ON THE EQUIVALENCE OF NORMALITY AND COMPACTNESS IN HYPERSPACES

JAMES KEESLING

Let X be a topological space and 2^x the space of all closed subsets of X with the finite topology. Assuming the continuum hypothesis it is shown that 2^x is normal if and only if X is compact. It is not known if the continuum hypothesis is a necessary assumption, but it is shown that for X a k-space, 2^x normal implies X compact. A theorem about the compactification of the n-th symmetric product of a space X is first proved which then plays an important part in the proof of the above results.

Throughout this paper we will assume that X is any completely regular T_1 space. By 2^X we will mean the space of all closed subsets of X with the finite topology [13, Definition 1.7, p. 153] except that we include the empty set as an isolated point as in [12]. The finite topology is also known as the exponential or Vietoris topology. Let $\mathscr{F}_n(X)$ be the subspace of 2^X consisting of all nonempty subsets of X with n points or less. This space is known as the n-th symmetric product of X.

In this paper the normality of 2^x is studied. If X is compact, it is known that 2^x is compact Hausdorff [13, Th. 4.2, p. 161] and thus normal. The main result of this paper is that if we assume the continuum hypothesis (CH), then 2^x is normal if and only if X is compact. The first result in this direction was obtained by Ivanova [9] who proved that if X is a well ordered space with the order topology, then 2^x normal implies X compact. In [10] it is shown that 2^{2^x} is normal if and only if X is compact. These results were obtained without the use of CH.

The paper is divided into three sections. In the first section our main result is that $\mathscr{F}_n(\beta X) = \beta \mathscr{F}_n(X)$ if and only if $\mathscr{F}_n(X)$ is pseudocompact. This result is related to the work of Glicksberg in [7] and the proof makes use of his work. In the second section of the paper we investigate the normality of 2^x without the aid of CH using the results of the first section. One significant result in this section is that if 2^x is normal with X noncompact, then X is normal and countably compact, but X^n is not pseudocompact for some n. As a corollary one obtains that if X is first countable or locally compact, then 2^x normal implies that X is compact. Also $2^x \times \beta N$ is normal only when X is compact.

In the last section of the paper it is shown that if CH is assumed,

then if 2^x is normal, then X is compact. This result is related to a result of N. Noble [15] who has shown that if every power X^{α} of X is normal, then X is compact. Noble's result does not require CH, however.

PRELIMINARIES. As remarked in the introduction we assume that X is completely regular and T_1 . We denote the Stone-Čech compactification of X by βX . One can imbed the space $\mathscr{F}_n(X)$ into the space $\mathscr{F}_n(\beta X)$ by the map i(F)=F for all $F\in\mathscr{F}_n(X)$. This imbedding can be easily seen to be onto a dense subset of $\mathscr{F}_n(\beta X)$. Since $\mathscr{F}_n(\beta X)$ is compact, we thus have a compactification of $\mathscr{F}_n(X)$ by $\mathscr{F}_n(\beta X)$. By $\beta \mathscr{F}_n(X) = \mathscr{F}_n(\beta X)$ we mean that this compactification is equivalent to the Stone-Čech compactification of $\mathscr{F}_n(X)$.

General background in hyperspaces is conveniently given in [12] and [13]. Use is also made of techniques and results in [10]. Let us recall at this point two results to be used subsequently in the paper. If K is a closed subset of X, then 2^K as a topological space has the same topology as 2^K has as a subspace of 2^X . If $X = K_1 \cup K_2$ with K_1 and K_2 disjoint closed sets, then 2^X is equivalent to $2^{K_1} \times 2^{K_2}$ by [12, Corollary 5(a), p. 166].

We consider the cardinals as a subset of the ordinals in the natural way. Infinite cardinals will be denoted by ω_{α} where α is an ordinal and where ω_0 is the cardinality of the integers, ω_1 the first uncountable ordinal, etc. By CH is meant $2^{\omega_0} = \omega_1$. This assumption is made only in the last section of the paper.

1. On the compactification of $\mathscr{F}_n(X)$. In this section we establish the result $\beta \mathscr{F}_n(X) = \mathscr{F}_n(\beta X)$ if and only if $\mathscr{F}_n(X)$ is pseudocompact. We first show that $\mathscr{F}_n(X)$ is pseudocompact if and only if X^n is. Our proof of this result is not the easiest possible; however, by establishing an important proposition at this time, the proof of our main result in this section is made easier.

