0
\end{array}\right]+\cdots+\left[\begin{array}{cc}
0 & M_{k} \\
M_{k}^{*} & 0
\end{array}\right]+M_{k+1}+\cdots+M_{s} .
$$

But

$$
\left[\begin{array}{cc}
0 & M_{1} \tag{35}\\
M_{1}^{*} & 0
\end{array}\right]
$$

is a direct summand of the positive definite matrix H_{1}, hence is positive definite, a contradiction since (35) has zero trace. Thus in N no γ_{i} can appear and so the eigenvalues of N must lie on the unit circle. Since $A_{k+1}^{*}=M_{k+1} C_{k+1}, A_{k+1}$ is a product of two Hermitian matrices with one factor definite. Thus the eigenvalues of A_{k+1} are real. Owing to (20), this implies that each $\omega_{i}=1$. Hence $N=I$.

Theorem 4.5. Let H_{1} and H_{2} be positive definite. If N, given by (6) is normal, then $N=I$.

Proof. We obtain as in the proof of Theorem 4.1 that (32) holds. By Lemma 3.1, $H_{1} H_{2}$ has positive eigenvalues. Since

$$
\left[\begin{array}{cc}
0 & \gamma_{1} A_{1} \\
A_{1}^{*} & 0
\end{array}\right]
$$

is a direct summand of $H_{1} H_{2}$ (hence has positive eigenvalues) and has trace zero, it follows that all eigenvalues of N are on the unit circle. Then each ξ_{i} is positive and so by (20) each ω_{i} is 1 .

In the next few theorems, we give some more special results that follow from Theorems 4.1 to 4.5 or from the proofs of these theorems.

Theorem 4.6. Let U be unitary.
(i) If U is a commutator of two Hermitian matrices,

$$
\begin{equation*}
U=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1} \tag{36}
\end{equation*}
$$

then U has real characteristic polynomial and $\operatorname{det} U=1$.
(ii) If U has real characteristic polynomial and $\operatorname{det} U=1$, then U is a commutator (36) with both H_{1} and H_{2} unitary Hermitian.
(iii) If U is a commutator (36) of two Hermitian matrices such that $U H_{1}=H_{1} U$ then U is Hermitian and $\operatorname{det} U=1$. Conversely, if U is Hermitian and $\operatorname{det} U=1$, then U is a commutator (36) of two unitary Hermitian matrices H_{1}, H_{2} with $H_{1} U=U H_{1}$ and $H_{2} U=U H_{2}$.
(iv) If (36) holds with H_{1} definite then $U=I$.

Proof. (i) Suppose (36) holds. Then by Theorem $4.1 U$ is unitarily similar to a direct sum of types (7)-(11). Because U is unitary, in types (7), (8), (9) we have $r=r_{1}=r_{2}=1$. Thus the nonreal eigenvalues of N occur in conjugate pairs and -1 occurs an even number of times. This proves (i).
(ii) The conditions imply that the nonreal eigenvalues occur in conjugate pairs and -1 occurs an even number of times. Thus N is unitarily similar to a direct sum of types (10) and (11). The proof of Theorem 4.1 showed how to express each type (10), (11) as a commutator of two unitary Hermitian matrices.
(iii) If (36) holds with $U H_{1}=H_{1} U$, then Theorem 4.2 shows U is Hermitian and $\operatorname{det} U=1$. Conversely, it suffices to consider $U=$ diag $(-1,-1)$. This $U=F(\pi)$ is known from the proof of Theorem 4.1 to be a commutator of two unitary Hermitian matrices, both of which must commute with diag $(-1,-1)$.
(iv) By Theorem 4.3, U is positive definite. Hence $U=I$.

Theorem 4.7. Let H be Hermitian. Then H is a commutator,

$$
\begin{equation*}
H=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1} \tag{37}
\end{equation*}
$$

of two Hermitian matrices if and only if the eigenvalues γ of H other than one come in reciprocal pairs γ, γ^{-1}. (That is, H is unitarily similar to a direct sum of types (7) and (11).) If this condition is satisfied then H_{1} may always be chosen to commute with H and H_{2} to be both Hermitian and unitary.

Remark. Theorem 4.7 is contained in [1].
Proof. If (37) holds, then H is unitarily similar to a direct sum of types (7), (8), (9), (10), (11). As H is Hermitian, in types (9) and (10) we must have $e^{i \varphi}= \pm 1$. Thus, in fact, H is unitarily similar to a direct sum of types (7), (8), (11). For the converse observe that in the proof of Theorems 4.1 and 4.2, types (7), (8) and (11) were each expressed as a commutator $H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}$ commuting with H_{1} and with H_{2} unitary and Hermitian.

THEOREM 4.8. Let θ be a nonreal number on the unit circle: $|\theta|=1$. Let H be Hermitian. If

$$
\begin{equation*}
\theta H=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1} \tag{38}
\end{equation*}
$$

is a commutator of two Hermitian matrices then $\theta= \pm i$ and H is unitarily similar to a direct sum of copies of the following two types:

$$
\begin{align*}
& \operatorname{diag}(1,-1), \tag{39}\\
& \operatorname{diag}\left(r_{1}, r_{1}^{-1},-r_{2},-r_{2}^{-1}\right) r_{1}>0, r_{2}>0 \tag{40}
\end{align*}
$$

Conversely, if H is unitarily similar to a direct sum of copies of (39) or (40), then

$$
\begin{equation*}
i H=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1} \tag{41}
\end{equation*}
$$

is a commutator of two Hermitian matrices. In (41) H and H_{1} never commute and H_{1} is never definite. Similar results hold for $-i H$.

Proof. If θH is a commutator of two Hermitian matrices then, as θH has no real eigenvalues, θH must be unitarily similar to a direct sum of types (9) and (10). If either type appears then for two eigenvalues γ_{1} and γ_{2} of H we have $\theta \gamma_{1}=\mu e^{i c}, \theta \gamma_{2}=\nu e^{-i \varphi}$, with μ, ν real. Thus $\theta / \bar{\theta}$ is real, hence $\theta= \pm i$. Thus in either event $\theta= \pm i$. Thus type (10) takes the form $\operatorname{diag}(i,-i)$, and type (9) the form $i \operatorname{diag}\left(r_{1}, r_{1}^{-1},-r_{2},-r_{2}^{-1}\right)$ with $r_{1}>0$ and $r_{2}>0$. The converse follows from Theorem 4.1. The additional assertions follow from Theorems 4.2 and 4.3 .

Theorem 4.9. Let H be positive definite.
(i) Let θ be real or nonreal, with $|\theta|=1$. If θH is a commutator (38) of two Hermitian matrices then $\theta= \pm 1$.
(ii) $-H$ is a commutator of two Hermitian matrices,

$$
\begin{equation*}
-H=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}, \tag{42}
\end{equation*}
$$

if and only if all eigenvalues γ of H (including 1) appear in reciprocal pairs γ, γ^{-1} (that is, H is unitarily similar to a direct sum of type (7)). If this condition is satisfied then in (42) H_{1} may always be chosen to commute with H and H_{2} may always be chosen to be unitary and Hermitian. It is never possible to choose H_{1} definite.

Proof. (i) Suppose (38) holds. By Theorem 4.8, $\theta= \pm i$ or $\theta= \pm 1$. If $\theta= \pm i$ then Theorem 4.8 shows that H is not definite. Hence $\theta= \pm 1$.
(ii) If (42) holds, Theorem 4.7 shows that all eigenvalues γ of H appear in reciprocal pairs. Conversely, in the proof of Theorem 4.1 it was shown how to express diag $\left(-r,-r^{-1}\right)=H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}$ such that the commutator commutes with H_{1} and H_{2} is unitary Hermitian.

For 2-square matrices, the conclusion of Theorem 4.3 is valid under a weaker hypothesis.

Theorem 4.10. Let N be a normal 2-square matrix such that

$$
\begin{equation*}
N=H L H^{-1} L^{-1} \tag{43}
\end{equation*}
$$

where H is positive definite. (No assumptions are made about L other than that it is nonsingular.) Then N is positive definite.

Proof. We may assume $N=\operatorname{diag}\left(\lambda, \lambda^{-1}\right)$. Let

$$
H^{-1}=\left[\begin{array}{ll}
h_{11} & h_{12} \\
\bar{h}_{12}^{\prime} & h_{22}
\end{array}\right]
$$

From $H^{-1} N=L H^{-1} L^{-1}$ we get by taking traces,

$$
\begin{equation*}
\lambda h_{11}+\lambda^{-1} h_{22}=h_{11}+h_{22} \tag{44}
\end{equation*}
$$

Let $\alpha=h_{11}\left(h_{11}+h_{22}\right)^{-1}, 1-\alpha=h_{22}\left(h_{11}+h_{22}\right)^{-1}$, and let $\lambda=r e^{i \varphi}$ be the polar factorization of λ. Then $0 \leqq \alpha \leqq 1$, and (44) yields

$$
\begin{align*}
& r \alpha \cos \varphi+r^{-1}(1-\alpha) \cos \varphi=1 \tag{45}\\
& r \alpha \sin \varphi-r^{-1}(1-\alpha) \sin \varphi=0 \tag{46}
\end{align*}
$$

From (45) follows $\cos \varphi>0$. If $\sin \varphi \neq 0$, (46) gives $\alpha=r^{-1}\left(r+r^{-1}\right)^{-1}$. Then from (45) we get

$$
\cos \varphi=\left(r+r^{-1}\right) / 2 .
$$

Since $r+r^{-1} \geqq 2$, and $\cos \varphi \leqq 1$, we get $\cos \varphi=1$. Thus $\varphi=0$,
contradicting $\sin \varphi \neq 0$. Hence $\sin \varphi=0$, and therefore $\lambda>0$.
We now introduce a trick of Professor Fan. Let

$$
N=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)
$$

with $\operatorname{det} N=1$. Set $N_{1}=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)$ and

$$
N_{2}=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right),
$$

where

$$
\begin{array}{lr}
\mu_{j}=\prod_{i=1}^{j} \lambda_{i} & \text { if } j \text { is odd }, \\
\mu_{j}=\left(\prod_{i=1}^{j-1} \lambda_{i}\right)^{-1} & \text { if } j \text { is even } ; \\
\nu_{j}=\prod_{i=1}^{j} \lambda_{i} & \text { if } j \text { is even }, \tag{47}\\
\nu_{j}=\left(\prod_{i=1}^{j-1} \lambda_{i}\right)^{-1} & \text { if } j \text { is odd } ; 1 \leqq j \leqq n .
\end{array}
$$

Then $N=N_{1} N_{2}$. We have $\mu_{2 j}=\mu_{2 j-1}^{-1}$ for all $j \leqq n / 2$ and $\mu_{n}=1$ for odd n. We have $\nu_{2 j+1}=\nu_{2 j}^{-1}$ for all $j \leqq(n-1) / 2, \nu_{1}=1$, and $\nu_{n}=1$ if n is even. Thus N has its eigenvalues μ in reciprocal pairs μ, μ^{-1} together with possibly $\mu=1$ as an eigenvalue. Furthermore N_{2} also has its eigenvalues ν in reciprocal pairs ν, ν^{-1} together with $\nu=1$ as an eigenvalue. We shall refer to this factorization of N as Fan's factorization.

Theorem 4.11. Let U be unitary with $\operatorname{det} U=1$. Then

$$
\begin{equation*}
U=\left(H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}\right)\left(H_{3} H_{4} H_{3}^{-1} H_{4}^{-1}\right) \tag{48}
\end{equation*}
$$

is a product of two commutators of Hermitian matrices. In fact we may have $H_{1}, H_{2}, H_{3}, H_{4}$ all unitary Hermitian.

Proof. By Fan's factorization, $U=U_{1} U_{2}$ where U_{i} is unitary with its eigenvalues in reciprocal pairs; $i=1,2$. By Theorem 4.6, U_{1} and U_{2} each may be written as a commutator of Hermitian unitary matrices.

Theorem 4.12 (Fan). Let H be Hermitian with $\operatorname{det} H=1$. Then

$$
\begin{equation*}
H=\left(H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}\right)\left(H_{3} H_{4} H_{3}^{-1} H_{4}^{-1}\right) \tag{49}
\end{equation*}
$$

is a product of two commutators of Hermitian matrices, with H_{1} and H_{3} commutative with H and H_{2} and H_{4} unitary Hermitian. If H is positive definite we may, in addition, choose H_{1} and H_{3} to be definite.

Proof. The proof is the same as the proof of Theorem 4.11, except that one appeals to Theorem 4.7.

Theorem 4.12. Let A be any matrix with $\operatorname{det} A=1$. Then

$$
\begin{equation*}
A=\left(H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}\right)\left(H_{3} H_{4} H_{3}^{-1} H_{4}^{-1}\right)\left(H_{5} H_{6} H_{5}^{-1} H_{6}^{-1}\right)\left(H_{7} H_{8} H_{7}^{-1} H_{8}^{-1}\right) \tag{50}
\end{equation*}
$$

is a product of four commutators of Hermitian matrices. In (50), H_{5} and H_{7} may be taken positive definite, and $H_{1}, H_{2}, H_{3}, H_{4}, H_{6}, H_{8}$ may all be taken to be unitary Hermitian.

Proof. Let $A=U H$ be the polar factorization of A. Since $H^{2}=A^{*} A$, we get $\operatorname{det} H=1$. Then $\operatorname{det} U=1$ also. Now use Theorems 4.11 and 4.12.

For 2 -square matrices, the number of commutators required in (50) may be reduced from four to two; in (48) and (49) from two to one.

