ON EMBEDDINGS OF 1-DIMENSIONAL COMPACTA IN A HYPERPLANE IN E^4

J. L. BRYANT AND D. W. SUMNERS

In this note a proof of the following theorem is given.

THEOREM 1. Suppose that X is a 1-dimensional compactum in a 3-dimensional hyperplane E^3 in euclidean 4-space E^4 , that $\varepsilon > 0$, and that $f: X \to E^3$ is an embedding such that $d(x, f(x)) < \varepsilon$ for each $x \in X$. Then there exists an ε -push h of (E^4, X) such that h|X = f.

The proof of Theorem 1 is based on a technique exploited by the first author in [3]. This method requires that one be able to push X off of the 2-skeleton of an arbitrary triangulation of E^4 using a small push of E^4 . This could be done very easily if it were possible to push X off of the 1-skeleton of a given triangulation of E^3 via a small push of E^3 . Unfortunately, this cannot be accomplished unless X has some additional property (such as local contractibility) as demonstrated by the examples of Bothe [2] and McMillan and Row [9]. However, we are able to overcome this difficulty by using a property of twisted spun knots obtained by Zeeman [10].

In the following theorem let B^4 denote the unit ball in E^4 , B^3 the intersection of B^4 with the 3-plane $x_4 = 0$, and D^2 the intersection of B^4 with the 2-plane $x_1 = x_2 = 0$.

THEOREM 2. Let X be a 1-dimensional compactum in B^3 such that $X \cap \text{Bd } D^2 = \emptyset$. Then there exists an isotopy $h_i: B^4 \to B^4$ $(t \in [0, 1])$ such that

(i) $h_0 = identity$,

- (ii) $h_t | \operatorname{Bd} B^4 = identity \text{ for each } t \in [0, 1], and$
- (iii) $h_{\scriptscriptstyle 1}(X)\cap D^{\scriptscriptstyle 2}= arnothing$.

Proof. Let $I = D^2 \cap B^3$. Since X does not separate B^3 , there exists a polygonal arc J in $B^3 - X$ joining one endpoint of I to the other. We may assume, by applying an appropriate isotopy of B^4 , that J_+ , the intersection of J with the half-space $x_3 \ge 0$ is contained in I. Let F be a 3-cell in B^3 such that $F \cap J = J_+$ and $F \cap X = \emptyset$, and let J_- be the intersection of J with the half-space $x_3 \le 0$. Now spin the arc J_- about the plane $x_3 = x_4 = 0$, twisting once, so that at time $t = \pi, J_-$ lies in F. (See Zeeman [10] for the details of this construction.) Observe that the boundary of the 2-cell C traced out by J_- is the same as Bd D^2 .

It follows from [10, Corollary 2] that the pair (B^4, C) is equivalent to the pair (B^4, D^2) by an isotopy that keeps Bd B^4 fixed. Such an isotopy, of course, will push X off of D^2 .

THEOREM 3. Let X be a 1-dimensional compactum in a 3-plane E^3 in E^4 . Then for each 2-complex K in E^4 and each $\varepsilon > 0$, there exists an ε -push h of (E^4, X) such that $h(X) \cap K = \emptyset$.

Proof. Given a 2-complex K and $\varepsilon > 0$, we may assume first of all that none of the vertices of K lies in E^3 . Also, we may move the 1-simplexes of K slightly so that they do not meet X.

Let σ be a 2-simplex of K such that $\sigma \cap X \neq \emptyset$. By moving Xan arbitrarily small amount, keeping it in E^3 , we can ensure that each component of $\sigma \cap X$ not only lies in Int σ , but has diameter less than ε . Hence, we can get $\sigma \cap X$ into a finite number of mutually exclusive line segments I_1, \dots, I_n in Int $\sigma \cap E^3$, each of which having diameter less than ε . Let B_1, \dots, B_n be a collection of mutually exclusive 4-cells in E^4 , each of diameter less than ε , such that each triple $(B_j, B_j \cap E^3,$ $B_j \cap \sigma)$ is equivalent to the triple (B^4, B^3, D^2) (as defined above) and such that $B_j \cap \sigma \cap E^3 = I_j$. Now apply Theorem 2 to each of the $B_j(j = 1, \dots, n)$.