PROPOSITION 1.1. If X^n is not pseudocompact, then there is a collection of nonempty open sets in X $\{U_k^i : k = 1, \dots, n; i = 1, 2, \dots\}$ such that $\bar{U}_k^i \cap \bar{U}_k^j = \phi$ for $(i, k) \neq (j, h)$ and such that if

$$O_i = U_1^i \times \cdots \times U_n^i$$
,

then $\{O_i\}_{i=1}^{\infty}$ forms a discrete collection in X^n .

One should compare Proposition 1.1 with that in Isbell [8, 38, p. 139] for motivation. We will prove the following lemma before proving 1.1.

LEMMA 1.2. Suppose that X^n has a countable closed discrete

subset $B = \{x^i\}_{i=1}^{\infty}$ such that (1) $x^i \in U_i$ with U_i open in X^n ; (2) for each subsequence $B' = \{x^{ij}\}_{j=1}^{\infty}$ of B and each projection π_k , $\operatorname{Cl}_X \pi_k[B']$ is not compact; and (3) for each $i, x^i = (x_1^i, \dots, x_n^i)$ with $x_j^i \neq x_k^i$ for $j \neq k$. Then there is a subsequence $B' = \{x^{ij}\}_{j=1}^{\infty}$ of B and a collection of open sets in X, $\{V_k^j \colon k = 1, \dots, n; j = 1, 2, \dots\}$ such that (a) $\overline{V}_k^j \cap \overline{V}_k^i = \phi$ for $(j, k) \neq (i, h)$; (b) $x^{ij} \in V_1^j \times \dots \times V_n^j$; and (c) $V_1^j \times \dots \times V_n^j \subset U_{ij}$.

Proof. Let $B=\{x^i\}_{i=1}^\infty$ satisfy the hypotheses of the lemma. Let O_1^1 be an open set containing x_1^1 such that there is an infinite number of i's such that $\pi_k(x^i) \notin \bar{O}_1^1$ for $k=1,\cdots,n$ and \bar{O}_1^1 does not contain x_j^1 for $j=2,\cdots,n$. Such an O_1^1 exists by (2) and (3) of the hypotheses of the lemma. Let $B_1=\{x^{ij}\}_{j=1}^\infty$ be the set of all x^i 's such that $\pi_k(x^i) \notin \bar{O}_1^1$ for $k=1,\cdots,n$ or i=1. Then let O_2^1 be an open set containing x_2^1 such that for an infinite subset of B_1 , $\pi_k(x^i) \notin \bar{O}_2^1$ for $k=1,\cdots,n$; \bar{O}_2^1 does not contain x_j^1 for $j\neq 2$; and $O_2^1\cap O_1^1=\phi$. Such an O_2^1 exists by (2) and (3) of the lemma. Let $B_2=\{x^i\colon \pi_k(x^i)\notin \bar{O}_j^1 \text{ for } k=1,\cdots,n$ and j=1 and 2 or j=1. Continuing this process n times we arrive an n infinite subsequences of j=1. Continuing this process j=1 and open sets in j=1 and j=1

Now let $C_1=B_n-\{x^i\}$ and $X_1=X-\bigcup_{i=1}^nO_i^i$. Then $C_1\subset (\operatorname{int}_XX_1)^n$ and C_1 together with X_1 satisfies the three hypotheses of the lemma. Let x^{i_2} be the first element of C_1 . Then repeating the construction described above we can get open sets in X_1 which we can also suppose are open in X, $\{O_1^2,\cdots,O_n^2\}$ and $\{V_1^2,\cdots,V_n^2\}$, and an infinite subsequence C_2 of C_1 such that (1) $x_j^{i_2}\in V_j^2\subset \overline{V}_j^2\subset O_j^2$ for all j; (2) $V_1^2\times\cdots\times V_n^2\subset U_{i_2}$; and (3) $C_2\subset (\operatorname{int}_XX_2)^n$ where $X_2=X_1-\bigcup_{i=1}^nO_i^2$. Let x^{i_3} be the first element of C_2 . Continuing this process inductively we get a subsequence $B'=\{x^{i_j}\}_{j=1}^\infty$ and open sets $\{V_k^j\colon k=1,\cdots,n;j=1,2,\cdots\}$ satisfying the conclusion of the lemma.

Proof of Proposition 1.1. By induction on n. If n=1, the proposition is clearly true. Suppose n>1 and consider the following cases.

Case (i). X^{n-1} is not pseudocompact.