Theorem 4.14. (i) Any unitary 2-square U with $\operatorname{det} U=1$ is a commutator (36) of Hermitian unitary matrices.
(ii) Any Hermitian 2-square H with $\operatorname{det} H=1$ is a commutator (37) of Hermitian matrices. In (37), H_{2} may be chosen Hermitian unitary, and H_{1} may be chosen to commute with H and also may be chosen to be definite if H is positive definite.
(iii) An 2 -square A with $\operatorname{det} A=1$ is a product

$$
\begin{equation*}
A=\left(H_{1} H_{2} H_{1}^{-1} H_{2}^{-1}\right)\left(H_{3} H_{4} H_{3}^{-1} H_{4}^{-1}\right) \tag{51}
\end{equation*}
$$

of two commutators of Hermitian matrices, with H_{3} definite and H_{1}, H_{2}, H_{4} unitary Hermitian.

Proof. (i), (ii). If U or H is 2 -square and $\operatorname{det} U=1$ or $\operatorname{det} H=$ 1 , then the eigenvalues of U or H must be reciprocal pairs.
(iii) As in Theorem 4.13, write $A=U H$ and use (i) and (ii) of this theorem.
5. The real analogues of the theorems of $\S 4$. For certain of the theorems of $\S 4$, the analogues over the real number field are essentially the same. For others, however, this is not so. Moreover, factorization theorems involving real skew symmetric matrices do not always immediately follow from the real symmetric or Hermitian cases by inserting a factor i. In $\S 5$ we therefore will also discuss commutators involving real symmetric or skew symmetric matrices.

Theorem 5.1. Let N be a real normal matrix. If N is a
commutator of two real symmetric matrices,

$$
\begin{equation*}
N=S_{1} S_{2} S_{1}^{-1} S_{2}^{-1}, \tag{52}
\end{equation*}
$$

then the eigenvalues γ of N, excluding $\gamma=1$, occur in reciprocal pairs γ, γ^{-1}. Conversely, if this condition is satisfied, N can be expressed as a commutator (52) of two real symmetric matrices, with S_{2} both symmetric and orthogonal.

Proof. Suppose (52) holds. Then

$$
N^{T-1}=\left(S_{2} S_{1}\right)^{-1} N\left(S_{2} S_{1}\right)
$$

Thus, if γ is an eigenvalue of N with a certain multiplicity, so also is γ^{-1} with the same multiplicity. Now $\gamma=\gamma^{-1}$ if and only if $\gamma=$ ± 1. Thus the eigenvalues γ of N for which $\gamma \neq \pm 1$ appear in reciprocal pairs. Since $\operatorname{det} N=1$, the eigenvalue $\gamma=-1$ must appear an even number of times, hence also appears in reciprocal pairs. Thus the condition of the theorem is necessary.

Suppose now that the condition of Theorem 5.1 is satisfied. Then N is orthogonally similar to a direct sum of blocks of type (7), (8), (11), (53), or (54), where (53) and (54) are given by

$$
\begin{array}{rr}
r F(\varphi)+r^{-1} F(\varphi), & r>0, \rho \text { real } \\
F(\varphi), & \varphi \text { real } \tag{54}
\end{array}
$$

In the proof of Theorem 4.1 and 4.2 , it is demonstrated that if N is given by (7), (8), or (11), then N is a commutator (52) of two real symmetric matrices with S_{2} symmetric and orthogonal, and S_{1} commutative with N. It was also shown that if $N=F(\varphi)$, then N is a commutator of two real symmetric orthogonal matrices. So let N be given by (53).

Let θ and Ψ be any angles. Set $S_{1}=\operatorname{diag}(r G(2 \theta+\varphi-\Psi), G(\Psi))$ and

$$
S_{2}=\left[\begin{array}{cc}
0 & G(\theta) \\
G(\theta) & 0
\end{array}\right]
$$

Then using Lemma 3.3 one easily checks that $N S_{2} S_{1}=S_{1} S_{2}$. Moreover S_{1} is symmetric and S_{2} symmetric orthogonal as required. This completes the proof.

Theorem 5.2. The conclusions of Theorem 4.2 remain valid if all matrices in Theorem 4.2 are required to have real entries.

Theorem 5.3. The conclusions of Theorem 4.3 remain valid if
all matrices in Theorem 4.3 are required to have real entries.
The real analogues of Theorem 4.4 and 4.5 are special cases of these theorems. We next consider the real counterpart of Theorem 4.6.

Theorem 5.4. The conclusions of Theorem 4.6 remain valid if all matrices in Theorem 4.6 are required to have real entries. In particular, a proper orthogonal \mathcal{O} may always be expressed as

$$
\begin{equation*}
\mathcal{O}=S_{1} S_{2} S_{1}^{-1} S_{2}^{-1} \tag{55}
\end{equation*}
$$

where S_{1} and S_{2} are symmetric orthogonal.
Proof. Let \mathcal{O} be proper orthogonal. Then \mathcal{O} is orthogonally similar to a direct sum of 2 -square blocks of the type $F(\varphi)$ and (perhaps) an identity matrix. In the proof of Theorem 4.1, $F(\phi)$ was expressed as a commutator of two symmetric orthogonal matrices.

If we take N to be symmetric in Theorems 5.1, 5.2, and 5.3 we obtain necessary and sufficient conditions for a symmetric matrix to be a commutator of symmetric matrices, subject to various side condition. In Theorem 5.5 we establish the real analogue of Theorem 4.12 .

Theorem 5.5. Let A be symmetric with $\operatorname{det} S=1$. Then

$$
S=\left(S_{1} S_{2} S_{1}^{-1} S_{2}^{-1}\right)\left(S_{3} S_{4} S_{3}^{-1} S_{4}^{-1}\right)
$$

is a product of two commutators of symmetric matrices, with S_{2} and S_{4} symmetric orthogonal, and S_{1}, S_{3} commutative with S. If S is positive definite, we may in addition require that S_{1} and S_{3} be definite.

Proof. Use Fan's factorization to express S as a product of two symmetric matrices, each of which has its eigenvalues γ (other than $\gamma=1$) in inverse pairs γ, γ^{-1}. Then use the proofs of Theorem 4.1 or 5.1.

Theorem 5.6. Let A be real with $\operatorname{det} A=1$. Then

$$
A=\left(S_{1} S_{2} S_{1}^{-1} S_{2}^{-1}\right)\left(S_{3} S_{4} S_{3}^{-1} S_{4}^{-1}\right)\left(S_{5} S_{6} S_{5}^{-1} S_{5}^{-1}\right)
$$

is a product of three commutators of real symmetric matrices, with $S_{1}, S_{2}, S_{4}, S_{6}$ symmetric orthogonal, and S_{3}, S_{5} definite. If A is 2-square, two commutators suffice,

$$
A=\left(S_{1} S_{2} S_{1}^{-1} S_{2}^{-1}\right)\left(S_{3} S_{4} S_{3}^{-1} S_{4}^{-1}\right)
$$

with S_{1}, S_{2}, S_{4} symmetric orthogonal and S_{3} definite.
Proof. Write $A=\mathcal{O} S$, by the polar factorization theorem. Then apply Theorem 5.4 to \mathcal{O} and Theorem 5.5 to S.

In the next theorems we investigate commutators of the form $S K S^{-1} K^{-1}$.

Theorem 5.7. Let N be real normal. If N is a commutator of a real symmetric S and a real skew symmetric K,

$$
\begin{equation*}
N=S K S^{-1} K^{-1} \tag{56}
\end{equation*}
$$

then N is orthogonally similar to a direct sum of blocks of types (7), (8), and (53). Conversely, if N is orthogonally similar to a direct sum of blocks (7), (8), and (53), then N can be expressed as a commutator (56) with K both skew symmetric and orthogonal.

Proof. In this proof, a subscript on a matrix will always indicate the degree of the matrix. We introduce some additional notation:

$$
\begin{gather*}
\Omega_{2 m}(r)=r I_{m}+r^{-1} I_{m}, \tag{57}\\
\Phi_{2 m}(\varphi)=F(\varphi)+\cdots+F(\varphi), \tag{58}\\
\Psi_{4 m}(r, \varphi)=r \Phi_{2 m}(\varphi)+r^{-1} \Phi_{2 m}(\varphi) . \tag{59}
\end{gather*}
$$

In (58) there are m direct summands $F(\varphi)$.
Suppose that (56) holds. From Theorem 4.1 we can conclude a good deal about the structure of N. The major hurdle to be overcome is to show that if a not diagonal block of type $F(\varphi)$ occurs in N, it does so with even multiplicity. We have

$$
\begin{equation*}
N^{-1 T}=(K S)^{-1} N(K S) \tag{60}
\end{equation*}
$$

Thus the eigenvalues of N appear in reciprocal pairs. Thus, after a simultaneous orthogonal similarity of N, K, S, we may assume that

$$
\begin{align*}
N= & I_{\alpha}+-I_{\beta}+\sum_{i=1}^{u} \cdot \Omega_{2 m_{i}}\left(r_{i}\right)+\sum_{i=1}^{v} \cdot \Omega_{2 k_{2}}\left(-s_{i}\right) \tag{61}\\
& +\sum_{i=1}^{w} \cdot \Phi_{2 p_{i}}\left(\phi_{i}\right)+\sum_{i=1}^{t} \cdot \Psi_{4 q_{i}}\left(R_{i}, \theta_{i}\right) .
\end{align*}
$$

In (61) we have separated the various types of blocks according to the character of their eigenvalues, as follows: I_{α} has eigenvalue +1 ; $-I_{\beta}$ has eigenvalue -1 ; each $r_{i}>1$ and $r_{i} \neq r_{j}$ if $i \neq j, 1 \leqq i$, $j \leqq u$; each $s_{i}>1$ and $s_{i} \neq s_{j}$ if $i \neq j, 1 \leqq i, j \leqq v$; each $\Phi_{2 p_{i}}\left(\varphi_{i}\right)$ has nonreal eigenvalues on the unit circle and $\Phi_{2 p_{i}}\left(\varphi_{i}\right), \Phi_{2 p_{j}}\left(\varphi_{j}\right)$ do not
have a common eigenvalue for $i \neq j, 1 \leqq i, j \leqq w$; each $\Psi_{4 q_{i}}\left(R_{i}, \theta_{j}\right)$ has nonreal eigenvalues not on the unit circle and $\Psi_{4 q_{i}}\left(R_{i}, \theta_{i}\right), \Psi_{4 q_{j}}\left(R_{j}, \theta_{j}\right)$ do not have a common eigenvalue for $i \neq j, 1 \leqq i, j \leqq t$. Thus in (61) distinct direct summands do not have a common eigenvalue. From (61) follows

$$
\begin{align*}
N^{-1 T}= & I_{\alpha}+-I_{\beta}+\sum_{i=1}^{u} \cdot \Omega_{2 m_{i}}\left(r_{i}^{-1}\right)+\sum_{i=1}^{v} \cdot \Omega_{2 k_{i}}\left(-s_{i}^{-1}\right) \\
& +\sum_{i=1}^{w} \cdot \Phi_{2 p_{i}}\left(\phi_{i}\right)+\sum_{i=1}^{t} \cdot \Psi_{4 q_{i}}\left(R_{i}^{-1}, \theta_{i}\right) . \tag{62}
\end{align*}
$$

From (60), we get $(K S) N^{-1 T}=N(K S)$, and then (61) and (62) force a partitioning on $K S$, as follows:

$$
\begin{align*}
K S= & A_{\alpha}+B_{\beta}+\sum_{i=1}^{u} \cdot\left[\begin{array}{cc}
0 & C_{m_{i}} \\
\Gamma_{m_{i}} & 0
\end{array}\right]+\sum_{i=1}^{v} \cdot\left[\begin{array}{cc}
0 & D_{k_{i}} \\
\Delta_{k_{i}} & 0
\end{array}\right]+\sum_{i=1}^{w} \cdot E_{2 p_{i}} \tag{63}\\
& +\sum_{i=1}^{t} \cdot\left[\begin{array}{cc}
0 & F_{2 q_{i}} \\
\mathscr{F}_{2 q_{i}} & 0
\end{array}\right],
\end{align*}
$$

where we also have

$$
\begin{equation*}
E_{2 p_{i}} \Phi_{2 p_{i}}\left(\varphi_{i}\right)=\Phi_{2 p_{i}}\left(\varphi_{i}\right) E_{2 p_{i}}, \quad 1 \leqq i \leqq w \tag{64}
\end{equation*}
$$

Taking the transpose of each side of (63) yields

$$
\begin{align*}
S K= & -A_{\alpha}^{T}+-B_{\beta}^{T}+\sum_{i=1}^{u} \cdot\left[\begin{array}{cc}
0 & -\Gamma_{m_{i}}^{T} \\
-C_{m_{i}}^{T} & 0
\end{array}\right] \\
& +\sum_{i=1}^{v} \cdot\left[\begin{array}{cc}
0 & -\Delta_{k_{i}}^{T} \\
-D_{k_{i}}^{T} & 0
\end{array}\right]+\sum_{i=1}^{w} \cdot-E_{2 p_{i}}^{T} \tag{65}\\
& +\sum_{i=1}^{t} \cdot\left[\begin{array}{cc}
0 & -\mathscr{F}_{2 q_{i}}^{T} \\
-F_{2 q_{i}}^{T} & 0
\end{array}\right] .
\end{align*}
$$

The equation $N K S=S K$ now yields a number of equations, of which we single out the following:

$$
\begin{align*}
& A_{\alpha}=-A_{\alpha}^{T}, \tag{66}\\
& B_{\beta}=B_{\beta}^{T}, \tag{67}\\
& \Phi_{2 p_{i}}\left(\varphi_{i}\right) E_{2 p_{i}}=-E_{2 p_{i}}^{T}, \tag{68}
\end{align*}
$$

