APPROXIMATE UNITS AND MAXIMAL ABELIAN C^{*}-SUBALGEBRAS

Charles A. Akemann

In recent years it has become clear that the study of C^{*}-algebras without a unit element is more than just a mildly interesting extension of the "typical" case of a C^{*}-algebra with unit. A number of important examples of C^{*}-algebras rarely have a unit, for example the group C^{*}-algebras and algebras of the form $I \cap I^{*}$ where I is a closed left ideal of a C^{*}-algebra. J. Dixmier's book, Les C^{*}-algebras et leurs representations, carries through all the basic theory of C^{*}-algebras for the no-unit case, and his main tool is the approximate identity which such algebras have. Many C^{*}-algebra questions can be answered for a C^{*}-algebra without unit by embedding such an algebra in a C^{*}-algebra with unit. Some problems, especially those which involve approximate units, are not susceptible to this approach. This paper will study some problems of this type.

Theorem 1.1 states that if \mathscr{C} is a norm separable C^{*} algebra and $\left\{f_{1}, \cdots f_{n}\right\}$ is a finite set of orthogonal pure states of \mathscr{U} (i.e., $\left\|f_{i}-f_{j}\right\|=2$ if $i \neq j$), then there exists a maximal abelian C^{*}-subalgebra A of \mathscr{C} such that $f_{k} \mid A$ is pure ($k=1, \cdots, n$) and $f_{k} \mid A$ has unique pure state extension to $\mathscr{U}^{6}(k=1, \cdots, n)$. This extends the prototype result of Aarnes and Kadison by (a) allowing a finite number of pure states instead of just one, (b) dropping the assumption that $1 \in \mathscr{C}$, and (c) proving uniqueness of the pure state extension. In § 2 two examples are constructed which show that the uniqueness assertion of Theorem 1.1 cannot be extended to the nonseparable case, and that even in the separable case the subalgebra A must be carefully chosen to insure uniqueness of pure state extension. Theorem 1.2 and Example 2.3 show that a very desirable majorization property of approximate units does not quite carry over from the abelian case to the general case. (If it did, several important problems, including the Stone-Weierstrass problem would have been solved.) Theorem 1.3 extends the author' characterization of approximate units of C^{*}-algebras to approximate right units for left ideals of C^{*}-algebras.

1. Theorems.

Theorem 1.1 Let \mathscr{U} be a norm separable C^{*}-algebra and $\left\{f_{1}, \cdots, f_{n}\right\}$ a finite set of orthogonal pure states (i.e., $\left|\left|f_{j}-f_{i}\right|=2\right.$ if $i \neq j$) of \mathscr{U}. Then there exists a maximal abelian C^{*}-subalgebra
$A \subset \mathscr{U}$ such that $f_{k} \mid A$ is pure $(k=1, \cdots, n)$, and f_{k} is the unique pure state of \mathscr{C} which extends $f_{k} \mid A(k=1, \cdots, n)$.

Proof. We shall consider \mathscr{C} acting on H under its universal representation (the direct sum of all the cyclic representations due to positive linear functionals on \mathscr{C} [5, p. 43]). Recall [5, p. 236] that the weak closure of \mathscr{U} can be identified with the second dual $\mathscr{U}^{* *}$ of \mathscr{U}. Let $x_{k} \in H_{f_{k}} \subset H$ be a unit vector such that for any $a \in \mathscr{C}$ we have $\left\langle a x_{k}, x_{k}\right\rangle=f_{k}(\alpha)$. By [6, Corollary 7] we may choose a positive operator $b \in \mathscr{U}$ with $\|b\| \leqq 1$ and $b x_{k}=(k / n) x_{k}$ for $k=1, \cdots, n$. Choose real-valued functions $\left\{\varphi_{k}\right\}_{k=1}^{n}$ of a real variable with the following properties: (1) $\varphi_{k}(t) \varphi_{j}(t)=0$ if $k \neq j$, (2) $\varphi_{k}(k / n)=1$, (3) $0 \leqq \varphi_{k}(t) \leqq 1$, (4) φ_{k} is continuous; where t is any real number and $k, j=1, \cdots, n$.