In this case we apply our induction hypothesis to get sets $\{U_i^i \times \cdots \times U_{n-1}^i\}_{i=1}^{\infty}$ satisfying the conclusion of Proposition 1.1 for X^{n-1} . Then define $\{V_j^i : j=1, \cdots, n; i=1, 2, \cdots\}$ such that $V_j^i = U_j^{2i}$ for $j=1, \cdots, n-1$ and $V_n^i = U_1^{2i+1}$. Then $\{V_j^i\}$ can be easily seen to satisfy the conclusion of Porposition 1.1.

Case (ii). X^{n-1} is pseudocompact.

In this case let $B=\{x^i\}_{i=1}^{\infty}$ be a countably infinite C-imbedded subset of X^n with $x^i\in U_i$ an open set in X^n with $\{U_i\}_{i=1}^{\infty}$ a discrete collection in X^n . We claim that B satisfies the conditions of Lemma 1.2. Suppose that for some i and some subsequence B' of B, $\operatorname{Cl}_X\pi_i[B']$ is compact. Then $\operatorname{Cl}_X\pi_i[B']\times X^{n-1}$ is pseudocompact [2, E 3.9. E, p. 151]. But $B'\subset\operatorname{Cl}_X\pi_i[B']\times X^{n-1}$ is C-imbedded in X^n , hence in $\operatorname{Cl}_X\pi_i[B']\times X^{n-1}$, a contradiction. Thus conditions (1) and (2) of 1.2 are satisfied. If we let $X_{ij}=\{(x_1,\cdots,x_n)\in X^n\colon x_i=x_j\}$ and $A=\bigcup_{i\neq j}X_{ij}$, then noticing that there are only a finite number of the X_{ij} 's and that each X_{ij} is homeomorphic to X^{n-1} we get that $U_i\cap A=\phi$ except for a finite number of i's or X^{n-1} would not be pseudocompact. By eliminating that finite number of i's we may assume $B\subset X^n-A$ and thus that B satisfies condition (3) of 1.2. Now let $\{V_k^i\colon k=1,\cdots,n;j=1,2,\cdots\}$ and $B'=\{x^{ij}\}_{j=1}^{\infty}$ satisfy the conclusion of Lemma 1.2. Then $O_i=V_i^1\times\cdots\times V_n^i$ satisfies the conclusion of Proposition 1.1.

THEOREM 1.3. For all n, $\mathscr{F}_n(X)$ is pseudocompact if and only if X^n is pseudocompact.

Proof. Let $p: X^n \to \mathscr{F}_n(X)$ be defined by

$$p((x_1, \dots, x_n)) = \{x_1, \dots, x_n\}$$
.

Then p is continuous and closed. Also $p|(X^n-A)$ is a local homeomorphism, hence open onto $\mathscr{F}_n(X)-\mathscr{F}_{n-1}(X)$, where A is defined as in the previous proof (see [4]). If X^n is pseudocompact, then $\mathscr{F}_n(X)$ is since pseudocompactness is preserved under continuous transformation. Now suppose that X^n is not pseudocompact. Let $\{U_k^i\colon k=1,\,\cdots,\,n;\,i=1,\,2,\,\cdots\}$ satisfy the conclusions of Proposition 1.1. Let $O_i=U_1^i\times\cdots\times U_n^i$. Then $\{p(O_i)\}_{i=1}^\infty$ can be seen to be a discrete collection of nonempty open sets in $\mathscr{F}_n(X)$. Thus $\mathscr{F}_n(X)$ is not pseudocompact.

THEOREM 1.4. Let $n \geq 2$. Then $\beta \mathscr{F}_n(X) = \mathscr{F}_n(\beta X)$ if and only if $\mathscr{F}_n(X)$ is pseudocompact.

Proof. Note that for n=1, $\beta \mathscr{F}_1(X)=\mathscr{F}_1(\beta X)$ with no assumptions. Suppose that $\mathscr{F}_n(X)$ is pseudocompact. Then by Theorem 1.3, X^n is also pseudocompact. Thus by [7, Th. 1, p. 371], $\beta(X^n)=(\beta X)^n$. Now let $f\colon \mathscr{F}_n(X)\to [0,1]$ be continuous and let $F\colon X^n\to [0,1]$ be defined by $F=f\circ p$ where $p\colon X^n\to \mathscr{F}_n(X)$ is as defined in the proof of Theorem 1.3. Now F has an extension $F^*\colon (\beta X)^n\to [0,1]$ since $\beta(X^n)=(\beta X)^n$. Consider the map $p^*\colon (\beta X)^n\to \mathscr{F}_n(\beta X)$ defined by

$$p^*((x_1, \dots, x_n)) = \{x_1, \dots, x_n\}$$
.