Because of (66), the eigenvalues of A_{α} occur in pure imaginary pairs $\pm r i, r$ real. By Lemma 3.4, each of the blocks

$$
\left[\begin{array}{cc}
0 & -\Gamma_{m_{i}}^{T} \\
-C_{m_{i}}^{T} & 0
\end{array}\right], \quad\left[\begin{array}{cc}
0 & -\Delta_{k_{i}}^{T} \\
-D_{k_{i}}^{T} & 0
\end{array}\right], \quad\left[\begin{array}{cc}
0 & -\mathscr{F}_{2 q_{i}}^{T} \\
-F_{2 q_{i}}^{T} & 0
\end{array}\right]
$$

has its eigenvalues in sets of the types: $\pm r$ (real); $\pm r i$ (r real);
$\lambda, \bar{\lambda},-\lambda,-\bar{\lambda}$, (λ neither real nor pure imaginary). By Lemma 3.2 the eigenvalues of $S K$ partition into sets of these three types. Hence the eigenvalues of

$$
\begin{equation*}
-B_{\beta}^{T}+\sum_{i=1}^{w} \cdot-E_{2 p_{i}}^{T} \tag{69}
\end{equation*}
$$

must also partition into sets of these three types.
Because of (67), the eigenvalues of $-B_{\beta}^{T}$ are real.
We wish now to discuss the eigenvalues of $E_{2 p_{i}}$. To relieve the notation let

$$
E_{2 p}=E_{2 p_{i}}, \quad \Phi_{2 p}(\varphi)=\Phi_{2 p_{i}}\left(\varphi_{i}\right), \quad i \text { fixed }
$$

Because of (64) and (68), we have

$$
\begin{align*}
& E_{2 p} \Phi_{2 p}(\varphi)=\Phi_{2 p}(\varphi) E_{2 p} \tag{70}\\
& \Phi_{2 p}(\varphi) E_{2 p}=-E_{2 p}^{T} \tag{71}
\end{align*}
$$

We may make a simultaneous unitary similarity of $E_{2 p}$ and $\Phi_{2 p}(\varphi)$ so that $\Phi_{2 p}(\varphi)$ is converted to $e^{i \varphi} I_{p}+e^{-i \varphi} I_{p}$. Because of (70), $E_{2 p}$ becomes $E_{p}^{\prime}+E_{p}^{\prime \prime}$. Owing to (71), we have

$$
\begin{align*}
e^{i \varphi} E_{p}^{\prime} & =-E_{p}^{\prime *} \tag{72}\\
e^{-i \varphi} E_{p}^{\prime \prime} & =-E_{p}^{\prime \prime *} \tag{73}
\end{align*}
$$

Because of (72) and (73), E_{p}^{\prime} and $E_{p}^{\prime \prime}$ are normal. Unitary similarities of (72) and (73) render E_{p}^{\prime} and $E_{p}^{\prime \prime}$ diagonal. Using (72) and (73) again, we find

$$
\begin{aligned}
& E_{p}^{\prime \prime}=\operatorname{diag}\left(\varepsilon_{1}^{\prime} \rho_{1}^{\prime} i e^{-i \varphi / 2}, \cdots, \varepsilon_{p}^{\prime} \rho_{p}^{\prime} i e^{-i \varphi / 2}\right), \\
& E_{p}^{\prime \prime}=\operatorname{diag}\left(\varepsilon_{1}^{\prime \prime} \rho_{1}^{\prime \prime} i e^{i \varphi / 2}, \cdots, \varepsilon_{p}^{\prime \prime} \rho_{p}^{\prime \prime} i e^{i \varphi / 2}\right),
\end{aligned}
$$

where each ε is ± 1 and each $\rho>0$. Restoring subscripts, we have that $E_{2 p_{j}}$ is unitarily similar to $E_{p_{j}}^{\prime}+E_{p_{j}}^{\prime \prime}$, where

$$
\begin{align*}
& E_{p_{j}}^{\prime}=\operatorname{diag}\left(\varepsilon_{j 1}^{\prime} \rho_{j 1}^{\prime} i e^{-i \varphi_{j} / 2}, \cdots, \varepsilon_{j p_{j}}^{\prime} \rho_{j p_{j}}^{\prime} i e^{-i \varphi_{j} / 2}\right), \tag{74}\\
& E_{p_{j}}^{\prime \prime}=\operatorname{diag}\left(\varepsilon_{j 1}^{\prime \prime} \rho_{j 1}^{\prime \prime} i e^{i \varphi_{j} / 2}, \cdots, \varepsilon_{j p_{j}}^{\prime \prime} \rho_{j p_{j}}^{\prime \prime} i e^{i \varphi_{j} / 2}\right) \tag{75}
\end{align*}
$$

We ask: can it happen that $E_{2 p_{j}}$ has a real eigenvalue? If so, for some choice of the \pm signs,

$$
\pm i e^{ \pm i \varphi_{j} / 2}= \pm 1
$$

hence

$$
e^{i \varphi_{j}}=-1
$$

This is not so owing to the classification of eigenvalues made in (61). We ask: can it happen that $E_{2 p_{j}}$ has a pure imaginary eigenvalue? If so

$$
\pm i e^{ \pm i \varphi_{j} / 2}= \pm i
$$

hence

$$
e^{i \varphi_{j}}=1
$$

Again, this is not so because of the choices made in (61). We ask: if λ is an eigenvalue of $E_{2 p_{j}}$, can any of $\lambda,-\lambda, \bar{\lambda},-\bar{\lambda}$ be an eigenvalue of $E_{2 p_{s}}$, for $s \neq j$? If so

$$
\pm i e^{ \pm i \varphi_{j} / 2}= \pm i e^{ \pm i \omega_{s} / 2}
$$

hence

$$
e^{i \omega_{j}}=e^{ \pm i \omega_{s}}
$$

This means that $\Phi_{2 p_{j}}\left(\varphi_{j}\right)$ and $\Phi_{2 p_{s}}\left(\varphi_{s}\right)$ have a common eigenvalue, which is not so.

Now we know that the eigenvalues of (69) partition into sets of the three types: $\pm r$ (real); $\pm r i$ (r real); $\lambda, \bar{\lambda},-\lambda,-\bar{\lambda}(\lambda$ not real or pure imaginary). But $-B_{\beta}^{T}$ can have only real eigenvalues and the $E_{2 p_{j}}^{T}$ can have only eigenvalues not on the real or imaginary axes. Thus each of the direct sums in (69) must have its eigenvalues classify into sets of the three types, with only the type $\pm r$ (r real) possible for $-B_{\beta}^{T}$, and only the type $\lambda,-\lambda, \bar{\lambda},-\bar{\lambda}$ (λ not real or pure imaginary) possible for each $E_{2 p_{j}}$. Thus degree B_{β} is even and degree $E_{2 p_{j}} \equiv 0(\bmod 4)$. Hence each p_{i} is even.

Thus we know in (61) that β is even and each p_{i} is even. Since degree N is even, it follows that α is even also.

Now, in (61), the direct summands I_{α} and $\Omega_{2 m_{i}}\left(r_{i}\right), 1 \leqq i \leqq u$, can be classified under type (7) (possibly $r=1$ in type (7)). The direct summands $-I_{\beta}$ and $\Omega_{2 k_{i}}\left(-s_{i}\right), 1 \leqq i \leqq v$, can be classified under type (8) (possibly $r=1$ in type (8)). Because p_{i} in even, the direct summand $\Phi_{2 p_{i}}\left(\varphi_{i}\right)$ can be classified as $p_{i} / 2$ copies of the type (53) (with $r=1$ in (53)); $1 \leqq i \leqq w$. And the direct summand $\Psi_{4 q_{i}}\left(R_{i}, \varphi_{i}\right)$ can also be classified as a direct sum of q_{i} copies of type (53); $1 \leqq i \leqq t$. We have thus established that the condition of the theorem is necessary.

To establish the converse, it suffices to assume that N is (7), or (8), or (53). If $N=\operatorname{diag}\left(r, r^{-1}\right)$, set $S=\operatorname{diag}(r, 1)$ and

$$
K=\left[\begin{array}{rr}
0 & 1 \tag{76}\\
-1 & 0
\end{array}\right]
$$

Then (56) holds, N and S are commutative, and K is orthogonal and skew symmetric. If $N=\operatorname{diag}\left(-r,-r^{-1}\right)$, set $S=\operatorname{diag}(-r, 1)$, define K by (76). Then again (56) holds, S is symmetric and commutative with N, and K is orthogonal and skew. If N is given by (53) set $S=\operatorname{diag}\left(G(\psi), r^{-1} G(\varphi+2 \theta-\psi)\right)$, and put

$$
K=\left[\begin{array}{cc}
0 & G(\theta) \\
-G(\theta) & 0
\end{array}\right]
$$

Using Lemma 3.3 one easily computes that for any choice of the angles ψ and θ, we have $N K S=S K$. This S is symmetric (and also orthogonal if $r=1$) and this K is skew orthogonal. The proof is complete.

Theorem 5.8. Let N be real and normal. If N is a commutator (56) of a symmetric S and a skew symmetric K with

$$
\begin{equation*}
N S=S N \tag{77}
\end{equation*}
$$

then N is symmetric with all eigenvalues (including 1) occurring as reciprocal pairs γ, γ^{-1}. Conversely, this condition is satisfied then N can be expressed as a commutator (56) such that (77) holds and such that K is orthogonal and skew.

Proof. Suppose that (56) and (77) hold. If we write $N=$ $S(i K) S^{-1}(i K)^{-1}$ then we may deduce from Theorem 4.2 that N is a direct sum of types (7) and (8). The converse was established in the proof of Theorem 5.7.

Theorem 5.9. Let N be real and normal. Then N is a commutator (56) of a symmetric S and a skew symmetric K such that

$$
\begin{equation*}
N K=K N \tag{78}
\end{equation*}
$$

if and only if N is orthogonally similar to a direct sum of the following three types (79), (80), (81):

$$
\begin{gather*}
\operatorname{diag}(1,1) \tag{79}\\
\operatorname{diag}(-1,-1) \tag{80}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{diag}\left(r, r, r^{-1}, r^{-1}\right), \quad r \neq 0,1,-1 \tag{81}
\end{equation*}
$$

If this condition is satisfied, S may always be taken orthogonal symmetric.

Proof. Suppose (56) and (78) hold. Then we have $N=$
$S(i K) S^{-1}(i K)^{-1}$ and $N(i K)=(i K) N$, so that by Theorem $4.2 N$ is symmetric. Thus by Theorem 5.7 we may assume

$$
N=I_{\alpha}+-I_{\beta}+\sum_{i=1}^{n} \cdot \Omega_{2 m_{i}}\left(r_{i}\right)+\sum_{i=1}^{v} \cdot \Omega_{2 k_{i}}\left(-s_{i}\right),
$$

where the r_{i} are distinct, each $r_{i}>1$, the s_{i} are distinct, and each $s_{i}>1$. Then $N K=K N$ yields

$$
K=K_{\alpha}+K_{\beta}+\sum_{i=1}^{u} \cdot\left[\begin{array}{cc}
Q_{m_{i}} & 0 \\
0 & \widetilde{Q}_{m_{i}}
\end{array}\right]+\sum_{i=1}^{v} \cdot\left[\begin{array}{cc}
T_{k_{i}} & 0 \\
0 & \widetilde{T}_{k_{i}}
\end{array}\right]
$$

Since K is skew each $Q_{m_{i}}$ and each $T_{k_{i}}$ is skew and nonsingular, hence has even degree. Thus each m_{i} and each k_{i} is even. Thus the conditions of the theorem are necessary.

For the converse it suffices to consider two cases: $N=$ $\operatorname{diag}(-1,-1)$ and $N=\operatorname{diag}\left(x, x, x^{-1}, x^{-1}\right)$ with x positive or negative. Now

$$
\operatorname{diag}(-1,-1)=\left[\begin{array}{ll}
0 & 1 \tag{82}\\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{-1}\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]^{-1}
$$

and diag $\left(x, x, x^{-1}, x^{-1}\right)=S K S^{-1} K^{-1}$ where

$$
S=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \quad K=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & x \\
0 & 0 & -x & 0
\end{array}\right]
$$

This completes the proof.
Theorem 5.10. Let N be real and normal. If N is a commutator (56) of a definite S and a skew K then N is positive definite with its eigenvalues (including 1) occurring in pairs γ, γ^{-1}. Conversely, is N satisfies these conditions then N is a commutator (56) of a definite S commutative with N and a skew orthogonal K.

Proof. Suppose (56) holds. Then from $N=S(i K) S^{-1}(i K)^{-1}$ one deduces from Theorem 4.3 that N is positive definite with the eigenvalues γ of N for which $\gamma \neq 1$ occurring in pairs γ, γ^{-1}. Since degree N is even, the multiplicity of the eigenvalue $\gamma=1$ is even, hence this eigenvalue also occurs in reciprocal pairs. For the converse it suffices to observe that

$$
\left[\begin{array}{ll}
r & 0 \\
0 & r^{-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & r^{-1}
\end{array}\right]\left[\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & r^{-1}
\end{array}\right]^{-1}\left[\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right]^{-1} .
$$

Theorem 5.11. Let N be real and normal. Then if N is a commutator (56) of a definite S and a skew K such that N and K commute, then $N=I$.

Proof. This follows from Theorem 4.4 or Theorem 1 of [5].
Theorem 5.12. Let \mathcal{O} be proper orthogonal. Then if \mathcal{O} is a commutator of a symmetric S and a skew K,

$$
\begin{equation*}
O^{0}=S K S^{-1} K^{-1} \tag{83}
\end{equation*}
$$

it follows that each eigenvalue of \mathcal{O} has even multiplicity. If S commutes with \mathcal{O} or if K commutes with \mathcal{O} then \mathcal{O} is also symmetric. If S is definite then $\mathcal{O}=I$. Conversely, if each eigenvalue of \mathcal{O} has even multiplicity, \mathcal{O} is a commutator (83) with S symmetric orthogonal and K shew orthogonal, and if \mathcal{O} is symmetric we may also make both S and K commutative with \mathcal{O}.