Define $b_{k}=\varphi_{k}(b)$ by the spectral theorem. Let p_{k} be the range projection of b_{k}, and let p be the orthogonal projection on the subspace spanned by $\left\{x_{1}, \cdots, x_{n}\right\}$. Using the terminology of [3] we see that $(1-p)$ and $\left\{p_{k}\right\}_{k=1}^{n}$ are open projections for \mathscr{C}, and hence for $\tilde{\mathscr{U}}$, the C^{*}-algebra formed from \mathscr{U} by adjoining the unit 1 . Note that p commutes with b and hence with each p_{k}. Set

$$
I_{k}=\left\{a \in \mathscr{U}: p_{k}(1-p) a(1-p) p_{k}=a\right\}
$$

for each $k=1, \cdots, n$. Since \mathscr{C} is norm separable, we may choose a strictly positive element $a_{k} \in I_{k}$ with $\left\|a_{k}\right\|=1$ by [1]. (I.e., for any positive linear functional h on the C^{*}-algebra $I_{k}, h\left(a_{k}\right)=0$ implies $h=0$.) By [3, II. 7] $p_{k}(1-p)$ is open, hence $1-p_{k}(1-p)$ is the null projection of a_{k} for each $k=1, \cdots, n$.

Now we define $c_{k}=b_{k}-b_{k} a_{k} b_{k}$ for $k=1, \cdots, n$. Each c_{k} is self-adjoint and $c_{k} x_{j}=\delta_{k j} x_{j}$ (Kronecker Delta). Also $c_{k} c_{j}=0$ if $j \neq k$. Define $I_{0}=\{a \in \mathscr{U}:(1-p) \alpha(1-p)=\alpha\}$. Then let $\Gamma_{0}=\left\{a \in I_{0}: c_{k} \alpha=\alpha c_{k}\right.$ for all $k=1, \cdots, n\}$. Let Γ_{1} be the C^{*}-algebra generated by $\left\{c_{k}\right\}_{k=1}^{n}$ and Γ_{0}, and let A be a maximal abelian C^{*}-subalgebra of Γ_{1} containing $\left\{c_{k}\right\}_{k=1}^{n}$. It is clear that $f_{k} \mid A$ is multiplicative, hence pure, on A, since $f_{k} \mid I_{0}=0$ for each $k=1, \cdots, n$. We shall show that A is a maximal abelian C^{*}-subalgebra of \mathscr{U}.

Suppose $c \in \mathscr{U}$ with $c a=a c$ for all $a \in A$. We may suppose $c \geqq 0$ since $\{d \in \mathscr{U}: d a=a d$ for all $a \in A\}$ is a C^{*}-algebra, hence generated by its positive elements. For each $k=1, \cdots, n$, we define a scalar λ_{k} as follows. If $c x_{k}=0$, let $\lambda_{k}=0$. If $c x_{k} \neq 0$, let $y=c x_{k}\left\|c x_{k}\right\|$. Since $c c_{k}=c_{k} c$, we get $c_{k}\left(c x_{k}\right)=c\left(c_{k} x_{k}\right)=c x_{k}$, so $c_{k} y=y$. Thus $1=\left\langle c_{k} y, y\right\rangle=\left\langle b_{k} y, y\right\rangle-\left\langle a_{k} b_{k} y, b_{k} y\right\rangle . \quad$ Since $b_{k} \geqq 0, a_{k} \geqq 0,\left\|b_{k}\right\| \leqq 1$, this means $b_{k} y=y$ and $a_{k} b_{k} y=0=a_{k} y$. By the above, this means $\left(1-p_{k}(1-p)\right) y=y$, since $\left(1-p_{k}(1-p)\right)$ is the null projection of a_{k}.

