CONTINUOUS SPECTRA OF SECOND-ORDER DIFFERENTIAL OPERATORS

Don Hinton

Abstract

We consider the differential operator $l(y)=y^{\prime \prime}+q y$, where q is a positive, continuously differentiable function defined on a ray $[a, \infty)$. The operator l determines, with appropriate restrictions, self-adjoint operators defined in the hilbert space $\mathscr{L}_{2}[a, \infty)$ of quadratically summable, complexvalued functions on $[a, \infty)$. In this note, we prove that if L is such a selfadjoint operator, then the conditions $q(t) \rightarrow \infty$ and $q^{\prime}(t) q(t)^{-1 / 2} \rightarrow 0$ as $t \rightarrow \infty$ are sufficient for the continuous spectrum $C(L)$ of L to cover the entire real axis.

Similar results are well-known; however, monotonicity conditions on q and q^{\prime} are usually required. For example, in [1], p. 116, it is proved that if q tends monotonically to ∞ as $t \rightarrow \infty$, preserving the direction of convexity for large t, then the condition $q^{\prime}(t) q(t)^{-1 / 2} \rightarrow 0$ as $t \rightarrow \infty$ is sufficient to imply $C(L)=(-\infty, \infty)$ for every self-adjoint operator L determined by l.

Theorem. If $q(t) \rightarrow \infty$ as $t \rightarrow \infty, q^{\prime}(t) q(t)^{-1 / 2} \rightarrow 0$ as $t \rightarrow \infty$, and L is a self-adjoint operator in $\mathscr{L}_{2}[a, \infty)$ determined by l, then $C(L)=$ $(-\infty, \infty)$.

Proof. To prove that the real number λ belongs to $C(L)$, it is sufficient to construct a bounded noncompact sequence y_{1}, y_{2}, \cdots such that $\left\|(L-\lambda) y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. The domain of L includes the set \mathscr{M} of all y satisfying (i) y has compact support contained in the open interval (a, ∞), (ii) y^{\prime} is absolutely continuous, and (iii) $y^{\prime \prime} \in \mathscr{L}_{2}[a$, ∞) (cf. [3], Chapter V). Hence, it follows that $\lambda \in C(L)$, if we prove that for each $\eta>0$ and $N>a$, there is a nontrivial $y \in \mathscr{M}$ such that the support of y is contained in $[N, \infty)$ and $\|(L-\lambda) y\|<\eta\|y\|$. To establish this, we recall Lemma 2 of [2]:

Suppose f is a continuously differentiable positive function on $[b, \infty)$, and $f^{\prime}(t) f(t)^{-1 / 2} \rightarrow 0$ as $t \rightarrow \infty$. If ε and K are positive numbers, then there is a number B such that if t and s are $\geqq B$ and $|t-s| \leqq$ $K f(s)^{1 / 2}$, then $\left|f(t) f(s)^{-1}-1\right|<\varepsilon$.

We choose $0<\varepsilon<\eta^{2} / 25, K>6400 / \eta^{2}$ (assume $\eta<1$), and apply the lemma to $f=q-\lambda$ on an interval $[b, \infty)$ such that $f(t) \geqq \Pi^{2}$ for $t \geqq b$. Let $s_{0} \geqq \max \{N, B\}$ be such that $\left|f^{\prime}(t)\right| f(t)^{-1 / 2}<\varepsilon$ for $t \geqq s_{0}$.

Define s_{1}, s_{2}, \cdots by

$$
s_{i+1}=s_{i}+\Pi f\left(s_{i}\right)^{-1 / 2} \quad(i=0,1, \cdots)
$$

and denote $f\left(s_{i}\right)^{1 / 2}$ by α_{i}. Since for $s_{i} \leqq s_{0}+K \alpha_{0}$, we have $\alpha_{i}^{2} / \alpha_{0}^{2} \leqq$ $1+\varepsilon<4$, it follows that for such s_{i},

$$
s_{i}-s_{0}=\sum_{j=0}^{i-1} \Pi / \alpha_{j} \geqq \Pi i / 2 \alpha_{0} ;
$$

thus there is an integer p so that $s_{p} \leqq s_{0}+K \alpha_{0}<s_{p+1}$. We now construct a $y \in \mathscr{M}$ with support $\left[s_{0}, s_{p}\right]$.