Proof. Suppose (83) holds. Then by Theorem $5.7 \mathcal{O}$ is orthogonally similar to a direct sum of blocks of type (7), (8), (53). Since \mathcal{O} is orthogonal, in blocks (7), (8), (53) we have $r=1$. This shows that each eigenvalue of \mathcal{O} has even multiplicity. The second result in the theorem follows from Theorems 5.8 and 5.9. The third result follows from Theorem 5.10. For the converse note that if each eigenvalue of \mathcal{O} has even multiplicity then \mathcal{O} is orthogonally similar to a direct sum of blocks of the type diag $(1,1)$, $\operatorname{diag}(-1,-1)$, $F(\varphi)+F(\varphi)$. In the proof of Theorem 5.7 it was shown how to express each of these three matrices in the form (83) with both S and K orthogonal. Moreover, if \mathcal{O} is symmetric then \mathcal{O} is orthogonally similar to a direct sum of the types diag $(1,1)$ and diag $(-1,-1)$, and one need only observe (82).

TheOrem 5.13. Let \widetilde{K} be real skew. Then \widetilde{K} is a commutator

$$
\begin{equation*}
\widetilde{K}=S K S^{-1} K^{-1} \tag{84}
\end{equation*}
$$

of a symmetric S and a skew K if and only if \widetilde{K} is orthogonally similar to a direct sum of skew matrices of the type

$$
\left[\begin{array}{rr}
0 & r \tag{85}\\
-r & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & r^{-1} \\
-r^{-1} & 0
\end{array}\right] .
$$

Here S is never definite and never commutative with \widetilde{K}, and K is never commutative with \widetilde{K}. We may, however, make K orthogonal skew.

Proof. These results follow from Theorems 5.7, 5.8, 5.9, and 5.10.

Remark. Since any skew orthogonal K with degree $K \equiv 0$ $(\bmod 4)$ is orthogonally similar to a direct sum of copies of

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]+\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

one can apply Theorems 5.12 or 5.13 to K and so build up elaborate iterated commutators of symmetric orthogonal and skew orthogonal matrices.

Theorem 5.14. Let S be real symmetric with $\operatorname{det} S=1$ and degree $S \equiv 0(\bmod 2) . \quad$ Then

$$
S=\left(S_{1} K_{1} S_{1}^{-1} K_{1}^{-1}\right)\left(S_{2} K_{2} S_{2}^{-1} K_{2}^{-1}\right)
$$

is a product of two commutators with S_{1} and S_{2} symmetric and K_{1} and K_{2} skew orthogonal. If S is positive definite we may also make S_{1} and S_{2} definite.

Proof. Use Fan's factorization to write S as a product of two symmetric matrices, each of which has its eigenvalues in reciprocal pairs. Apply Theorems 5.7 and 5.10 to the two factors.

We now present a sequence of lemmas which will prepare the way for the proofs of the next theorems.

Lemma 5.1. Any 2-square real A with positive determinant can be written as

$$
\begin{equation*}
A=S_{1} S_{2} S_{3} S_{4} \tag{86}
\end{equation*}
$$

where $S_{1}, S_{2}, S_{3}, S_{4}$ are real symmetric matrices, each with positive determinant.

Remark. It is known that any real (square) matrix is a product of two real symmetric matrices. However, it will appear below that the two factors cannot always be chosen to have positive determinant.

Proof. From (86) follows

$$
R A R^{-1}=\left(R S_{1} R^{T}\right)\left(R^{-1 T} S_{2} R^{-1}\right)\left(R S_{3} R^{T}\right)\left(R^{-1 T} S_{4} R^{-1}\right)
$$

Thus it suffices to establish the lemma for some similarity transform
(over the reals) of A. If A is scalar, $A=\alpha I$, then take $S_{1}=\alpha I$, $S_{2}=S_{3}=S_{4}=I$. If A is not scalar it is nonderogatory, hence we may suppose

$$
A=\left[\begin{array}{rl}
0 & 1 \\
-a & 2 \rho
\end{array}\right]
$$

$$
a>0
$$

First let $\rho \neq 0$. Put $x=\rho(2 a)^{-1 / 2}$. Put $X=\operatorname{diag}\left(x, x^{-1}\right)$. Then $Y=$ $A X$ has characteristic polynomial $\lambda^{2}-2 \rho x^{-1} \lambda+a$, for which the roots are $a^{1 / 2}\left(2^{1 / 2} \pm 1\right)$. Call these roots δ_{1} and δ_{2}. Both δ_{1} and δ_{2} are positive, and $\delta_{1} \neq \delta_{2}$. Moreover, diag $\left(\delta_{1}, \delta_{2}\right)$ is similar to Y. Hence $Y=Q \operatorname{diag}\left(\delta_{1}, \delta_{2}\right) Q^{-1}$. Therefore

$$
Y=\left\{Q \operatorname{diag}\left(\delta_{1}, \delta_{2}\right) Q^{T}\right\}\left\{Q^{-1 T} Q^{-1}\right\}
$$

is a product of two symmetric matrices, each of which has positive determinant. The $A=Y X^{-1} I$ is a product of four symmetric matrices, each with positive determinant.

Now let $\rho=0$. Note that

$$
a^{1 / 2}\left[\begin{array}{ll}
2 & 0 \\
0 & 2^{-1}
\end{array}\right]\left[\begin{array}{rr}
-1 & -5 \\
1 & 4
\end{array}\right]=a^{1 / 2}\left[\begin{array}{lr}
-2 & -10 \\
-2^{-1} & 0
\end{array}\right]
$$

Here diag $\left(2 a^{1 / 2}, 2^{-1} a^{1 / 2}\right)$ is a product of two symmetric matrices, each with positive determinant. And

$$
B=\left[\begin{array}{rr}
-1 & -5 \\
1 & 4
\end{array}\right]
$$

has characteristic polynomial $\lambda^{2}-3 \lambda+1$, hence is similar to a diagonal matrix B_{1} with positive diagonal entries, say $B=R B_{1} R^{-1}=$ $\left(R B_{1} R^{T}\right)\left(R^{-1 T} R^{-1}\right)$. Thus B is a product of two symmetric matrices with positive determinant. Finally,

$$
a^{1 / 2}\left[\begin{array}{cr}
-2 & -10 \\
2^{-1} & 2
\end{array}\right]
$$

has characteristic polynomial $\lambda^{2}+a$, hence is similar to

$$
\left[\begin{array}{rr}
0 & 1 \\
-a & 0
\end{array}\right]
$$

This completes the proof of the lemma.
Lemma 5.2. Let \mathcal{O} be proper orthogonal. Then $\mathcal{O}=S_{1} S_{2} S_{3} S_{4}$ where each S_{i} is real symmetric and has its eigenvalues in reciprocal pairs; $i=1,2,3,4$.

Proof. It suffices to establish this factorization when $\mathcal{O}=F(\varphi)$. By Lemma 5.1, $F(\varphi)=S_{1}^{\prime} S_{2}^{\prime} S_{3}^{\prime} S_{4}^{\prime}$ when each S_{i}^{\prime} is real symmetric with $\operatorname{det} S_{i}^{\prime}>0, \quad i=1,2,3,4$. Since $\operatorname{det} F(\varphi)=1$,

$$
\left(\operatorname{det} S_{1}^{\prime}\right)\left(\operatorname{det} S_{2}^{\prime}\right)\left(\operatorname{det} S_{3}^{\prime}\right)\left(\operatorname{det} S_{4}^{\prime}\right)=1
$$

Let $S_{i}=\left(\operatorname{det} S_{i}^{\prime}\right)^{-1 / 2} S_{i}^{\prime}, 1 \leqq i \leqq 4$. Then $\mathscr{O}=S_{1} S_{2} S_{3} S_{4}$, each S_{i} is real symmetric and has determinant one, hence its eigenvalues occur in reciprocal pairs; $1 \leqq i \leqq 4$.

Lemma 5.3. Let 2×2 real A satisfy $\operatorname{det} A=1$. Then A can be factored as in (86) when each S_{i} is real symmetric and det $S_{i}=$ $1,1 \leqq i \leqq 4$.

Proof. Apply Lemma 5.1 to A and insert scalar factors as in the proof of Lemma 5.2.

Lemma 5.4. Let S_{1}, S_{2}, S_{3} be real symmetric with positive determinant. Then

$$
\left[\begin{array}{rr}
0 & 1 \tag{87}\\
-1 & 0
\end{array}\right]=S_{1} S_{2} S_{3}
$$

is impossible.
Proof. Suppose (87) holds. Let

$$
S_{3}^{-1}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] .
$$

Then from (87) we get

$$
\left[\begin{array}{rr}
b & c \tag{88}\\
-a & -b
\end{array}\right]=S_{1} S_{2}
$$

The left member of (88) has zero trace. On the right side of (88), S_{1} and S_{2} each are definite (since each has positive determinant). By inserting two factors -1 , we may take S_{1} positive definite. Then $S_{1} S_{2}$ has the same eigenvalues as $S_{1}^{1 / 2} S_{2} S_{1}^{1 / 2}$. Thus, by the law of inertia, both eigenvalues of $S_{1} S_{2}$ are positive, or both are negative. Hence $\operatorname{tr} S_{1} S_{2}=0$ is impossible.

Theorem 5.15. Let A be real and $\operatorname{det} A=1$.
(i) If A is 2-square then A is a product of four commutators

$$
A=\prod_{i=1}^{4}\left(S_{i} K_{i} S_{i}^{-1} K_{i}^{-1}\right)
$$

where each S_{i} is real symmetric and each K_{i} is real skew orthogonal.
(ii) If A is $2 n$-square with $n>1, A$ is a product of six commutators

$$
\begin{equation*}
A=\prod_{i=1}^{6}\left(S_{i} K_{i} S_{i}^{-1} K_{i}^{-1}\right) \tag{89}
\end{equation*}
$$

where each S_{i} is real symmetric and each K_{i} is real skew orthogonal.
(iii) It is impossible that

$$
\left[\begin{array}{rr}
0 & 1 \tag{90}\\
-1 & 0
\end{array}\right]=\prod_{i=1}^{3}\left(S_{i} K_{i} S_{i}^{-1} K_{i}^{-1}\right)
$$

where each S_{i} is real symmetric and each K_{i} is real skew.
Proof. (i) By Lemma 5.3, $A=S_{1} S_{2} S_{3} S_{4}$ where each S_{i} is real symmetric with $\operatorname{det} S_{i}=1$. By Theorem 5.7 each S_{i} is a commutator of a real symmetric matrix with a real skew orthogonal matrix.
(ii) Let $A=\mathcal{O} S$ be the polar factorization of A. Then $\operatorname{det} \mathscr{O}=$ $\operatorname{det} S=1$. By Theorem 5.14,

$$
S=\left(S_{1} K_{1} S_{1}^{-1} K_{1}^{-1}\right)\left(S_{2} K_{2} S_{2}^{-1} K_{2}^{-1}\right)
$$

where S_{1} and S_{2} are real symmetric and K_{1} and K_{2} are real skew orthogonal. By Lemma 5.2, $\mathcal{O}=S_{3}^{\prime} S_{4}^{\prime} S_{5}^{\prime} S_{6}$ where $S_{3}^{\prime}, S_{4}^{\prime}, S_{5}^{\prime}, S_{6}^{\prime}$ are each symmetric with eigenvalues occurring in reciprocal pairs. By Theorem 5.7 we have

$$
S_{i}^{\prime}=S_{i} K_{i} S_{i}^{-1} K_{i}^{-1}, \quad 3 \leqq i \leqq 6
$$

with each S_{i} real symmetric and each K_{i} real skew orthogonal.
(iii) First note that for 2×2 matrices, if S is symmetric and K is skew, then $S K S^{-1} K^{-1}$ is symmetric. Thus, if (90) were true, the matrix

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

would be a product of three symmetric matrices, each with positive determinant. This contradicts Lemma 5.4.

This completes our discussion of commutators of the form $S K S^{-1} K^{-1}$. The next natural question is to discuss commutators of the form $K_{1} K_{2} K_{1}^{-1} K_{2}^{-1}$. This discussion is contained in Part II of this paper.
6. The commutator of a normal and a unitary matrix. In this section we give the following theorem, first proved by Fan.

Theorem 6.1. A normal matrix N with $\operatorname{det} N=1$ is a commutator

$$
N=N_{1} U N_{1}^{-1} U^{-1}
$$

where U is unitary and N_{1} is normal and commutative with N. If N is Hermitian, positive definite Hermitian, or unitary, we may, in addition, choose N_{1} to be Hermitian, positive definite Hermitian, or unitary, respectively. If N is real symmetric or symmetric positive definite we may choose U to be real orthogonal and N_{1} to be symmetric or symmetric definite, respectively, and still commutative with N.

Proof. Let $N=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. Then put

$$
N_{1}^{-1}=\operatorname{diag}\left(1, \lambda_{1}, \lambda_{1} \lambda_{2}, \cdots, \lambda_{1} \lambda_{2} \cdots \lambda_{n-1}\right)
$$

Put $U=[1,1, \cdots, 1]_{n}$. Then $N_{1}^{-1}=U N_{1}^{-1} U^{-1}$. Hence $N=N_{1} U N_{1}^{-1} U^{-1}$, and N_{1} commutes with N. The other assertions of the theorem follow easily.
7. The commutator of a Hermitian matrix and a unitary matrix.