But $b_{k} y=y$ implies $y=p_{k} y$. Hence $y=p_{k} p y$. This means that $y=\lambda_{k} x_{k}$, since $p_{k} p$ is the projection on the one dimensional subspace spanned by x_{k}. Since the foregoing was valid for each $k=1, \cdots, n$, we can define $d=c-\sum_{k=1}^{n} \lambda_{k} c_{k}$, and note that $(1-p) d(1-p)=d$, so that $d \in I_{0}$. But $d a=a d$ for all $a \in A$, so $d \in \Gamma_{0}$, hence $d \in A$ by maximality of A. This proves that A is a maximal abelian C^{*} subalgebra of \mathscr{U}.

Lastly, we shall prove the uniqueness assertion. Suppose g is a pure state of \mathscr{C} with $g\left|A=f_{k}\right| A$. Then there exists a unit vector $y \in H_{g} \subset H$ such that $\langle a y, y\rangle=g(y)$ for all $a \in \mathscr{C}$. Thus $\left\langle c_{k} y, y\right\rangle=$ $\left\langle c_{k} x_{k}, x_{k}\right\rangle=1=\left\langle b_{k} y, y\right\rangle-\left\langle a_{k} b_{k} y, y\right\rangle$. Using the same argument as above, we get $b_{k} y=y$ and $a_{k} y=0$. As before, this implies $y=\lambda x_{k}$, so $g=f_{k}$.

One is tempted to ask if the hypothesis of separability can be dropped. Example 2.1 shows that we cannot hope for unique state extensions in the (very) nonseparable case. However, the question of the existence of the maximal abelian C^{*}-subalgebra is still open. For the separable case one might ask if a pure state of a maximal abelian C^{*}-subalgebra always has unique pure state extension to the whole algebra. Example 2.2 shows that this is not the case.

We now turn to a quite different problem, that of majorizing an element of a C^{*}-algebra by an element of a subalgebra. If \mathscr{C} is an abelian C^{*}-algebra and $B \subset \mathscr{C}$ a C^{*}-subalgebra which contains a positive increasing approximate unit for all of \mathscr{U}, then for every $a \geqq 0$ in \mathscr{C} there is $b \in B$ with $b \geqq a$. In fact, with a slightly more refined argument one can choose b so that $\|b\|=\|a\|$. Example 2.3 shows that this last assertion is (in general) false if the hypothesis of commutativity is dropped. The following result shows how close we can come to the abelian case.

Theorem 1.2 Let A be a C^{*}-algebra and A_{0} a C^{*}-subalgebra of A which contains a positive, increasing approximate unit $\left\{a_{\alpha}\right\}_{\alpha \in I}$ for A. Then given $a_{0} \geqq 0$ in A and $\varepsilon>0$, there exists $b \geqq 0$ in A_{0} with $b \geqq a_{0}$ and $\|b\| \leqq\left\|a_{0}\right\|+\varepsilon$.

Proof. First let us note that if the theorem is true for all $a_{0} \in A$ with $\left\|a_{0}\right\|=1$, then it is true for all $a_{0} \in A$. Thus we may assume $\left\|a_{0}\right\|=1$. Given $\varepsilon>0$ we may choose $\alpha_{1} \in I$ such that $\left\|a_{0}-a_{\alpha_{1}} a_{0} a_{\alpha_{1}}\right\|<\varepsilon / 2$. Since $\left\{a_{\alpha}\right\}$ is an increasing positive approximate identity and $\left\|a_{0}\right\|=1$, $a_{\alpha_{1}} \geqq a_{\alpha_{1}} a_{0} a_{\alpha_{1}}$. Set $a_{1}=a_{0}-a_{\alpha_{1}} a_{0} a_{\alpha_{1}}$. Then find $\alpha_{2} \in I$ such that $\left\|a_{1}-a_{\alpha_{2}} a_{1} a_{\alpha_{2}}\right\|<\varepsilon / 4$. Now $\left\|(2 / \varepsilon) a_{1}\right\| \leqq 1$, so as above

$$
a_{\alpha_{2}} \geqq a_{\alpha_{2}}^{2} \geqq a_{\alpha_{2}}\left(\frac{2}{\varepsilon} a_{1}\right) a_{\alpha_{2}}
$$