Clearly p^* is an extension of p and a quotient map [4]. If we can show that F^* is constant on the point inverses of p^* , then by defining f^* by $F^* \circ p^{*-1}$, f^* will be well defined. Also f^* will be continuous by [1, Th. 3.2, p. 123] and an extension of f to $\mathscr{F}_n(\beta X)$. Thus

$$\mathscr{F}_n(\beta X) = \beta \mathscr{F}_n(X)$$

by [6, Th. 6.5, p. 86]. Thus it will be sufficient to show that F^* is constant on the point inverses of p^* . To that end let $\{x_1, \dots, x_k\} \in \mathcal{F}_n(\beta X)$ with $x_i \neq x_j$ for $i \neq j$. Let

$$p^*((z_1, \dots, z_n)) = p^*((y_1, \dots, y_n)) = \{x_1, \dots, x_k\}$$
.

One can construct a net $\{x_1^{\alpha}, \dots, x_k^{\alpha}\}$ of elements x_i^{α} in X converging to $\{x_1, \dots, x_k\}$ in $\mathscr{F}_n(\beta X)$ such that $x_i^{\alpha} \neq \frac{\alpha}{j}$ for $i \neq j$ for each α and $x_i^{\alpha} \to x_i$ for all i. Now if $z_i = x_j$ let $z_i^{\alpha} = x_j^{\alpha}$, and if $y_i = x_j$ let $y_i^{\alpha} = x_j^{\alpha}$, for all α . Then $(y_1^{\alpha}, \dots, y_n^{\alpha}) \to (y_1, \dots, y_n)$ in X^n and $(z_1^{\alpha}, \dots, z_n^{\alpha}) \to (z_1, \dots, z_n)$ in X^n . Thus $F^*((y_1^{\alpha}, \dots, y_n^{\alpha})) \to F^*((y_1, \dots, y_n))$ and

$$F^*((z_1^{\alpha}, \cdots, z_n^{\alpha})) \longrightarrow F^*((z_1, \cdots z_n))$$
.

Since $F^*((z_1^{\alpha}, \dots, z_n^{\alpha})) = F^*((y_1^{\alpha}, \dots, y_n^{\alpha}))$ for each α , this implies

$$F^*((y_1, \, \cdots, \, y_n)) = F^*((z_1, \, \cdots z_n))$$
 .

Thus F^* is constant on the point inverses of p^* and the first half of the theorem is proved.

For the converse we will draw upon Proposition 1.1. Suppose that $\mathscr{F}_n(X)$ is not pseudocompact. Then X^n is not pseudocompact. Let $\{U_k^i\colon k=1,\,\cdots n;\, i=1,\,2,\,\cdots\}$ be as in Proposition 1.1. Let

$$\mathscr{U}_i = \langle U_1^i, \, \cdots, \, U_n^i \rangle \cap \mathscr{F}_n(X) = p[U_1^i \times \cdots \times U_n^i]$$

in $\mathscr{F}_n(X)$ (see [13] for notation). Then one can show that $\{\mathscr{U}_i\}_{i=1}^{\infty}$ is a discrete collection of open sets in $\mathscr{F}_n(X)$. Let $B_i \in \mathscr{U}_i$ and $f \colon \mathscr{F}_n(X) \to [0, 1]$ be defined so that $f(B_i) = 1$ and f(B) = 0 for all $B \notin \bigcup_{i=1}^{\infty} \mathscr{U}_i$. Now if $\mathscr{F}_n(\beta X)$ were equivalent to $\beta \mathscr{F}_n(X)$, there would be a continuous extension of f to some $f^* \colon \mathscr{F}_n(\beta X) \to [0, 1]$. We will show that no extension of f to $\mathscr{F}_n(\beta X)$ is continuous. Let B_0 be a limit point of $\{B_i\}_{i=1}^{\infty}$ in $\mathscr{F}_n(\beta X)$. Let $\mathscr{U} = \langle U_1, \cdots, U_n \rangle \cap \mathscr{F}_n(\beta X)$ be a neighborhood of B_0 in $\mathscr{F}_n(\beta X)$. Let B_i and B_{i_2} be distinct with B_{i_1} and B_{i_2} in \mathscr{U} . Let B be defined by $B = \{p_1, \cdots, p_n\}$ where $p_j \in B_{i_1} \cap U_j$ for j odd and $p_j \in B_{i_2} \cap U_j$ for j even. Then $B \in \mathscr{U}$. But also $B \notin \bigcup_{i=1}^{\infty} \mathscr{U}_i$. Thus $f^*(B) = f(B) = 0$. Thus in every neighborhood \mathscr{U} of B_0 in $\mathscr{F}_n(\beta X)$, f^* takes on the value 0 and the value 1, a contradiction. Thus $\mathscr{F}_n(\beta X) \neq \beta \mathscr{F}_n(X)$.