Theorem 7.1. Let N be normal. Then N is a commutator of a Hermitian H and a unitary U,

$$
\begin{equation*}
N=H U H^{-1} U^{-1} \tag{91}
\end{equation*}
$$

if and only if:
(i) The characteristic polynomial of N is real. Let

$$
\lambda_{1}, \bar{\lambda}_{1}, \cdots, \lambda_{t}, \bar{\lambda}_{t}
$$

be the nonreal eigenvalues of N, and let $\lambda_{t+1}, \cdots, \lambda_{k}$ be the real eigenvalues.
(ii) Nonzero real numbers $h_{1}, h_{2}, \cdots, h_{t}, h_{t+1}, \cdots, h_{k}$ exist such that the numbers

$$
\begin{gather*}
\left|\lambda_{1}\right| h_{1},-\left|\lambda_{1}\right| h_{1},\left|\lambda_{2}\right| h_{2},-\left|\lambda_{2}\right| h_{2}, \cdots,\left|\lambda_{t}\right| h_{t},-\left|\lambda_{t}\right| h_{t}, \tag{92}\\
\lambda_{t+1} h_{t+1}, \lambda_{t+2} h_{t+2}, \cdots, \lambda_{k} h_{k}
\end{gather*}
$$

are the same as the numbers

$$
\begin{equation*}
h_{1},-h_{1}, h_{2},-h_{2}, \cdots, h_{t},-h_{t}, h_{t+1}, h_{t+2}, \cdots, h_{k} \tag{93}
\end{equation*}
$$

except for order.
If N is real and conditions (i) and (ii) hold, we may take H to be real symmetric and U to be real orthogonal.

Proof. Suppose (91) holds. Then

$$
\begin{equation*}
N^{*}=H^{-1} N H . \tag{94}
\end{equation*}
$$

Thus if λ is a nonreal eigenvalue of N with a certain multiplicity, $\bar{\lambda}$ is also an eigenvalue of N, with the same multiplicity. Thus after a unitary similarity of (91), we may assume

$$
\begin{equation*}
N=\sum_{i=1}^{t} \cdot\left(\gamma_{i} I_{i}+\bar{\gamma}_{i} I_{i}\right)+\sum_{i=t+1}^{k} \rho_{i} I_{i}, \tag{95}
\end{equation*}
$$

where the $\gamma_{i}, \bar{\gamma}_{i}$ are nonreal and distinct, $1 \leqq i \leqq t$, and the ρ_{i} are real and distinct, $t<i \leqq k$. Then using (95), $H N^{*}=N H$ yields

$$
H=\sum_{i=1}^{t} \cdot\left[\begin{array}{cc}
0 & M_{i} \tag{96}\\
M_{i}^{*} & 0
\end{array}\right]+\sum_{i=i+1}^{k} H_{i} .
$$

Thus

$$
N^{-1} H=\sum_{i=1}^{t} \cdot\left[\begin{array}{cc}
0 & \gamma_{i}^{-1} M_{i} \tag{97}\\
\bar{\gamma}_{i}^{-} M_{i}^{*} & 0
\end{array}\right]+\sum_{i=t+1}^{k} \rho_{i}^{-1} H_{i} .
$$

Since $N^{-1} H=U H U^{-1}, N^{-1} H$ and H have the same eigenvalues. Let $h_{i 1}^{2}, h_{i 2}^{2}, \cdots$ be the eigenvalues of $M_{i} M_{i}^{*}, 1 \leqq i \leqq t$, and let $h_{i 1}, h_{i 2}, \cdots$ be the eigenvalues of $H_{i}, t<i \leqq k$. Using Lemma 3.5 we find that the eigenvalues of $N^{-1} H$ are

$$
\begin{aligned}
& \left|\gamma_{1}\right|^{-1} h_{11},-\left|\gamma_{1}\right|^{-1} h_{11},\left|\gamma_{1}\right|^{-1} h_{12},-\left|\gamma_{1}\right|^{-1} h_{12}, \cdots, \\
& \left|\gamma_{t}\right|^{-1} h_{t 1},-\left|\gamma_{t}\right|^{-1} h_{t 1},\left|\gamma_{t}\right|^{-1} h_{t 2},-\left|\gamma_{t}\right|^{-1} h_{t 2}, \cdots, \\
& \rho_{t+1}^{-1} h_{t+1,1},
\end{aligned}, \sigma_{t+1}^{-1} h_{t+1,2}, \cdots, \rho_{k}^{-1} h_{k 1}, \rho_{k}^{-1} h_{k 2}, \cdots,
$$

and the eigenvalues of H are

$$
\begin{gathered}
h_{11},-h_{11}, h_{12},-h_{12}, \cdots, h_{t 1},-h_{t 1}, h_{t 2},-h_{t 2}, \cdots, \\
h_{t+1,1}, h_{t+1,2}, \cdots, h_{k 1}, h_{k 2}, \cdots .
\end{gathered}
$$

After taking inverses and changing notation, we obtain that the second condition of the theorem is necessary.

Conversely, the conditions of the theorem imply that nonzero real numbers $h_{1}, h_{2}, \cdots, h_{t}, \cdots, h_{k}$ exist such that the numbers

$$
\begin{equation*}
\pm\left|\lambda_{1}\right|^{-1} h_{1}, \pm\left|\lambda_{2}\right|^{-1} h_{2}, \cdots, \pm\left|\lambda_{t}\right|^{-1} h_{t}, \lambda_{t+1}^{-1} h_{t+1}, \lambda_{t+2}^{-1} h_{t+2}, \cdots, \lambda_{k}^{-1} h_{k} \tag{98}
\end{equation*}
$$

are a rearrangement of the numbers

$$
\begin{equation*}
\pm h_{1}, \pm h_{2}, \cdots, \pm h_{t}, h_{t+1}, h_{t+2}, \cdots, h_{k} . \tag{99}
\end{equation*}
$$

Let $\lambda_{j}=r_{j} \exp \left(-i \varphi_{j}\right), 1 \leqq j \leqq t$. After a unitary similarity we may assume

$$
N=\sum_{i=1}^{t} \cdot r_{i} F\left(\varphi_{i}\right)+\operatorname{diag}\left(\lambda_{t+1}, \cdots, \lambda_{k}\right)
$$

Let

$$
H=\sum_{i=1}^{t} \cdot\left[\begin{array}{ll}
0 & h_{i} \\
h_{i} & 0
\end{array}\right]+\operatorname{diag}\left(h_{t+1}, \cdots, h_{k}\right) .
$$

The eigenvalues of H are the numbers (99). We find that

$$
N^{-1} H=\sum_{i=1}^{t} \cdot r_{i}^{-1} h_{i} G\left(-\varphi_{i}\right)+\operatorname{diag}\left(\lambda_{t+1}^{-1} h_{t+1}, \cdots, \lambda_{k}^{-1} h_{k}\right)
$$

The eigenvalues of $N^{-1} H$ are the numbers (98). Since $N^{-1} H$ and H are two real symmetric matrices with the same eigenvalues, an orthogonal \mathcal{O} exists such that $N^{-1} H=\mathscr{O} H^{-1}$. Hence $N=$ $H O^{\circ} H^{-1} \mathcal{O}^{-1}$, as required.

Theorem 7.2. Suppose normal N is a commutator (91) of a Hermitian H and a unitary U, such that

$$
\begin{equation*}
N H=H N \tag{100}
\end{equation*}
$$

Then N is Hermitian and $\operatorname{det} N=1$. The converse assertion is contained in Theorem 6.1.

Proof. From (94) and (100) follows $N^{*}=N$.
Theorem 7.3. (i) Let N be normal. If N is a commutator (91) of a Hermitian H and a unitary U such that

$$
\begin{equation*}
N U=U N \tag{101}
\end{equation*}
$$

then N is unitary, N has real characteristic polynomial, and $\operatorname{det} N=1$. Conversely, if N is unitary with real characteristic polynomial and $\operatorname{det} N=1$, then N is a commutator (91) with H Hermitian unitary and U unitary and commutative with N.
(ii) Let \mathcal{O} be proper orthogonal. Then \mathcal{O} is a commutator $\mathcal{O}=S \mathcal{O}_{1} S^{-1} \mathscr{O}_{1}^{-1}$ of a symmetric orthogonal S and a proper orthogonal \mathcal{O}_{1} with \mathcal{O}_{1} commutative with \mathcal{O}.

Remark. For unitary matrices, Theorem 7.3 improves Theorem 7.1.

Proof. Suppose (91) and (101) hold. Then, as in the proof of Theorem 7.1 we obtain (95) and (96). Because of (101),

$$
U=\sum_{i=1}^{t} \cdot \operatorname{diag}\left(U_{i}, \widetilde{U}_{i}\right)+\sum_{i=t+1}^{k} \cdot U_{i}
$$

Then $N U H=H U$ yields

$$
\begin{align*}
& \sum_{i=1}^{t} \cdot\left[\begin{array}{cc}
0 & \gamma_{i} U_{i} M_{i} \\
\bar{\gamma}_{i} \widetilde{U}_{i} M_{i}^{*} & 0
\end{array}\right]+\sum_{i=t+1}^{k} \cdot \rho_{i} U_{i} H_{i} \tag{102}\\
= & \sum_{i=1}^{t} \cdot\left[\begin{array}{cc}
0 & M_{i} \widetilde{U}_{i} \\
M_{i}^{*} U_{i} & 0
\end{array}\right]+\sum_{i=t+1}^{k} \cdot H_{i} U_{i} .
\end{align*}
$$

Comparing the two sides of (102), we obtain

$$
\left|\gamma_{i}\right|^{2} M_{i}^{-1} U_{i} M_{i}=M_{i}^{*} U_{i} M_{i}^{*-1}, \quad 1 \leqq i \leqq t
$$

hence, by taking determinants, $\left|\gamma_{i}\right|=1 ; 1 \leqq i \leqq t$. We also get $\rho_{i} U_{i} H_{i}=H_{i} U_{i}$, hence by taking determinants, we find $\rho_{i}= \pm 1$. This proves that N is unitary. By Theorem 7.1 we already know that N has real characteristic polynomial.

To establish the converse we notice that if N is unitary with real characteristic polynomial and $\operatorname{det} N=1$, then N is unitarily similar to a direct sum of copies of $F(\phi)$ and an identity matrix. We therefore need only notice that by Lemma 3.3

$$
F(\varphi)=G(\theta) F(-\varphi / 2) G(\theta)^{-1} F(-\varphi / 2)^{-1}
$$

for any choice of θ, and $F(\phi)$ and $F(-\varphi / 2)$ commute. Here $G(\theta)$ is, of course, symmetric orthogonal.

Theorem 7.4. Let N be normal. If N is a commutator (91) of a definite H and a unitary U then N is positive definite Hermitian and det $N=1$. The converse assertion is contained in Theorem 6.1.

Proof. Since $N=H\left(U H^{-1} U^{-1}\right)$ is a product of the two positive definite Hermitian matrices H and $U H U^{*}$, it follows from Lemma 3.1 (iii) that N has all eigenvalues positive. Therefore N is positive definite Hermitian.

Theorem 7.5. Let normal N be a commutator (91) of a definite H and a unitary U such that (101) holds. Then $N=I$.

Proof. By Theorem 7.4 N is positive definite. By Theorem 7.3 N is unitary. Hence $N=I$. Theorem 7.5 is a special case of Theorem 1 of [4].

Theorem 7.6. Let K be real skew with $\operatorname{det} K=1$. Then K is a commutator,

$$
\begin{equation*}
K=S \mathscr{O} S^{-1} \mathscr{O}^{-1} \tag{103}
\end{equation*}
$$

with S real symmetric and \mathcal{O} orthogonal. Moreover S is never definite and never commutative with $K . \Omega$ can be chosen to be commutative with K if and only if K is also orthogonal.

Proof. Let $\pm r_{1} i, \pm r_{2} i, \cdots, \pm r_{t} i$ be the eigenvalues of K, with $r_{1}, r_{2}, \cdots, r_{t}$ each positive. Then $\operatorname{det} K=1$ implies $r_{1} r_{2} \cdots r_{t}=1$. Let $h_{1}=1, h_{2}=r_{1}, h_{3}=r_{1} r_{2}, \cdots, h_{t}=r_{1} r_{2} \cdots r_{t-1}$. Then the numbers $\pm r_{1} h_{1}, \pm r_{2} h_{2}, \cdots, \pm r_{t} h_{t}$ are a rearrangement of the numbers $\pm h_{1}$, $\pm h_{2}, \cdots, \pm h_{t}$. Apply Theorems 7.1-7.5.

Theorem 7.7. Let θ be a nonreal number with $|\theta|=1$. Let H be Hermitian. If

$$
\begin{equation*}
\theta H=H_{1} U H_{1}^{-1} U^{-1} \tag{104}
\end{equation*}
$$

is a commutator of Hermitian H_{1} and unitary U then $\theta= \pm i$ and $i H$ is unitarily similar to a real skew symmetric K for which $\operatorname{det} K=1$.

Proof. Suppose (104) holds. Then, by Theorem 7.1, for certain eigenvalues λ_{1} and λ_{2} of H, we have $\theta \lambda_{1}=r e^{i \varphi}, \theta \lambda_{2}=r e^{-i \varphi}$. Then $\theta\left(\lambda_{1}+\lambda_{2}\right)=2 r \cos \varphi$. This implies θ is real unless it happens that $\lambda_{2}=-\lambda_{1}$ and $\varphi= \pm \pi / 2$. Then it must be true that $\theta= \pm i$. Moreover it follows that if λ_{1} is an eigenvalue of H with a certain multiplicity, $-\lambda_{1}$ is also an eigenvalue with the same multiplicity. Thus, after a change of notation, $i H$ is unitarily similar to

$$
\operatorname{diag}\left(r_{1} i,-r_{1} i, r_{2} i,-r_{2} i, \cdots, r_{t} i,-r_{t} i\right)
$$

which in turn is unitarily similar to

$$
K=\sum_{j=1}^{t} \cdot\left[\begin{array}{cc}
0 & r_{j} \\
-r_{j} & 0
\end{array}\right]
$$

Theorem 7.8. Let U be unitary with $\operatorname{det} U=1$. Then

$$
\begin{equation*}
U=\left(H_{1} U_{1} H_{1}^{-1} U_{1}^{-1}\right)\left(H_{2} U_{2} H_{2}^{-1} U_{2}^{-1}\right) \tag{105}
\end{equation*}
$$

is a product of two commutators, with H_{1} and H_{2} Hermitian unitary and U_{1} and U_{2} unitary. If U is 2-square, one commutator suffices in (105).