Thus $(\varepsilon / 2) a_{\alpha_{2}} \geqq a_{\alpha_{2}} a_{1} a_{\alpha_{2}}$. Set $a_{2}=a_{1}-a_{\alpha_{2}} a_{1} a_{\alpha_{2}}$, and continue by induction to get sequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty} \subset I$ and $\left\{a_{n}\right\}_{n=0}^{\infty} \subset A$ so that $a_{n}=$ $a_{n-1}-a_{\alpha_{n}} a_{n-1} a_{\alpha_{n}}$ for $n>0$ (a_{0} as given), $\left\|a_{n}\right\| \leqq \varepsilon / 2^{n}$ for $n>0$, and

$$
\left(\frac{\varepsilon}{2^{n-1}}\right) a_{\alpha_{n}} \geqq a_{\alpha_{n}} a_{n-1} a_{\alpha_{n}} .
$$

Thus the series $\sum_{n=1}^{\infty} a_{\alpha_{n}} a_{n-1} a_{\alpha_{n}}$ is absolutely convergent to a_{0}. Also

$$
a_{0}=\sum_{n=1}^{\infty} a_{\alpha_{n}} a_{n-1} a_{\alpha_{n}} \leqq a_{\alpha_{1}}+\sum_{n=2}^{\infty}\left(\frac{\varepsilon}{2^{n-1}}\right) a_{\alpha_{n}}
$$

the right hand side also converging absolutely to an element $b \in A_{0}$. Clearly

$$
\|b\| \leqq\left\|a_{\alpha_{1}}\right\|+\sum_{n=2}^{\infty}\left\|\left(\frac{\varepsilon}{2^{n-1}}\right) a_{\alpha_{n}}\right\| \leqq 1+\varepsilon
$$

so we have the theorem.
In order to state the last result of this section we introduce a definition.

Definition. We say a pure state f of \mathscr{U} is pure on a closed left ideal I if f is pure on the C^{*}-algebra $I \cap I^{*}$.

Theorem 1.3 Let I be a closed left ideal of a C^{*}-algebra \mathscr{K}. An increasing directed net of positive operators $\left\{a_{\alpha}\right\} \subset I$ is an approximate right unit for I if $f\left(a_{\alpha}\right) \rightarrow 1$ for every pure state f of \mathscr{U} which is pure on I.

Proof. Let $\left\{a_{\alpha}\right\} \subset I$ be a positive increasing directed net in I with $f\left(a_{\alpha}\right) \rightarrow 1$ for every pure state f of \mathscr{U} which is pure on I. Now set $I_{0}=I \cap I^{*}$, and note that $\left\{a_{\alpha}\right\} \subset I_{0}$. By [4, 5.1] $\left\{a_{\alpha}\right\}$ is an approximate unit for I_{0}, since every pure state of I_{0} has (by [7]) a pure state extension to \mathscr{C}. Let $b \in I$. Then

$$
\begin{aligned}
\left\|b-b a_{\alpha}\right\|^{2} & =\left\|\left(b^{*}-a_{\alpha} b^{*}\right)\left(b-b a_{\alpha}\right)\right\| \\
& =\left\|b^{*} b-b^{*} b a_{\alpha}-a_{\alpha} b^{*} b+a_{\alpha} b^{*} b a_{\alpha}\right\|_{\alpha} \rightarrow 0
\end{aligned}
$$

