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ON EMBEDDINGS OF 1-DIMENSIONAL COMPACTA
IN A HYPERPLANE IN £ 4

J. L. BRYANT AND D. W. SUMNERS

In this note a proof of the fallowing theorem is given.

THEOREM 1. Suppose that X is a 1-dimensional compactum
in a 3-dimensional hyperplane Ez in euclidean 4-space E4, that
ε > 0, and that /: X-+Ez is an embedding such that d(x,f(x)) < e
for each xeX. Then there exists an ε-push h of (E4, X) such
that h\X = /.

The proof of Theorem 1 is based on a technique exploited by the
first author in [3]. This method requires that one be able to push
X off of the 2-skeleton of an arbitrary triangulation of E* using a
small push of E\ This could be done very easily if it were possible
to push X off of the 1-skeleton of a given triangulation of E3 via a
small push of E\ Unfortunately, this cannot be accomplished unless
X has some additional property (such as local contractibility) as de-
monstrated by the examples of Bo the [2] and McMillan and Row [9].
However, we are able to overcome this difficulty by using a property
of twisted spun knots obtained by Zeeman [10].

In the following theorem let B* denote the unit ball in E\ Bz the
intersection of B* with the 3-plane x4 = 0, and D2 the intersection of
B* with the 2-plane xλ = x2 = 0.

THEOREM 2. Let X be a 1-dimensional compactum in B3 such
that XΠ Bd D2 = 0 . Then there exists an isotopy ht: B*-+B* (t e [0,1])
such that

( i ) h0 = identity,
(ii) ht I Bd B* = identity for each t e [0, 1], and
(iii) hί(X)ΠD2= 0 .

Proof. Let I = D2 Π B3. Since X does not separate B3, there
exists a polygonal arc J in B3 — X joining one endpoint of I to the
other. We may assume, by applying an appropriate isotopy of Z?4,
that J+, the intersection of J with the half-space x3 ^ 0 is contained
in I. Let F be a 3-cell in B3 such that F Π J = J+ and Ff)X = 0 ,
and let J_ be the intersection of J with the half-space x3 ^ 0. Now spin
the arc J_ about the plane x3 = x4 = 0, twisting once, so that at time
t = π, J_ lies in F. (See Zeeman [10] for the details of this construc-
tion.) Observe that the boundary of the 2-cell C traced out by J_ is
the same as Bd D2.
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It follows from [10, Corollary 2] that the pair (B\ C) is equivalent
to the pair {B\ D2) by an isotopy that keeps Bd B4 fixed. Such an
isotopy, of course, will push X off of D2.

THEOREM 3. Let X be a 1-dimensional compactum in a 3-plane
E3 in E4. Then for each 2-complex K in E4 and each ε > 0, there
exists an e-push h of (E4, X) such that h(X) f] K — 0.

Proof. Given a 2-complex K and ε > 0, we may assume first of
all that none of the vertices of K lies in E3. Also, we may move the
1-simplexes of K slightly so that they do not meet X.

Let σ be a 2-simplex of K such that σ [\X Φ 0. By moving X
an arbitrarily small amount, keeping it in E\ we can ensure that each
component of σ Π X not only lies in Int σ> but has diameter less than
ε. Hence, we can get σ f] X into a finite number of mutually exclusive
line segments I19 , In in Int σ n E3, each of which having diameter
less than ε. Let B19 , Bn be a collection of mutually exclusive 4-cells
in E4, each of diameter less than ε, such that each triple (Bό, Bβ Π E3,
Bj Π o) is equivalent to the triple (B4, B3, D2) (as defined above) and
such that Bj Π a Π Ez = Ijm Now apply Theorem 2 to each of the
Bό(j = 1, . . . , ra) .

LEMMA. Suppose that Xc Ez c E4 and f: X —>E3 are as in the
statement of Theorem 1 with d(x,f(x)) < ε for each xeX. Then for
each δ > 0 there exists an e-push h of (E4> X) such that d(h(x)), f(x)) < δ
for each x e X.

Proof. Apply the proof of Lemma 2 of [3] with p = 2 and q = 1.

The proof of Theorem 1 is now obtained by applying the technique
employed in the proof of Theorem 4.4 of [7]. The only additional
observation that should be made is that if X is a compactum in E*
satisfying the conclusion of Theorem 3 and if g is a homeomorphism
of E4, then g(X) also satisfies the conclusion of Theorem 3 with respect
to 2-complexes in the piece wise linear structure on E4 induced by g.

COROLLARY. Let X be a 1-dimensional compactum in a S-hyper-
plane in E4. Then for each ε > 0 there exists a neighborhood of X
in E4 that ε-collapses to a 1-dimensional polyhedron.

This follows from the fact that every 1-dimensional compactum
can be embedded in E3 so as to have this property in E3.

Bothe [2] and McMillan and Row [9] have examples which show
that not every embedding of the Menger universal curve in E3 has
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small neighborhoods with 1-spines.

REMARK 1. Notice that Theorem 1 is a consequence of a special
case of a theorem of Bing and Kister [1] if X is either a 1-dimensional
polyhedron or a O-dimensional compactum. If X is a 2-dimensional
polyhedron, then Theorem 1 is false in general as pointed out by
Gillman [6]. It would be interesting to known for what 2-dimensional
compacta Theorem 1 holds. For example, this theorem is true if X
is a compact 2-manifold [5].

REMARK 2. One of the important properties of a compactum X in a
hyperplane in En is that En - X is 1-ALG (see [8]). If n - dim X ^ 3,
this is equivalent to saying that En — X is 1-ULC. In [3] and [4] it
is shown that any two such embeddings of X into En (regardless of
whether they lie in a hyperplane) are equivalent, provided n ^ 5 and
2 dim X -t- 2 ^ n. Although there is no hope of improving this theorem
by lowering the codimension of the embedding (at least for arbitrary
compacta), Theorem 1 lends credence to the conjecture that this result
holds when n = 4.
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