Proof. By Fan's factorization $U=V W$ where the eigenvalues of V and W occur in reciprocal pairs. Apply Theorem 7.3 to V and W. If U is 2 -square the eigenvalues of U must appear in reciprocal pairs.

Theorem 7.9. Let A be complex with $\operatorname{det} A=1$. Then

$$
\begin{equation*}
A=\left(H_{1} U_{1} H_{1}^{-1} U_{1}^{-1}\right)\left(H_{2} U_{2} H_{2}^{-1} U_{2}^{-1}\right)\left(H_{3} U_{3} H_{3}^{-1} U_{3}^{-1}\right) \tag{106}
\end{equation*}
$$

where H_{1} is positive definite Hermitian, H_{2} and H_{3} are Hermitian unitary, and U_{1}, U_{2}, U_{3} are unitary. If A is 2-square, (106) may be improved to

$$
\begin{equation*}
A=\left(H_{1} U_{1} H_{1}^{-1} U_{1}^{-1}\right)\left(H_{2} U_{2} H_{2}^{-1} U_{2}^{-1}\right) \tag{107}
\end{equation*}
$$

where $H_{1}, U_{1}, H_{2}, U_{2}$ are as just stated. If A is real, (106) may be improved to

$$
\begin{equation*}
A=\left(S_{1} \mathscr{O}_{1} S_{1}^{-1} \mathscr{O}_{1}^{-1}\right)\left(S_{2} \mathscr{O}_{2} S_{2}^{-1} \mathscr{O}_{2}^{-1}\right), \tag{108}
\end{equation*}
$$

where S_{1} is positive definite symmetric, S_{2} is orthogonal symmetric, and \mathscr{O}_{1} and \mathcal{O}_{2} are orthogonal.

Proof. Let $A=H U$ be the polar factorization of A. Apply Theorem 6.1 to H and Theorem 7.8 to U. If A is real, write $A=S \varnothing$ and apply Theorem 6.1 to S and Theorem 7.3 to \mathcal{O}.

We next investigate commutators of the form $K \mathcal{O}^{-1} \mathscr{O}^{-1}$.
Theorem 7.10. Let N be real and normal. Then N is a commutator,

$$
\begin{equation*}
N=K \mathscr{O} K^{-1} \mathscr{O}^{-1} \tag{109}
\end{equation*}
$$

of a skew K and an orthogonal \mathcal{O} if and only if:
(i) Each eigenvalue of N has even multiplicity. Let

$$
\begin{equation*}
\lambda_{1}, \lambda_{1}, \bar{\lambda}_{1}, \bar{\lambda}_{1}, \lambda_{2}, \lambda_{2}, \bar{\lambda}_{2}, \bar{\lambda}_{2}, \cdots, \lambda_{u}, \lambda_{u}, \bar{\lambda}_{u}, \bar{\lambda}_{u} \tag{110}
\end{equation*}
$$

be the nonreal eigenvalues of N, and let

$$
\begin{equation*}
\lambda_{u+1}, \lambda_{u+1}, \lambda_{u+2}, \lambda_{u+2}, \cdots, \lambda_{k}, \lambda_{k} \tag{111}
\end{equation*}
$$

be the real eigenvalues of N.
(ii) Positive real numbers $h_{1}, h_{2}, \cdots, h_{u}, h_{u+1}, h_{u+2}, \cdots, h_{k}$ exist such that the numbers

$$
\begin{gather*}
\left|\lambda_{1}\right| h_{1},\left|\lambda_{1}\right| h_{1},\left|\lambda_{2}\right| h_{2},\left|\lambda_{2}\right| h_{2}, \cdots,\left|\lambda_{u}\right| h_{u},\left|\lambda_{u}\right| h_{u}, \tag{112}\\
\left|\lambda_{u+1}\right| h_{u+1},\left|\lambda_{u+2}\right| h_{u+2}, \cdots,\left|\lambda_{k}\right| h_{k}
\end{gather*}
$$

are the same as the numbers

$$
\begin{equation*}
h_{1}, h_{1}, h_{2}, h_{2}, \cdots, h_{u}, h_{u}, h_{u+1}, h_{u+2}, \cdots, h_{k} \tag{113}
\end{equation*}
$$

except for order.

Proof. Suppose that (109) holds. After an orthogonal similarity of N, K, \mathcal{O}, we may assume that

$$
\begin{equation*}
N=\sum_{i=1}^{n} \cdot r_{i} \Phi_{2 m_{i}}\left(\varphi_{i}\right)+\sum_{i=u+1}^{v} \cdot R_{i} I_{\alpha_{i}}+\sum_{i=v+1}^{w} \cdot-R_{i} I_{\alpha_{i}} \tag{114}
\end{equation*}
$$

Here in (114), and throughout this proof, a subscript on a matrix denotes the degree of the matrix. In (114) the R_{i} and r_{i} are positive, distinct direct summands do not have any common eigenvalue, and each $\Phi_{2 m_{i}}\left(\varphi_{i}\right)$ has no real eigenvalue.

From (109) we obtain

$$
\begin{equation*}
K N^{T}=N K \tag{115}
\end{equation*}
$$

From (114) and (115) we obtain a partitioning of K, as follows:

$$
\begin{equation*}
K=\operatorname{diag}\left(K_{2 m_{1}}, K_{2 m_{2}}, \cdots, K_{2 m_{u}}, K_{\alpha_{u+1}}, \cdots, K_{\alpha_{w}}\right) \tag{116}
\end{equation*}
$$

In (116) each direct summand is a nonsingular skew matrix; hence in particular $\alpha_{u+1}, \cdots, \alpha_{w}$ are each even. Thus each R_{i} and each $-R_{i}$ has even multiplicity.

We now fix our attention on $K_{2 m_{1}}$. From (115) $K_{2 m_{1}}$ satisfies

$$
K_{2 m_{1}} \Phi_{2 m_{1}}\left(-\varphi_{1}\right)=\Phi_{2 m_{1}}\left(\varphi_{1}\right) K_{2 m_{1}}
$$

To relieve the notation, let us drop the subscript 1, and write

$$
\begin{equation*}
K_{2 m} \Phi_{2 m}(-\varphi)=\Phi_{2 m}(\varphi) K_{2 m} \tag{117}
\end{equation*}
$$

Partition $K_{2 m}=\left(M_{\mu_{\nu}}\right)_{1 \leqq \mu \nu \nu m}$ into 2×2 submatrices $M_{\mu \nu}$. Fix momentarily μ and ν, and let

$$
M_{\mu \nu}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then (117) yields $M_{\mu \nu} F(-\varphi)=F(\varphi) M_{\mu_{\nu}}$, hence $b \sin \varphi=c \sin \varphi$ and $-a \sin \varphi=d \sin \varphi$. Since $\sin \varphi \neq 0$ (because $\Phi_{2 m}(\varphi)$ does not have real eigenvalues), we obtain that $b=c$ and $d=-a$. Restoring μ and ν, we thus have

$$
M_{\mu \nu}=\left[\begin{array}{rr}
a_{\mu_{\nu}} & b_{\mu \nu} \\
b_{\mu \nu} & -a_{\mu \nu}
\end{array}\right], \quad 1 \leqq \mu, \nu \leqq m
$$

Let V be the 2 -square unitary matrix

$$
V=2^{-1 / 2}\left[\begin{array}{rr}
1 & 1 \\
i & -i
\end{array}\right]
$$

Note that $V^{*} F(\varphi) V=\operatorname{diag}\left(e^{i \varphi}, e^{-i \varphi}\right)$, and that

$$
V^{*} M_{\mu \nu} V=\left[\begin{array}{cc}
0 & z_{\mu \nu} \\
\bar{z}_{\mu_{\nu}} & 0
\end{array}\right], \quad 1 \leqq \mu, \nu \leqq m,
$$

where $z_{\Delta \nu}=a_{\mu \nu}-i b_{\mu \nu}$. Let $V_{2 m}$ be the direct sum of m copies of V. Then we have

$$
V_{2 m}^{*} K_{2 m} V_{2 m}=\left[\left[\begin{array}{cc}
0 & z_{\mu \nu} \tag{118}\\
\bar{z}_{\mu \nu} & 0
\end{array}\right]\right]_{1 \leq \mu, \nu \leq m},
$$

$$
\begin{equation*}
V_{2 m}^{*} \Phi_{2 m}(\varphi) V_{2 m}=\operatorname{diag}\left(e^{i \varphi}, e^{-i \varphi}, e^{i \varphi}, e^{-i \varphi}, \cdots, e^{i \varphi}, e^{-i \varphi}\right) . \tag{119}
\end{equation*}
$$

Let $W_{2 m}$ be the $2 m$-square permutation matrix such that for any $2 m$-square matrix M, the rows of $W_{2 m}^{T} M W_{2 m}$ are the rows of M in the order

$$
\begin{equation*}
1,3,5, \cdots, 2 m-1,2,4,6, \cdots, 2 m, \tag{120}
\end{equation*}
$$

and the columns of $W_{2 m}^{r} M W_{2 m}$ are the columns of M in the order (120). Then

$$
W_{2 m}^{*} V_{2 m}^{*} K_{2 m} V_{2 m} W_{2 m}=\left[\begin{array}{ll}
0 & Z_{m} \tag{121}\\
\bar{Z}_{m} & 0
\end{array}\right],
$$

where $Z_{m}=\left(z_{\mu \nu}\right)_{1 \leq \mu, \nu \leq m}$, and

$$
\begin{equation*}
W_{2 m}^{*} V_{2 m}^{*} \Phi_{2 m}(\mathcal{P}) V_{2 m} W_{2 m}=e^{i i} I_{m}+e^{-i \varphi} I_{m} . \tag{122}
\end{equation*}
$$

In (121) because $K_{2 m}$ is skew symmetric,

$$
\left[\begin{array}{ll}
0 & Z_{m} \\
\bar{Z}_{m} & 0
\end{array}\right]
$$

is skew Hermitian. Hence, $Z_{m}^{T}=-Z_{m}$, that is Z_{m} is complex skew symmetric.

Returning now to (109), (114), we let

$$
U=\sum_{t=1}^{n} \cdot V_{2 m_{t}} W_{2 m_{t}}+\sum_{t=u+1}^{w} \cdot I_{\alpha_{t}} .
$$

From (109), (114), (121), (122) we get

$$
\begin{align*}
& U^{*} N^{-1} U= \sum_{t=1}^{u} \cdot \operatorname{diag}\left(r_{t}^{-1} e^{-i \phi_{t}} I_{m_{t}}, r_{t}^{-1} e^{i \varphi_{t} I_{m_{t}}}\right) \\
&+\sum_{t=u+1}^{v} R_{t}^{-1} I_{\alpha_{t}}+\sum_{t=v+1}^{w}-R_{t}^{-1} I_{\alpha_{t}}, \\
& U^{*} K U=\sum_{t=1}^{u} \cdot\left[\begin{array}{ll}
0 & Z_{m_{t}} \\
\bar{Z}_{m_{t}} & 0
\end{array}\right]+\sum_{t=u+1}^{v} K_{\alpha_{t}}+\sum_{t=v+1}^{w} \sum_{\alpha_{t}}^{w}, \tag{123}
\end{align*}
$$

$$
\begin{align*}
U^{*} N^{-1} K U= & \sum_{t=1}^{u} \cdot\left[\begin{array}{cc}
0 & r_{t}^{-1} e^{-i \varphi_{t}} Z_{m_{t}} \\
r_{t}^{-1} e^{i \varphi_{t}} \bar{Z}_{m_{t}} & 0
\end{array}\right] \tag{124}\\
& +\sum_{t=u+1}^{v} \cdot R_{t}^{-1} K_{\alpha_{t}}+\sum_{t=v+1}^{w}-R_{t}^{-1} K_{\alpha_{t}}
\end{align*}
$$

Since $N^{-1} K=\mathscr{O} K \mathscr{O}^{-1}$, (123) and (124) have the same eigenvalues. We therefore proceed to evaluate the eigenvalues of a matrix of the form

$$
\left[\begin{array}{cc}
0 & \gamma Z \tag{125}\\
\bar{\gamma} \bar{Z} & 0
\end{array}\right]
$$

where Z is complex skew symmetric, m-square, nonsingular, and $\gamma \neq 0$. By Lemma 3.7 a unitary T exists such that

$$
T Z T^{T}=\sum_{i=1}^{r} \cdot\left[\begin{array}{rr}
0 & \rho_{i} \\
-\rho_{i} & 0
\end{array}\right]+0, \quad \rho_{i}>0 \text { for } 1 \leqq i \leqq r .
$$

Since Z is nonsingular, m must be even, and

$$
T Z T^{T}=\sum_{i=1}^{m / 2} \cdot\left[\begin{array}{cc}
0 & \rho_{i} \\
-\rho_{i} & 0
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& {\left[\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \gamma Z
\end{array}\right]\left[\begin{array}{cc}
0 & \gamma Z \\
\bar{\gamma} \bar{Z} & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \gamma Z
\end{array}\right]^{-1}\left[\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right]^{*} } \\
= & {\left[\begin{array}{cc}
0 & I \\
|\gamma|^{2}\left(T Z T^{T}\right) \overline{\left(T Z T^{T}\right)} & 0
\end{array}\right] . }
\end{aligned}
$$

Thus (125) has the same eigenvalues as

$$
\left[\begin{array}{cc}
0 & I \tag{126}\\
|\gamma|^{2} \operatorname{diag}\left(-\rho_{1}^{2},-\rho_{1}^{2},-\rho_{2}^{2},-\rho_{2}^{2}, \cdots,-\rho_{m / 2}^{2},-\rho_{m / 2}^{2}\right) & 0
\end{array}\right] .
$$