since $b^{*} b \in I_{0}$ and $\left\{a_{\alpha}\right\}$ is an approximate unit for I_{0}. Thus $\left\|\mathrm{b}-b a_{\alpha}\right\|_{\alpha} \rightarrow 0$.
2. Examples. This first example will be a nonseparable C^{*} algebra A which has no positive increasing approximate unit $\left\{a_{\alpha}\right\}$ consisting of pairwise commuting elements. That is, no maximal abelian C^{*}-subalgebra of A contains an approximate unit for A. By considering \widetilde{A} the C^{*}-algebra obtained from A by adjoining a unit, we get a pure state f on \widetilde{A} with $f \mid A=0$ (considering $A \subset \widetilde{A}$) which cannot be the unique pure state extension of any pure state of any maximal abelian C^{*}-subalgebra of \widetilde{A}.

Example 2.1 Let Γ be an index set of cardinality 2^{c}, where c is the cardinality of the set of real numbers. Let H be a Hilbert space with an orthonormal basis of cardinality $2^{2 c}$. Choose a family $\left\{H_{\gamma}\right\}_{r \in \Gamma}$ of orthogonal subspaces of H with $\operatorname{dim}\left(H_{\gamma}\right)=\operatorname{dim}(H)$ for all $\gamma \ni \Gamma$. For each fixed $\gamma \in \Gamma$, choose a family $\left\{H_{\gamma}^{\alpha}\right\}_{\alpha \in \Gamma}$ of subspace of H_{γ} which are orthogonal and such that $\operatorname{dim}\left(H_{\gamma}^{\alpha}\right)=\operatorname{dim}(H)$ for all $\gamma, \alpha \in \Gamma$. Let $H_{0}=\Sigma \bigoplus\left\{H_{\gamma}: \gamma \in \Gamma\right\}$, and we shall work in $B\left(H_{0}\right)$, the algebra of all bounded operators on H_{0}. For each pair $(\alpha, \gamma) \in \Gamma \times \Gamma$ with $\alpha \neq \gamma$, choose projections $p_{\alpha \gamma}$ and $q_{\alpha \gamma}$ on H_{γ}^{α} such that $p_{\alpha \gamma} q_{\alpha \gamma} \neq$ $q_{\alpha \gamma} p_{\alpha \gamma}$. Define for each $\beta \in \Gamma$ a projection $p_{\beta} \in B\left(H_{0}\right)$ by defining p_{β} on each subspace H_{γ}^{α} as follows: $p_{\beta} \mid H_{\gamma}^{\alpha}=0$ if $\alpha \neq \beta$ and $\gamma \neq \beta$, $p_{\beta} \mid H_{\gamma}^{\alpha}=1_{\beta \beta}$ if $\alpha=\beta=\gamma, \quad p_{\beta} \mid H_{\beta}^{\alpha}=p_{\alpha \beta}$ if $\alpha \neq \beta$, and $p_{\beta} \mid H_{\alpha}^{\beta}=q_{\beta \alpha}$ if $\beta \neq \alpha$.

Now we let A be the C^{*}-algebra generated by $\left\{p_{\gamma}\right\}_{\gamma \in \Gamma}$. We note the following facts.
(1) $p_{r} p_{\alpha} \neq p_{\alpha} p_{\gamma}$ unless $\gamma=\alpha$.
(2) If $1_{\alpha \gamma}$ denotes the projection on H_{γ}^{α}, then $1_{\gamma}^{\alpha} \in A^{\prime}$, the commutant of A in $B\left(H_{0}\right)$, and $1_{\gamma}^{\alpha} \cdot 1_{\rho}^{\beta}=0$ unless $\alpha=\beta$ and $\gamma=\rho$.
(3) $p_{r} p_{\alpha} p_{\beta}=0$ if $\gamma \neq \alpha \neq \beta \neq \gamma$.