2. Results without the aid of CH. In [9] it is shown that if

X is a well ordered space with the order topology, then 2^x normal implies X compact. In [10] it is shown that 2^{2^x} is normal if and only if X is compact. In this section we use Theorem 1.4 to show that for certain classes of spaces X, 2^x is not normal. The most positive result in this paper assumes CH and will be proved in the next section making use of the results of this section and [10].

LEMMA 2.1. If $\{F_i\}_{i=1}^{\infty}$ is a countable collection of closed sets in a normal countably compact space X, then

$$\operatorname{C1}_{\beta X}[\bigcap_{i=1}^{\infty} F_i] = \bigcap_{i=1}^{\infty} \operatorname{C1}_{\beta X} F_i$$
 .

Proof. Clearly $\operatorname{Cl}_{\beta X}[\bigcap_{i=1}^{\infty} F_i] \subset \bigcap_{i=1}^{\infty} \operatorname{Cl}_{\beta X} F_i$. Now suppose the contrary and let $x \in \operatorname{Cl}_{\beta X} F_i$ for all i with $x \notin \operatorname{Cl}_{\beta X}[\bigcap_{i=1}^{\infty} F_i]$. Then let V be an open set in βX containing x such that $\operatorname{Cl}_{\beta X} V \cap \operatorname{Cl}_{\beta X}[\bigcap_{i=1}^{\infty} F_i] = \phi$. Let $U = V \cap X$ and note that $\operatorname{Cl}_{\beta X} V = \operatorname{Cl}_{\beta X} U$. Clearly $(\operatorname{Cl}_X U) \cap [\bigcap_{i=1}^{\infty} F_i] = \phi$. By the countable compactness of X there is an n such that $(\operatorname{Cl}_X U) \cap (\bigcap_{i=1}^n F_i) = \phi$. By the second lemma in [10], this implies that $(\operatorname{Cl}_{\beta X} U) \cap [\bigcap_{i=1}^n \operatorname{Cl}_{\beta X} F_i] = \phi$. However, $x \in \operatorname{Cl}_{\beta X} U$ and $x \in \operatorname{Cl}_{\beta X} F_i$ for $i = 1, \dots, n$, a contradiction. Thus

$$\operatorname{C1}_{\beta X}[\bigcap_{i=1}^{\infty} F_i] = \bigcap_{i=1}^{\infty} \operatorname{C1}_{\beta X} F_i$$

as asserted.

PROPOSITION. If 2^x is normal, then X is normal and countably compact. If, in addition, X is not compact, then there is an n such that X^n is not pseudocompact.

Proof. Suppose that 2^x is normal. Then X is normal and countably compact [10, corollary to Th. 1]. Suppose that X is not compact and that X^n is pseudocompact for all n. Let $x \in \beta X - X$ and let $\mathscr{F}_x = \{F: F \text{ is closed in } X \text{ and } \operatorname{Cl}_{\beta X} F \text{ contains } x\}$. Let \hat{X} be the set of singletons $\{\{x\}: x \in X\}$. Then \mathscr{F}_x and \hat{X} are closed subsets of 2^x and disjoint. We will show that \mathscr{F}_x and \hat{X} cannot be separated by a continuous real valued function. Suppose that $f: 2^x \to [0, 1]$ is continuous with $f \mid X \equiv 0$. Let f_n be the restriction of f to $\mathscr{F}_n(X)$ for each f. By Theorem 1.3 $\mathscr{F}_n(X)$ is pseudocompact. Thus by Theorem 1.4, f has an extension f to $\mathscr{F}_n(\beta X)$ for each f. Clearly f for all f for all f for each f has an extension f to f

$$F_n = \operatorname{Cl}_X(U_n \cap X)$$
.

Then $x \in \operatorname{Cl}_{\beta X} F_n$ for each n. Thus $x \in \operatorname{Cl}_{\beta X} [\bigcap_{i=1}^{\infty} F_i]$ by Lemma 2.1. Thus $\bigcap_{i=1}^{\infty} F_i = F_0$ is an element of \mathscr{F}_x . Let B be any finite subset

of F_0 . Then if card B=k, then $B\in 2^{U_n}\cap \mathscr{F}_n(\beta X)$ for all $n\geq k$. Thus $f_n(B)=f(B)\leq 2^{-n}$ for all $n\geq k$. Thus f(B)=0. This implies that $f(F_0)=0$. Therefore \widehat{X} and \mathscr{F}_x cannot be separated, a contradiction. Thus X^n must be nonpseudocompact for some n.