Since $K>9$ and $\alpha_{i} \geqq \Pi$ for each i, there exist $\tau_{1}, \tau_{2} \in\left\{s_{0}, \cdots, s_{p}\right\}$ such that $s_{0}<\tau_{1}<\tau_{2}<s_{p}, \alpha_{0} \leqq \tau_{1}-s_{0} \leqq 2 \alpha_{0}, \alpha_{0} \leqq s_{p}-\tau_{2} \leqq 2 \alpha_{0}$, and $\tau_{2}-\tau_{1} \geqq K \alpha_{0} / 2$. Define h and g on $[a, \infty)$ to be zero exterior to [s_{0}, s_{p}] and otherwise by

$$
g(t)=(-1)^{i} \alpha_{i}^{-1} \sin \alpha_{i}\left(t-s_{i}\right) \text { for } s_{i} \leqq t \leqq s_{i+1}, \quad(i=0, \cdots, p-1)
$$

and

$$
h(t)= \begin{cases}\left(t-s_{0}\right) /\left(\tau_{1}-s_{0}\right), & s_{0} \leqq t \leqq \tau_{1} \\ 1, & \tau_{1} \leqq t \leqq \tau_{2} \\ \left(s_{p}-t\right) /\left(s_{p}-\tau_{2}\right), & \tau_{2} \leqq t \leqq s_{p}\end{cases}
$$

If $y=g h$, then a calculation yields that $y \in \mathscr{M}$.
Since $\varepsilon<1 / 4$, from the lemma above we conclude that

$$
\begin{equation*}
\left.f(t) / f(s)=\left\{f(t) / f\left(s_{0}\right)\right\} /\left\{f(s) / f\left(s_{0}\right)\right\}<(5 / 4) / 3 / 4\right)<2 \tag{1}
\end{equation*}
$$

for all $t, s \in\left[s_{0}, s_{p}\right]$. Applying the mean value theorem, it follows that for $t \in\left[s_{i}, s_{i+1}\right]$,

$$
\begin{align*}
\left|f(t)-f\left(s_{i}\right)\right| & =\left|f^{\prime}\left(t^{*}\right)\left(t-s_{i}\right)\right| \\
& \leqq\left\{\left|f^{\prime}\left(t^{*}\right)\right| f\left(t^{*}\right)^{-1 / 2}\right\}\left\{\Pi f\left(t^{*}\right)^{1 / 2} f\left(s_{i}\right)^{-1 / 2}\right\} \tag{2}\\
& <\Pi(2)^{1 / 2} \varepsilon<5 \varepsilon
\end{align*}
$$

For $t \in\left[s_{i}, s_{i+1}\right] \subset\left[s_{0}, \tau_{1}\right]$, we have by application of (1), (2), and $\tau_{1}-s_{0} \geqq \alpha_{0}$ that

$$
\begin{aligned}
\left|y^{\prime \prime}(t)+f(t) y(t)\right|= & \mid 2\left(\tau_{1}-s_{0}\right)^{-1}(-1)^{i} \cos \alpha_{i}\left(t-s_{i}\right) \\
& +\left(t-s_{0}\right)\left(\tau_{1}-s_{0}\right)^{-1}\left[f(t)-f\left(s_{i}\right)\right] g(t) \mid \\
\leqq & 2\left(\tau_{1}-s_{0}\right)^{-1}+5 \varepsilon \alpha_{i}^{-1} \\
< & 2 / \alpha_{0}+5(2)^{1 / 2} / \alpha_{0}<10 / \alpha_{0} .
\end{aligned}
$$