These are immediate from the definition of the $\left\{p_{\gamma}\right\}$.
Now define the *homomorphism $\varphi_{\alpha \gamma}: A \rightarrow B\left(H_{0}\right)$ by $\varphi_{\alpha \gamma}(\alpha)=1_{\alpha \gamma} \alpha$, and let $A_{\alpha \gamma}$ be the kernel of this homomorphism for each pair $(\alpha, \gamma) \in \Gamma \times \Gamma$. We note that for each $\gamma \in \Gamma, A=A_{\gamma r}+\left\{\lambda p_{r}: \lambda\right.$ a scalar\}. Now suppose $A_{1} \subset A$ is a maximal abelian C^{*}-subalgebra of A and that A_{0} contains an approximate identity for all of A. Then for each $\gamma \in \Gamma$, surely $\varphi_{r \gamma}$ is nonzero on A_{0}, so that A_{0} contains a positive element of the form $p_{r}+a_{r}$ where $a_{r} \in A_{r r}$. We shall prove that this implies that A_{0} is not abelian.

For each $\gamma \in \Gamma$, we are assuming A_{0} contains a positive (fixed) element of the form $p_{\gamma}+a_{r}$ with $a_{r} \in A_{r \gamma}$. Now for each fixed $\gamma \in \Gamma$, a_{r} can be written as the sum of a series of products of the $\left\{p_{\alpha}\right\}_{\alpha \in \Gamma}$ with suitable scalar coefficients. This series can be chosen so that every term of the series lies in $A_{\gamma \gamma}$. We shall fix such a series for each γ, and define $F_{\gamma}=\left\{\alpha \in \Gamma: p_{\alpha}\right.$ appears as a factor in one of the
terms of the series for $\left.a_{\gamma}\right\}$. Since each F_{γ} is countable and card $(\Gamma)=2^{c}$, we may choose a collection $\left\{F_{r}: \gamma \in K\right\}$, where K is an uncountable subset of Γ (any subset K with card $(K)=c$ will work), and $\bigcup\left\{F_{r}: \gamma \in K\right\} \neq \Gamma$. Then for fixed $\beta \in \Gamma \sim \bigcup\left\{F_{\gamma}: \gamma \in K\right.$), p_{β} does not appear as a factor in any term of the series for a_{γ} for any $\gamma \in K$. Since $\left(p_{\beta}+\alpha_{\beta}\right) \in A_{0}$ for some $\alpha_{\beta} \in A_{\beta \beta}$ and K is uncountable (and the series for a_{β} is countable), there exists some $\gamma \in K$ (which we now fix) with $p_{\gamma} a_{\beta} 1_{\gamma \beta}=0=1_{\gamma \beta} a_{\beta} p_{\gamma}$.

We now show that $\left(p_{r}+a_{r}\right)$ and $\left(p_{\beta}+a_{\beta}\right)$ do not commute. We need only check that $1_{\gamma \beta}\left(p_{\alpha}+a_{r}\right)\left(p_{\beta}+a_{\beta}\right) \neq 1_{\gamma \beta}\left(p_{\beta}+a_{\beta}\right)\left(p_{r}+a_{\gamma}\right)$. Now

$$
\begin{aligned}
1_{r \beta}\left(p_{r}+a_{r}\right)\left(p_{\beta}+a_{\beta}\right) & =1_{r \beta}\left(p_{r} p_{\beta}+p_{r} a_{\beta}+a_{r} p_{\beta}+a_{r} a_{\beta}\right)=1_{r \beta}\left(p_{r} p_{\beta}\right) \\
& =q_{r \beta} p_{r \beta} \neq p_{r \beta} q_{r \beta}=1_{r \beta}\left(p_{\beta} p_{r}\right) \\
& =1_{\gamma \beta}\left(p_{\beta}+a_{\beta}\right)\left(p_{r}+a_{r}\right) .
\end{aligned}
$$