LEMMA. Suppose that $X \subset E^{3} \subset E^{4}$ and $f: X \to E^{3}$ are as in the statement of Theorem 1 with $d(x, f(x)) < \varepsilon$ for each $x \in X$. Then for each $\delta > 0$ there exists an ε -push h of (E^{4}, X) such that $d(h(x)), f(x)) < \delta$ for each $x \in X$.

Proof. Apply the proof of Lemma 2 of [3] with p = 2 and q = 1.

The proof of Theorem 1 is now obtained by applying the technique employed in the proof of Theorem 4.4 of [7]. The only additional observation that should be made is that if X is a compactum in E^4 satisfying the conclusion of Theorem 3 and if g is a homeomorphism of E^4 , then g(X) also satisfies the conclusion of Theorem 3 with respect to 2-complexes in the piecewise linear structure on E^4 induced by g.

COROLLARY. Let X be a 1-dimensional compactum in a 3-hyperplane in E^4 . Then for each $\varepsilon > 0$ there exists a neighborhood of X in E^4 that ε -collapses to a 1-dimensional polyhedron.

This follows from the fact that every 1-dimensional compactum can be embedded in E^3 so as to have this property in E^3 .

Bothe [2] and McMillan and Row [9] have examples which show that not every embedding of the Menger universal curve in E^3 has small neighborhoods with 1-spines.

REMARK 1. Notice that Theorem 1 is a consequence of a special case of a theorem of Bing and Kister [1] if X is either a 1-dimensional polyhedron or a 0-dimensional compactum. If X is a 2-dimensional polyhedron, then Theorem 1 is false in general as pointed out by Gillman [6]. It would be interesting to known for what 2-dimensional compacta Theorem 1 holds. For example, this theorem is true if X is a compact 2-manifold [5].

REMARK 2. One of the important properties of a compactum X in a hyperplane in E^n is that $E^n - X$ is 1-ALG (see [8]). If $n - \dim X \ge 3$, this is equivalent to saying that $E^n - X$ is 1-ULC. In [3] and [4] it is shown that any two such embeddings of X into E^n (regardless of whether they lie in a hyperplane) are equivalent, provided $n \ge 5$ and $2 \dim X + 2 \le n$. Although there is no hope of improving this theorem by lowering the codimension of the embedding (at least for arbitrary compacta), Theorem 1 lends credence to the conjecture that this result holds when n = 4.

References

1. R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. **31** (1964), 491-512.

2. H. G. Bothe, Ein eindimensionales Kompactum im E^3 , das sich nicht lagetreu im die Mengersche Universalkurve einbetten lässt, Fund. Math. **54** (1964), 251–258.

3. J. L. Bryant, On embeddings of compacta in euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46-51.

4. _____, On embeddings of 1-dimensional compacta in E⁵, Duke Math. J. (to appear)
5. D. Gillman, Unknotting 2-manifolds in 3-hyperplanes in E⁴, Duke Math. J. **33** (1966),
229-245.

6. _____, The spinning and twisting of a complex in a hyperplane, Ann. of Math.
(2) 85 (1967), 32-41.

7. H. Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195-210.

8. O. G. Harrold, Jr., Euclidean domains with uniformly abelian local fundamental groups, Trans. Amer. Math. Soc. 67 (1949), 120-129.

9. D. R. McMillan, Jr. and H. Row, Tangled embeddings of one-dimensional continua, Proc. Amer. Math. Soc. 22 (1969), 378-385.

10. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Received November 5, 1969. This research was supported in part by NSF grant GP-11943.

FLORIDA STATE UNIVERSITY