REMARK 2.3. It is not known if X normal and countably compact implies X^n pseudocompact for all n. All of the examples known to the author, for example Frolik's [3], of a completely regular space X which is countably compact and such that X^n is not pseudocompact are obtained by choosing an appropriate dense subset A of

$$N^* = \beta N - N$$

and letting $X = N \cup A$. Assuming CH, all such examples are non-normal by the result of Gillman and Fine [5] that proper dense subsets of N^* are not C^* -imbedded in N^* . If the normality and countable compactness of X implies X^* pseudocompact for all n, then 2^X normal implies X compact without assuming CH. However, this would be an interesting result even if CH were required in proving it.

PROPOSITION 2.4. If X is a countably compact k-space and Y is countably compact, then $X \times Y$ is countably compact. Thus X^n is countably compact for all n.

Proof. Proof of the first part of the proposition can be found in [14, Th. 1.1]. The second part follows by induction.

DEFINITION 2.5. A space is strongly countably compact if the closure of every countable set is compact [10]. A space is sequentially compact if each sequence has a convergent subsequence.

COROLLARY 2.6. If X has any of the following properties, then 2^{x} normal implies X compact.

- (a) X first countable,
- (b) X locally compact,
- (c) $X \ a \ k$ -space,
- (d) X strongly countably compact, and
- (e) X sequentially compact.

Proof. For the definition of a k-space see [1, Definition 9.2, p. 248]. By [1, 9.3, p. 248] (c) implies (a) and (b). But (c) follows from Proposition 2.2 and Proposition 2.4.

For (d) and (e), one can show that these properties are finitely productive. Thus in these cases X^n is pseudocompact for all n and

Proposition 2.2 can be applied.

We conclude this section with a minor result.

LEMMA 2.7. If X is separable and countably compact, then $X \times \beta N$ normal implies X compact.

Proof. Let $f: \beta N \to \beta X$ be continuous and surjective. If $X \times \beta N$ is normal, then so is $X \times \beta X$ since the map $g = i \times f: X \times \beta N \to X \times \beta X$ is closed. But $X \times \beta X$ is normal if and only if X is paracompact [16, Th. 2, p. 1046]. But paracompactness and countable compactness imply compactness [1, Corollary 3.4, p. 230]. Thus X is compact.

THEOREM 2.8. If $2^{x} \times \beta N$ is normal, then X is compact.

Proof. Let $\hat{X} = \{\{x\}: x \in X\}$. Then \hat{X} is a homeomorphic copy of X [12, Corollary 3a, p. 166] and closed in 2^x [13, Proposition 2.4.2, p. 156]. Let K be the closure of any countable subset of X. Then K is countably compact. Now $\hat{K} \times \beta N$ is a closed subset of $2^x \times \beta N$, hence normal. Thus K is compact by Lemma 2.6. Thus X is strongly countably compact. But 2^x is normal since $2^x \times \beta N$ is, and thus X is compact by Corollary 2.6(d).

3. Results assuming CH. In [10, proof of Th. 4] it is shown that if X is not compact, then there is an initial ordinal ω_{α} such that $[0, \omega_{\alpha})$ can be imbedded as a closed subset of 2^{x} . If we let the imbedding be $f(\beta) = F_{\beta}$, then the set $\{F_{\beta} \colon \beta < \omega_{\alpha}\}$ has the property that (1) for $\gamma > \beta$, $F_{\gamma} \subseteq F_{\beta}$; (2) if γ is a limit ordinal $F_{\gamma} = \bigcap \{F_{\beta} \colon \beta < \gamma\}$; and (3) $\bigcap \{F_{\beta} \colon \beta < \omega_{\alpha}\} = \phi$. This result will form an important part of what follows.

Recall that a regular open set V is one which has the property that $V = \operatorname{int} \overline{V}$. If B is a dense subset of X and V is a regular open set in X, then $U = V \cap B$ is a regular open set in B.

Lemma 3.1. If A is a discrete subset of X with X separable, then card $A \leq 2^{\omega_0}$.

Proof. For each $x \in A$ let V_x be a regular open set in X such that $V_x \cap A = \{x\}$. Let $U_x = V_x \cap B$ where B is a countable dense set in X. Then for $x \neq y$, $U_x \neq U_y$. Thus the map $g(x) = U_X$ is one to one into the power set of B. Thus card $A \leq 2^{\omega_0}$.