From this inequality and $\tau_{1}-s_{0} \leqq 2 \alpha_{0}$, it follows that

$$
\begin{equation*}
\int_{s_{0}}^{\tau_{1}}\left|y^{\prime \prime}+f y\right|^{2} d t \leqq\left(100 / \alpha_{0}^{2}\right)\left(\tau_{1}-s_{0}\right) \leqq 200 / \alpha_{0} \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\int_{\tau_{2}}^{s_{p}}\left|y^{\prime \prime}+f y\right|^{2} d t \leqq 200 / \alpha_{0} \tag{4}
\end{equation*}
$$

For $\left[s_{i}, s_{i+1}\right] \subset\left[\tau_{1}, \tau_{2}\right]$, the definition of y and (1) yield

$$
\int_{s_{i}}^{s_{i+1}} y^{2} d t=\left(s_{i+1}-s_{i}\right) / 2 \alpha_{\imath}^{2} \geqq\left(s_{i+1}-s_{i}\right) / 4 \alpha_{0}^{2},
$$

hence, this inequality and $\left(\tau_{2}-\tau_{1}\right) \geqq K \alpha_{0} / 2$ imply that

$$
\begin{equation*}
\int_{\tau_{1}}^{\tau_{2}} y^{2} d t \geqq\left(\tau_{2}-\tau_{1}\right) / 4 \alpha_{0}^{2} \geqq K / 8 \alpha_{0} . \tag{5}
\end{equation*}
$$

Since on $\left[s_{i}, s_{i+1}\right]$,

$$
\left|y^{\prime \prime}(t)+f(t) y(t)\right|=\left|\left[f(t)-f\left(s_{i}\right)\right] y(t)\right| \leqq 5 \in|y(t)|
$$

we have

$$
\begin{align*}
& \int_{s_{i}}^{s_{i+1}}\left|y^{\prime \prime}+f y\right|^{2} d t<25 \varepsilon^{2} \int_{s_{i}}^{s_{i+1}} y^{2} d t ; \text { thus } \tag{6}\\
& \left\{\int_{\tau_{1}}^{\tau_{2}}\left|y^{\prime \prime}+f y\right|^{2} d t\right\}\left\{\int_{\tau_{1}}^{\tau_{2}} y^{2} d t\right\}^{-1}<25 \varepsilon^{2}<\varepsilon
\end{align*}
$$

From the definition of ε and K, (3), (4), (5), and (6), we obtain

$$
\left\{\int_{s_{0}}^{s_{p}}\left|y^{\prime \prime}+f y\right|^{2} d t\right\}\left\{\int_{s_{0}}^{s_{p}} y^{2} d t\right\}^{-1}<\{3200 / K\}+\varepsilon<\eta^{2}
$$

therefore the proof is complete.
In [3], p. 235, asymptotic methods are used to obtain criteria for $C(L)=(-\infty, \infty)$. In this development much of the argument depends on the divergent integral $\int_{a}^{\infty} q^{-1 / 2} d t=\infty$. The condition $q^{\prime}(t) q(t)^{-1 / 2} \rightarrow 0$ as $t \rightarrow \infty$ implies the divergence of this integral. We raise the following question for a class $C^{(1)}$ function q : Are the conditions $q(t) \rightarrow \infty$ as $t \rightarrow \infty$ (perhaps monotonically) and $\int_{a}^{\infty} q^{1 / 2} d t=\infty$ sufficient to imply $C(L)=(-\infty, \infty)$?

References

1. I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel program for scientific translation, Jerusalem, 1965.
2. D. B. Hinton, Some stability conditions for a nonlinear differential equation, Trans. Amer. Math. Soc. 139 (1969), 349-358.
3. M. A. Naimark, Linear differential operators, part II, Ungar, New York, 1968.

Received October 3, 1969.
University of Georgia
Athens, Georgia