The eigenvalues of (126) are

$$
i|\gamma| \rho_{t},-i|\gamma| \rho_{t}, i|\gamma| \rho_{t},-i|\gamma| \rho_{t}, \quad 1 \leqq t \leqq m / 2
$$

Returning now to (123) and (124), let the eigenvalues of

$$
\left[\begin{array}{cc}
0 & Z_{m_{t}} \\
\bar{Z}_{m_{t}} & 0
\end{array}\right]
$$

be

$$
\begin{equation*}
i \rho_{t j},-i \rho_{t j}, i \rho_{t j},-i \rho_{t j} ; \quad 1 \leqq j \leqq m_{t} / 2 ; 1 \leqq t \leqq u \tag{127}
\end{equation*}
$$

and let the eigenvalues of $K_{\alpha_{t}}$ be

$$
\begin{equation*}
i \rho_{t j},-i \rho_{t j} ; \quad 1 \leqq j \leqq \alpha_{t} / 2 ; u<t \leqq w \tag{128}
\end{equation*}
$$

In (127) and (128) we can choose the notation so that each $\rho_{t j}>0$. One now finds that the eigenvalues of (123) are (127) and (128), whereas the eigenvalues of (124) are

$$
\begin{equation*}
i r_{t}^{-1} \rho_{t j},-i r_{t}^{-1} \rho_{t j}, i r_{t}^{-1} \rho_{t j},-i r_{t}^{-1} \rho_{t j} ; \quad 1 \leqq j \leqq m_{t} / 2 ; 1 \leqq t \leqq u ; \tag{129}
\end{equation*}
$$

together with

$$
\begin{equation*}
i R_{t}^{-1} \rho_{t j},-i R_{t}^{-1} \rho_{t j} ; \quad 1 \leqq j \leqq \alpha_{t} / 2 ; u<t \leqq w ; \tag{130}
\end{equation*}
$$

the numbers (129) and (130) must be a rearrangement of (127) and (128). Throughout (127)-(130) we may discard the common factor of i. After discarding the i, the positive numbers in (127), (128),

$$
\begin{array}{cl}
\rho_{t j}, \rho_{t j}, & 1 \leqq j \leqq m_{t} / 2,1 \leqq t \leqq u \tag{131}\\
\rho_{t j}, & 1 \leqq j \leqq \alpha_{t} / 2, u<t \leqq w,
\end{array}
$$

must be a rearrangement of the positive numbers in (129), (130):

$$
\begin{array}{cc}
r_{t}^{-1} \rho_{t j}, r_{t}^{-1} \rho_{t j}, & 1 \leqq j \leqq m_{t} / 2,1 \leqq t \leqq u \tag{132}\\
R_{t}^{-1} \rho_{t j}, & 1 \leqq j \leqq \alpha_{t} / 2, u<t \leqq w .
\end{array}
$$

After taking inverses in (131) and (132), and making some notational changes, we find that the conditions of the theorem must hold.

Suppose now that the conditions of the theorem are satisfied. Let the nonreal eigenvalues of N be

$$
r_{t} e^{i \varphi_{t}}, r_{t} e^{i \varphi_{t}}, r_{t} e^{-i \varphi_{t}}, r_{t} e^{-i \varphi_{t}}, \quad 1 \leqq t \leqq s
$$

and let the real eigenvalues be

$$
R_{t}, R_{t} \quad s<t \leqq k
$$

Then N is orthogonally similar to

$$
\begin{equation*}
\sum_{t=1}^{s} \cdot\left(r_{t} F\left(\varphi_{t}\right)+r_{t} F\left(\varphi_{t}\right)^{T}\right)+\sum_{t=s+1}^{k} \cdot \operatorname{diag}\left(R_{t}, R_{t}\right) . \tag{133}
\end{equation*}
$$

We may assume N is given by (133). The conditions of the theorem imply the existence of positive numbers h_{1}, \cdots, h_{k} such that

$$
\begin{align*}
& r_{1}^{-1} h_{1}, r_{1}^{-1} h_{1}, r_{2}^{-1} h_{2}, r_{2}^{-1} h_{2}, \cdots, r_{s}^{-1} h_{s}, r_{s}^{-1} h_{s}, \\
& \left|R_{s+1}\right|^{-1} h_{s+1},\left|R_{s+2}\right|^{-1} h_{s+2}, \cdots,\left|R_{k}\right|^{-1} h_{k} \tag{134}
\end{align*}
$$

are a rearrangement of

$$
\begin{equation*}
h_{1}, h_{1}, h_{2}, h_{2}, \cdots, h_{s}, h_{s}, h_{s+1}, h_{s+2}, \cdots, h_{k} \tag{135}
\end{equation*}
$$

Put

$$
K=\sum_{t=1}^{s} \cdot\left[\begin{array}{cccc}
0 & 0 & h_{t} & 0 \\
0 & 0 & 0 & h_{t} \\
-h_{t} & 0 & 0 & 0 \\
0 & -h_{t} & 0 & 0
\end{array}\right]+\sum_{t=s+1}^{k} \cdot\left[\begin{array}{cc}
0 & h_{t} \\
-h_{t} & 0
\end{array}\right] .
$$

Matrix K is:real and skew and has eigenvalues

$$
\begin{gather*}
\pm i h_{1}, \pm i h_{1}, \pm i h_{2}, \pm i h_{2}, \cdots, \pm i h_{s}, \pm i h_{s} \\
\pm i h_{s+1}, \pm i h_{s+2}, \cdots, \pm i h_{k} \tag{136}
\end{gather*}
$$

We compute that

$$
N^{-1} K=\sum_{t=1}^{s} \cdot\left[\begin{array}{cc}
0 & r_{t}^{-1} h_{t} F\left(\varphi_{t}\right)^{r} \\
-r_{t}^{-1} h_{t} F\left(\varphi_{t}\right) & 0
\end{array}\right]+\sum_{t=s+1}^{k} \cdot\left[\begin{array}{cc}
0 & R_{t}^{-1} h_{t} \\
-R_{t}^{-1} h_{t} & 0
\end{array}\right]
$$

The matrix $N^{-1} K$ is skew symmetric. Using Lemma 3.4, one can compute the eigenvalues of $N^{-1} K$. Then turn out to be

$$
\begin{align*}
& \pm i r_{1}^{-1} h_{1}, \pm i r_{1}^{-1} h_{1}, \pm i r_{2}^{-1} h_{2}, \pm i r_{2}^{-1} h_{2}, \cdots, \pm i r_{s}^{-1} h_{s}, \pm i r_{s}^{-1} h_{s} \tag{137}\\
& \quad \pm i\left|R_{s+1}\right|^{-1} h_{s+1}, \pm i\left|R_{s+2}\right|^{-1} h_{s+2}, \cdots, \pm i\left|R_{k}\right|^{-1} h_{k}
\end{align*}
$$

Because (135) is a rearrangement of (134), (137) is a rearrangement of (136). Thus $N^{-1} K$ and K are real skew matrices with the same eigenvalues, hence $N^{-1} K=\mathscr{O} K \mathcal{O}^{-1}$ for some orthogonal \mathcal{O}. Hence $N=K \mathscr{O} K^{-1} \mathscr{O}^{-1}$, as required. Note that if $s=0$ (that is, if all eigenvalues of N are real) the construction just given produces a K commutative with N.

Theorem 7.11. Let N be real and normal. Then N is a commutator (109) of a skew K and an orthogonal \mathcal{O} such that

$$
\begin{equation*}
N K=K N \tag{138}
\end{equation*}
$$

holds, if and only if: (i) N is symmetric; (ii) each eigenvalue of N has even multiplicity; (iii) $\operatorname{det} N=1$.

Proof. Suppose (109) and (138) hold. Then $\left.N=(i K) \mathcal{O}^{(i K}\right)^{-1} \mathcal{O}^{-1}$ and N commutes with $i K$, hence by Theorem $7.2 N$ is symmetric. By Theorem 7.10 each eigenvalue of N has even multiplicity. Clearly $\operatorname{det} N=1$. Conversely if $\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \cdots, \lambda_{k}, \lambda_{k}$ are the eigenvalues of N, then $\operatorname{det} N=1$ implies $\left|\lambda_{1}\right| \cdots\left|\lambda_{k}\right|=1$. Put

$$
h_{1}=1, h_{2}=\left|\lambda_{1}\right|, h_{3}=\left|\lambda_{1}\right|\left|\lambda_{2}\right|, \cdots, h_{k}=\left|\lambda_{1}\right|\left|\lambda_{2}\right| \cdots\left|\lambda_{k-1}\right|
$$

Then the numbers $\left|\lambda_{1}\right| h_{1}, \cdots,\left|\lambda_{k}\right| h_{k}$ are just a rearrangement of h_{1}, \cdots, h_{k}, and the proof of Theorem 7.10 showed how to construct skew K commutative with N such that (109) holds.

Theorem 7.12. Let N be real and normal. Then N is a commutator (109) of a skew K and an orthogonal \mathcal{O} such that

$$
\begin{equation*}
N O=O N \tag{139}
\end{equation*}
$$

if and only if: (i) N is proper orthogonal, (ii) each eigenvalue of N has even multiplicity. If these conditions hold, we may in fact make K skew orthogonal.

Proof. Suppose (109) and (139) hold. Then from

$$
N=(i K) \mathscr{O}(i K)^{-1} \mathscr{O}^{-1}
$$

and Theorem 7.3 we deduce that N is proper orthogonal. From Theorem 7.10 we deduce that each eigenvalue of N has even multiplicity. For the converse we need only consider two cases: $N=$ $F(\varphi)+F(\varphi)^{T}$, and $N=\operatorname{diag}(-1,-1)$. In the first possibility let

$$
K=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad O=\operatorname{diag}(1,1, F(\varphi))
$$

Then $N \mathscr{O}=\mathscr{O} N$ and (109) holds. Moreover K is orthogonal and is orthogonal. For the second case observe

$$
\left[\begin{array}{rr}
-1 & 0 \tag{140}\\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]^{-1} .
$$

Theorem 7.13. Suppose N is real normal but that N has no real eigenvalues. Then N is a commutator (109) of a skew K and an orthogonal \mathcal{O} if and only if each eigenvalue of N has even multiplicity and $\operatorname{det} N=1$. It cannot happen that K commutes with N and O can commute with N if and only if N is also orthogonal.

Proof. That the conditions are necessary follows from Theorem 7.10. Conversely, let $\lambda_{1}, \lambda_{1}, \bar{\lambda}_{1}, \bar{\lambda}_{1}, \cdots, \lambda_{k}, \lambda_{k}, \bar{\lambda}_{k}, \bar{\lambda}_{k}$, be the eigenvalues of N. Then $\left|\lambda_{1}\right| \cdots\left|\lambda_{k}\right|=1$. Put

$$
h_{1}=1, h_{2}=\left|\lambda_{1}\right|, \cdots, h_{k}=\left|\lambda_{1}\right| \cdots\left|\lambda_{h-1}\right|
$$

Then the conditions of Theorem 7.10 are satisfied.
Theorem 7.13, of course, applies when N is skew symmetric. When the eigenvalues of N are all real, Theorem 7.11 provides a strengthened form of Theorem 7.10.

Theorem 7.14. Let \mathcal{O} be proper orthogonal and n-square with $n \equiv 0(\bmod 4)$. Then

$$
\mathscr{O}=\left(K_{1} \mathscr{O}_{1} K_{1}^{-1} \mathscr{O}_{1}^{-1}\right)\left(K_{2} \mathscr{O}_{2} K_{2}^{-1} \mathcal{O}_{2}^{-1}\right)
$$

is a product of two commutators, with K_{1} and K_{2} skew orthogonal, and O_{1} and O_{2} orthogonal.

Proof. As $n \equiv 0(\bmod 4), \mathcal{O}$ is orthogonally similar to a direct sum of 4 -square blocks of the form $F\left(\varphi_{1}\right)+F\left(\varphi_{2}\right)$. Now

$$
\begin{aligned}
& \operatorname{diag}\left(F\left(\varphi_{1}\right), F\left(\varphi_{2}\right)\right) \\
= & \operatorname{diag}(1,-1,1,-1) \operatorname{diag}\left(G\left(\pi / 2-\varphi_{1}\right), G\left(\pi / 2-\varphi_{2}\right)\right) .
\end{aligned}
$$

Here diag $(1,-1,1,-1)$ satisfies the conditions of Theorem 7.12, hence is a commutator of a skew orthogonal matrix with an orthogonal matrix. Moreover $\operatorname{diag}\left(G\left(\pi / 2-\varphi_{1}\right), G\left(\pi / 2-\varphi_{2}\right)\right)$ also is orthogonal with eigenvalues +1 (twice) and -1 (twice), hence is orthogonally similar to diag $(1,-1,1,-1)$. This completes the proof.

THEOREM 7.15. Let S be positive definite symmetric and n-square, with $n \equiv 0(\bmod 4)$, and $\operatorname{det} S=1$. Then

$$
S=\prod_{i=1}^{4}\left(K_{i} \mathcal{O}_{i} K_{i}^{-1} \mathscr{O}_{i}^{-1}\right)
$$

is a product of four commutator, with each K_{i} skew and each \mathcal{O}_{i} orthogonal.