Proposition 3.2. Assume CH. Suppose that X is separable and

countably compact but not compact. Then $[0, \omega_1)$ can be imbedded in 2^x as a closed subset.

Proof. We make use of the results in [10] described above to say that $[0, \omega_{\alpha})$ can be imbedded in 2^{X} for some initial ordinal ω_{α} . Since X is separable, so is 2^{X} . Let A be the nonlimit points of $[0, \omega_{\alpha})$. Then card $A = \omega_{\alpha}$ and A is discrete. Thus $\omega_{\alpha} \leq 2^{\omega_{0}}$ by Lemma 3.1. Assuming CH $\omega_{\alpha} = \omega_{0}$ or $\omega_{\alpha} = \omega_{1}$. If $\omega_{\alpha} = \omega_{0}$, then by (3) above, X would not be countably compact. Thus $\omega_{\alpha} = \omega_{1}$ and $[0, \omega_{1})$ is a closed subset of 2^{X} .

PROPOSITION 3.3. Assume CH. Suppose that X is separable, countably compact, and not first countable. Then $[0, \omega_1]$ can be imbedded in 2^x .

Proof. Let $\{V_{\alpha}\}$ be a neighborhood basis for x in X where X is not first countable at x. Since X is separable we may assume that $\{V_{\alpha}\}$ has cardinality $\omega_{\alpha} \leq 2^{\omega_0}$. Since X is not first countable at x, $\omega_{\alpha} > \omega_0$. Thus card $\{V_{\alpha}\} = \omega_1$ and we may assume that the V_{α} 's are indexed by the countable ordinals. We now define closed sets $\{F_{\beta}: \beta < \omega_1\}$ having the following properties: (1) $F_{\beta+1} \subset \overline{V}_{\beta}$ for all β ; (2) $\gamma > \beta$ implies that $F_{\gamma} \subseteq F_{\beta}$; (3) if γ is a limit ordinal, then

$$F_{\gamma} = \bigcap \{F_{\beta} : \beta < \gamma\} :$$

and (4) $\cap \{F_{\beta} \colon \beta < \omega_1\} = \{x\}$. The construction is as follows: let $\alpha_0 = 1$. Having defined a subsequence of the countable ordinals $\{\alpha_{\beta} \colon \beta < \gamma\}$ let $\alpha_{\gamma} = \sup \{\alpha_{\beta} \colon \beta < \gamma\}$ if γ is a limit ordinal. Otherwise let α_{γ} be the first α such that if $F = \cap \{\bar{V}_{\lambda} \colon \lambda < \alpha_{\beta} \text{ some } \beta < \gamma\}$, then $F - \bar{V}_{\alpha} \neq \phi$. Note that by the countable compactness of X and the fact that X is not first countable at x, $F \neq \{x\}$ and thus such an α_{γ} exists. Continue the process inductively and let $\{\alpha_{\beta} \colon \beta < \omega_1\}$ be the sequence so defined. Then let $F_{\beta} = \cap \{\bar{V}_{\alpha} \colon \alpha < \alpha_{\beta}\}$. Then $\{F_{\beta} \colon \beta < \omega_1\}$ satisfies (1), (2), (3), and (4) above. Let us define $F_{\omega_1} = \{x\}$. Then we claim that $\{F_{\beta} \colon \beta \leq \omega_1\}$ is our desired set.

CLAIM. The map $f(\beta)=F_{\beta}$ is a homeomorphism of $[0,\omega_{\scriptscriptstyle 1}]$ into $2^{\scriptscriptstyle X}.$

Proof of claim: Clearly $f: [0, \omega_1] \to \{F_{\beta}\}$ is one to one and onto. Suppose that α is a countable limit ordinal. Then $F_{\alpha} = \cap \{F_{\beta} : \beta < \alpha\}$ by (3) above. Let $F_{\alpha} \in \langle U_1, \cdots, U_n \rangle$. We may suppose that $\langle U_1, \cdots, U_n \rangle \cap \{F_{\beta}\} = \{F_{\beta} : \beta \leq \alpha \text{ and } F_{\beta} \subset \bigcup_{i=1}^n U_i\}$ by supposing some $U_i = X - F_{\alpha+1}$. Suppose that $\beta_i \to \alpha$ with $F_{\beta_i} \not\subset \bigcup_{i=1}^n U_i$. Then letting $G_i = F_{\beta_i} - \bigcup_{j=1}^n U_j$, $\{G_i\}_{i=1}^{\infty}$ has the finite intersection property

and empty intersection, contradicting the countable compactness of X. Thus there is no such sequence β_i converging to α and f is continuous at α . Now consider ω_1 . Let U be any open set in X containing $\{x\}$. Let α be such that $\overline{V}_{\alpha} \subset U$. Then for all $\beta > \alpha$, $F_{\beta} \in 2^U$. Thus f is continuous at ω_1 . Thus f is homeomorphism onto $\{F_{\beta} \colon \beta \subseteq \omega_1\}$.

THEOREM 3.4. Assume CH. Then 2^x is normal if and only if X is compact.

Proof. We need only show that if 2^x is normal, then X is compact. Assume that 2^x is normal. Let K be the closure of any countable subset of X. Then 2^K is also hormal since it is a closed subspace of 2^X . If we can show that for any separable space Z, 2^Z normal implies that Z is compact, then K will have to be compact. Thus X will be strongly countably compact and compact by Corollary 2.6(d).

CLAIM. If Z is separable and 2^z is normal, then Z is compact.

Proof of claim. Suppose that Z is separable and not compact with $2^{\mathbb{Z}}$ normal. By Corollary 2.6(a) Z is not first countable. Suppose that Z is not first countable at the point x. Let O be an open set containing x such that Z-O is not compact. Such an O exists since X is not compact. Let P be an open set containing x such that Let $U = Z - \text{Cl}(Z - \bar{P})$. Then U has the property that Z-U is separable and not compact. Now let V be an open set containing x with $\bar{V} \subset U$. Let $K_1 = \bar{V}$ and $K_2 = X - U$. Then let K = $K_1 \cup K_2$. Now K is a closed subset of Z and 2^K is a closed subspace of 2^z as remarked in the preliminaries. Also 2^K is homeomorphic to $2^{K_1} \times 2^{K_2}$. But by Proposition 3.2 [0, ω_1) can be imbedded as a closed subset of 2^{K_2} . By Proposition 3.3 we can imbed $[0, \omega_1]$ as a closed subset of 2^{κ_1} . Thus $[0, \omega_1] \times [0, \omega_1)$ is a closed subset of 2^{κ} and thus of 2^z . But $[0, \omega_1] \times [0, \omega_1)$ is not normal by [16, Th. 2, p. 1046] or [5, 8M(4), p. 129]. This implies that 2^z is not normal, a contradiction. Thus Z must be compact.

This proves the claim and completes the proof of Theorem 3.4.

Theorem 3.5. Assume CH. The following are equivalent.

- (a) X is compact,
- (b) 2^x is compact,
- (c) 2^x is normal,
- (d) 2^x is meta-Lindelöf, and
- (e) 2^{2^X} is regular.

Proof. The equivalence of (a), (b), and (d) is shown in [10] without CH. The equivalence of (c) and (e) is given in [13, Th. 4.9, p. 163]. By Theorem 3.4 (a) and (c) are equivalent.

REMARK 3.6. It is trivial to see that the assumption that X is completely regular can be reduced to X being Hausdorff in Theorem 3.4, since 2^x normal will then imply that X is completely regular since it is a subspace of 2^x . It would have been a nuisance to keep stating different hypotheses for X for each new theorem, but many can be trivially reduced as in this case.

REFERENCES

- 1. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- 2. R. Engelking, Outline of general topology, John Wiley, 1968.
- 3. Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.
- 4. T. Ganea, Symmetrische Potenzen topologischer Räume, Math. Nach. 11 (1954), 305-316.
- 5. L. Gillman, The space βN and the continuum hypothesis, General Topology and its Relations to Modern Analysis and Algebra, II (Proc. Second Prague Topological Sympos., 1966), Academia, Prague, 1967, 144-146.
- 6. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960.
- 7. I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. **90** (1959), 369-382.
- 8. J. Isbell, *Uniform Spaces*, Mathematical Surveys No. 12, American Mathematical Society, Providence, 1964.
- 9. V. M. Ivanova, On the theory of the space of subsets, (in Russian) Dokl. Akad. Nauk SSSR 101 (1955), 601-603.
- 10. J. Keesling. Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760-766.
- 11. ———, Normality and compactness are equivalent in hyperspaces, Bull. Amer. Math. Soc. (to appear)
- 12. K. Kuratowski, Topology I, Academic Press, New York, 1966.
- 13. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- 14. N. Noble, Countably compact and pseudocompact products, Czech. Math. J. (94) 19 (1969), 390-397.
- 15. ——, Products with closed projections, II, (to appear)
- 16. H. Tamamo, On paracompactness, Pacific J, Math. 10 (1960), 1043-1047.

Received September 26, 1969, and in revised form December 5, 1969.

University of Florida Gainesville, Florida