Proof. First use Fan's factorization to express S as a product $S=S_{1} S_{2}$ where the eigenvalues of S_{1} and of S_{2} occur in reciprocal pairs. Now note that $\operatorname{diag}\left(\lambda_{1}, \lambda_{1}^{-1}, \lambda_{2}, \lambda_{2}^{-1}\right)=P Q$, where

$$
P=\operatorname{diag}\left(\lambda_{1}^{1 / 2} \lambda_{2}^{-1 / 2}, \lambda_{2}^{1 / 2} \lambda_{1}^{-1 / 2}, \lambda_{2}^{1 / 2} \lambda_{1}^{-1 / 2}, \lambda_{1}^{1 / 2} \lambda_{2}^{-1 / 2}\right)
$$

and

$$
Q=\operatorname{diag}\left(\lambda_{1}^{1 / 2} \lambda_{2}^{1 / 2}, \lambda_{1}^{-1 / 2} \lambda_{2}^{-1 / 2}, \lambda_{1}^{1 / 2} \lambda_{2}^{1 / 2}, \lambda_{1}^{-1 / 2} \lambda_{2}^{-1 / 2}\right)
$$

Thus S_{1} and S_{2} are each a product of two symmetric matrices to each of which Theorem 7.11 may be applied. This yields the result.

Theorem 7.16. Let real A be n-square with $n \equiv 0(\bmod 4)$ and $\operatorname{det} A=1$. Then

$$
A=\prod_{i=1}^{6} K_{i} \mathcal{O}_{i} K_{i}^{-1} \mathcal{O}_{i}^{-1}
$$

where K_{1}, K_{2} are skew orthogonal, $K_{3}, K_{4}, K_{5}, K_{6}$ are skew, and
$\mathcal{O}_{1}, \cdots, \mathscr{O}_{6}$ are orthogonal.
Proof. Let $A=\mathcal{O} S$. Use the two previous theorems.
One can show, at least for $n=2$, that no counterpart of Theorem 7.16 can hold when $n \equiv 2(\bmod 4)$. For if K is any 2 -square skew, and \mathcal{O} is any 2 -square orthogonal, then a direct computation reveals and $K \mathscr{O} K^{-1} \mathcal{O}^{-1}= \pm I$. Thus any product $\Pi_{i} K_{i} \mathcal{O}_{i} K_{i}^{-1} \mathscr{O}_{i}^{-1}= \pm I$.
8. On the commutator of a Hermitian matrix with a unitary Hermitian matrix. In §4, certain normal matrices were seen to be the commutator of a Hermitian and a unitary Hermitian matrix. We ask: When can this happen?

Theorem 8.1. Let N be normal. Then N is a commutator (91) with H Hermitian and U unitary Hermitian if and only if N is unitarily similar to a direct sum of types (7), (8), (10), (11) and the following special form of type (9):

$$
\begin{equation*}
\operatorname{diag}\left(r e^{i \varphi}, r^{-1} e^{i \varphi}, r e^{-i \varphi}, r^{-1} e^{-i \varphi}\right), \quad r>0, \varphi \text { real } \tag{141}
\end{equation*}
$$

Proof. Suppose (91) holds with H Hermitian and U unitary Hermitian. By Theorem $4.1 N$ is unitarily similar to a direct sum of types (7)-(11). From the forms of types (7)-(11) and the fact (Theorem 7.1) that the eigenvalues of N come in conjugate pairs, it is clear that the totality of diagonal elements of type (9) is composed of conjugate pairs. Without loss of generality we may assume no $e^{i \varphi}$ in type (9) is real, since otherwise type (9) may be reclassified under types (7) or (8). If, in (9), we have $r_{2}=r_{1}$ or $r_{2}=r_{1}^{-1}$ then type (9) is already in the form (141). Then the totality of the remaining blocks of type (9) must have their diagonal elements in conjugate pairs. If $r_{1} \neq r_{2}, r_{1} \neq r_{2}^{-1}$, then in addition to (9) we must have a block

$$
\begin{equation*}
\operatorname{diag}\left(r_{3} e^{i \varphi}, r_{3}^{-1} e^{i \varphi}, r_{1} e^{-i \varphi}, r_{1}^{-1} e^{-i \varphi}\right) \tag{142}
\end{equation*}
$$

We may recombine the blocks (9) and (142) as

$$
\begin{align*}
& \operatorname{diag}\left(r_{1} e^{i \varphi}, r_{1}^{-1} e^{i \varphi}, r_{1} e^{-i \varphi}, r_{1}^{-} e^{-i \varphi}\right) \tag{143}\\
& \operatorname{diag}\left(r_{3} e^{i \varphi}, r_{3}^{-1} e^{i \varphi}, r_{2} e^{-i \varphi}, r_{2}^{-1} e^{-i \varphi}\right) \tag{144}
\end{align*}
$$

The block (143) has the form (141); and now the remaining blocks of type (9) not yet considered together with (144) retain the property that their diagonal elements come in conjugate pairs. By repetition of this argument, we see that the condition of the theorem is necessary.

For the converse, we need only refer to the last part of the proof of Theorem 4.1, noticing that H_{2} defined in (31) is symmetric orthogonal when $r_{1}=r_{2}$.

The results corresponding to Theorem 8.1 when N is real, when N commutes with H or with U, and when H is definite, are all contained in the theorem of $\S \S 4,5,7$ and so no further discussion is needed here.
9. The commutator of two normal matrices when it is normal and commutes with both factors. Recently several papers have appeared studying the system of matrix equations

$$
\begin{equation*}
C=A B A^{-1} B^{-1}, \quad C A=A C, \quad C B=B C \tag{145}
\end{equation*}
$$

It turns out to be easy to show that C has roots of unity as eigenvalues, and it is possible, though more difficult, to obtain the necessary and sufficient conditions that the elementary divisors of C must satisfy in order for C to be representable in the form (145). Here we shall study (145) when C, A, and B are normal. We shall obtain a result analogous to one obtained by I. Sinha [6, 8]. In this § 9, I_{α} is to denote the α-square identity matrix.

Theorem 9.1. Let N, A, B be normal matrices such that

$$
\begin{equation*}
N=A B A^{-1} B^{-1}, \quad N A=A N, \quad N B=B N \tag{146}
\end{equation*}
$$

Then N is unitary and after a simultaneous unitary similarity of N, A, B we have

$$
\begin{gather*}
N=\sum_{\imath=1}^{r} \cdot \gamma_{i} I_{n_{i}}, \tag{147}\\
A=\sum_{i=1}^{r} \cdot\left[H_{i}, H_{i}, \cdots, H_{i}, U_{i} H_{i}\right]_{k_{i}}, \tag{148}\\
B=\sum_{i=1}^{r} \cdot \operatorname{diag}\left(I_{\sigma_{i}}, \gamma_{i} I_{\sigma_{i}}, \gamma_{i}^{2} I_{\sigma_{i}}, \cdots, \gamma_{i}^{k_{i}-1} I_{\sigma_{i}}\right) . \tag{149}
\end{gather*}
$$

Here γ_{i} is a primitive $k_{i}^{t h}$ root of unity for some k_{i} dividing n_{i}, and $\sigma_{i}=n_{i} / k_{i}$. Furthermore, H_{i} is a σ_{i}-square positive definite Hermitian matrix and U_{i} is a σ_{i}-square unitary matrix commutative with $H_{i} ; 1 \leqq i \leqq r$. Conversely, if N, A, B are as just described, then N, A, B are each normal and (146) holds.

Proof. We may begin with N diagonal, as in (147), where $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{r}$ are the distinct eigenvalues of N. Then $N A=A N$ and $N B=B N$ force A and B to decompose into direct sums conformally
with the direct sum decomposition (147) of N. To simplify the notation we may now consider

$$
\begin{equation*}
\gamma I_{n}=A B A^{-1} B^{-1} \tag{150}
\end{equation*}
$$

Taking determinants, $\gamma^{n}=1$. Thus γ is a root of unity, say a primitive $k^{\text {th }}$ root of unity, so that k divides n. Making a unitary similarity of (150) we can get B diagonal. From $\gamma B=A B A^{-1}$ it follows that if β is an eigenvalue of B with a certain multiplicity, $\gamma \beta$ is also an eigenvalue of B, with the same multiplicity. So we can let $B=B_{1}+\cdots+B_{s}$ where $B_{i}=\beta_{i} \operatorname{diag}\left(I_{\sigma_{i}}, \gamma I_{\sigma_{i}}, \cdots, \gamma^{k-1} I_{\sigma_{i}}\right)$ for some σ_{i}, with $\beta_{i}^{k} \neq \beta_{j}^{k}$ if $i \neq j$. Then $\gamma B A=A B$ forces A to partition as $A=A_{1}+\cdots+A_{s}$, with $A_{i}=\left[A_{i 1}, A_{i 2}, \cdots, A_{i k}\right]_{k}, 1 \leqq i \leqq s$. Again to simplify notation we consider each direct summand individually, so let us examine

$$
\gamma I_{\sigma k}=A B A^{-1} B^{-1}
$$

with

$$
\begin{aligned}
& B=\operatorname{diag}\left(\beta I_{\sigma}, \gamma \beta I_{\sigma}, \cdots, \gamma^{k-1} \beta I_{\sigma}\right), \\
& A=\left[A_{1}, A_{2}, \cdots, A_{k}\right]_{k} .
\end{aligned}
$$

Let $A_{i}=U_{i} \widetilde{H}_{i}$ be the polar factorization of $A_{i}, 1 \leqq i \leqq k$. Let $W=W_{1}+\cdots+W_{k}$ where $W_{1}=I_{a}, W_{2}=U_{1}, W_{3}=U_{1} U_{2}, \cdots, W_{k}=$ $U_{1} \cdots U_{k-1}$. Then $W B W^{*}=B$ and $W A W^{*}=\left[H_{1}, H_{2}, \cdots, H_{k-1}, U H_{k}\right]_{k}$ for certain positive definite H_{1}, \cdots, H_{k} and unitary U. So change notation and let $A=\left[H_{1}, \cdots, H_{k-1}, U H_{k}\right]_{k}$. Then $A A^{*}=A^{*} A$ yields $H_{1}^{2}=H_{2}^{2}=\cdots=H_{k}^{2}$ and $U H_{k}^{2} U^{*}=H_{k-1}^{2}$. As the H_{i} are positive definite these equations imply $H_{1}=H_{2}=\cdots=H_{k}=H$ (say) and $U H U^{*}=H$. Thus $A=[H, H, \cdots, H, U H]_{k}$ as claimed, with U unitary and commutative with H. The converse is direct.

Theorem 9.2. The necessary and sufficient condition that a normal matrix N be representable as a commutator (146) of normal matrices are: (i) N is unitary; (ii) each eigenvalue γ of N is a root of unity satisfying

$$
(\text { multiplicity of } \gamma) \equiv 0(\bmod (\text { order of } \gamma)) .
$$

If these conditions are satisfied we may take both A and B unitary, and also both real if N is real.

Proof. It is clear from the formulas (147), (148), (149) how to choose A and B unitary if N is unitary (take H_{i} to be the identity.) Suppose N is real. Then N is orthogonally similar to a direct sum of blocks of the form $\Phi_{2 k}(\rho)$ and $\operatorname{diag}(-1,-1)$ where angle φ has
the form $\varphi=2 \pi j / k$. Set $B=F(0)+F(\varphi)+F(2 \varphi)+\cdots+F((k-1) \varphi)$, and put $A=\left[I_{2}, I_{2}, \cdots, I_{2}\right]_{k}$, where I_{2} is the 2 -square identity. Then $\Phi_{2 k}(\varphi) B A=A B$ and $\Phi_{2 k}(\varphi)$ commutes with both A and B. Moreover

$$
\operatorname{diag}(-1,-1)=\left[\begin{array}{ll}
0 & 1 \tag{151}\\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]^{-1}
$$

This completes the proof.
Theorem 9.3. Suppose normal matrices N, A, B satisfy (146). If one of A or B is Hermitian then N is Hermitian unitary, and $\operatorname{det} N=1$. Conversely, if N is Hermitian unitary then (146) holds where A and B can both be chosen to be Hermitian unitary and also real if N is real.

Proof. If (146) holds with A Hermitian then one easily sees that each $k_{i} \leqq 2$. Thus N is Hermitian, and clearly $\operatorname{det} N=1$. For the converse one need only note (151).

Theorem 9.4. If A or B is positive definite in (146) then $N=I$.

Theorem 9.5. Suppose N, A, B are real and normal, and (146) holds with A skew. Then N is symmetric, proper orthogonal, and degree N is even. Conversely, if N is symmetric and proper orthogonal with even degree then

$$
N=K S K^{-1} S^{-1}, \quad N K=K N, \quad N S=S N
$$

with K skew orthogonal and S symmetric orthogonal.
Proof. For the first assertion use Theorem 9.3 and $N=$ (iK)S(iK) ${ }^{-1} S^{-1}$. For the converse note (140).

References

1. Ky Fan, Some remarks on commutators, Arch. Math. 5 (1954), 102-107.
2. G. Frobenius, Über den von L. Bieberbach gefunden Beweis eines Satzes von C. Jordan, Sitzber. Preuss. Akad. Wiss. (1911), 241-248.
3. M. Gotô, A theorem on compact semi-simple groups, J. Math. Soc. Japan 1 (1949). 270-272.
4. L. K. Hua, On the theory of automorphic functions of a matrix variable I, Geometrical basis, Amer. J. Math. 66 (1944), 420-488.
5. M. Marcus and R. C. Thompson, On a classical commutator result, J. Math. Mech. 16 (1966), 583-588.
6. I. Sinha, Commutators in nilpotent linear groups of class two, J. London Math. Soc. 41 (1966), 353-363.
7. O. Taussky, Commutators of unitary matrices that commute with one factor, J. Math. Mech. 10 (1961), 175-178.
8. R. C. Thompson, Multiplicative matrix commutators commuting with both factors, J. Math. Anal. and Appl. 18 (1967), 315-335.
9. H. Tôyama, On commutators of matrices, Kodai Math. Seminar Reports (1949), 1-2.
10. H. Zassenhaus, A remark on a paper of O. Taussky, J. Math. Mech. 10 (1961), 179-181.

Received December 9, 1966, and in revised form November 11, 1969. The preparation of this paper was supported in part by the U. S. Air Force, under contracts 698-65 and 698-67.

University of California
Santa Barbara, California