This is seen as follows. $1_{\gamma \beta} p_{\gamma} a_{\beta}=0=1_{\gamma \beta} a_{\beta} p_{\gamma}$ by the choice of γ above. Also $1_{\gamma \beta} a_{\gamma} a_{\beta}=1_{\gamma \beta} a_{\beta} a_{\gamma}=0$ because no term of the series for a_{γ} contains p_{β} are a factor, and each term lies in $A_{\gamma \gamma}$. Finally $1_{\gamma \beta} p_{\beta} a_{\gamma}=1_{\gamma \beta} a_{\gamma} p_{\beta}=0$ by the choice of $\beta \in \Gamma \sim \bigcup\left\{F_{\alpha}: \alpha \in K\right\}$. We have proved that A_{0} is not abelian, so this contradiction establishes the result that A has no maximal abelian C^{*}-subalgebra which contains an approximate unit for all of A.

Now if \widetilde{A} is the C^{*}-algebra consisting of A with the identity adjoined, define the pure state f on \widetilde{A} by $f(a+\lambda 1)=\lambda$, where $a \in A$ (every element of \widetilde{A} can be written uniquely in the form $a+\lambda 1$ with $a \in A$). If \widetilde{A}_{0} is a maximal abelian C^{*}-subalgebra of \widetilde{A}, then $\widetilde{A}_{0}=A_{0}+\{\lambda 1\}$, where A_{0} is a maximal abelian C^{*}-subalgebra of A, and A_{0} is the kernel of $f \mid \widetilde{A}_{0}$. If $\left\{\alpha_{\alpha}\right\}_{\alpha \in I} \subset A_{0}$ is a positive increasing approximate unit for A_{0}, the only pure state of \widetilde{A}_{0} vanishing on all the $a_{\alpha}(\alpha \in I)$ is $f \mid \widetilde{A}_{0}$. However, it follows immediately from [4, p. 531] and [3, Th. II. 17] that there are at least two pure states of A vanishing on $\left\{a_{\alpha}\right\}$ or else $\left\{a_{\alpha}\right\}$ would be an approximate unit for all of A-contradicting the conclusion above.

In the next example we construct a separable C^{*}-algebra A with unit and a maximal abelian C^{*}-subalgebra A_{0} of A and two pure states f, g of A with $f=g$ and $f\left|A_{0}=g\right| A_{0}$.

Example 2.2 For each $n=1,2, \cdots$ let H_{n} be a two-dimensional Hilbert space with fixed orthonormal basis $\left\{e_{n}, e_{n}^{\prime}\right\}_{n=1}^{\infty}$. Let $H=$ $\sum_{n=1}^{\infty} \oplus H_{n}$. Let C be the C^{*}-algebra of all operators b on H such that $b\left(H_{n}\right) \subset H_{n}$ and $\lim _{n \rightarrow \infty}\left\|b \mid H_{n}\right\|=0 . \quad\left(C\right.$ is the $C^{*}(\infty)$ direct sum of the algebras $B\left(H_{n}\right)$.) Let p be a projection on H defined on
each H_{n} by the matrix $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ with respect to the given basis. Finally let A be the C^{*}-algebra generated by C, p, and 1 (the identity operator on H). Let A_{0} be the maximal abelian C^{*}-subalgebra of A consisting of all operators b in A with $b e_{n}=\lambda_{n} e_{n}, b e_{n}^{\prime}=\lambda^{\prime} e_{n}^{\prime}$ for all $n=1,2, \cdots$. (A_{0} is the algebra of operators in A diagonalized by the given basis.) Now $A / A \cap C$ is two-dimensional so there are two pure states f and g on A with $f \neq g$ and $\operatorname{ker}(f) \supset A \cap C$, $\operatorname{ker}(g) \supset A \cap C$. Since $A_{0} / A_{0} \cap C$ is one dimensional, $f\left|A_{0}=g\right| A_{0}$.

Our last result is an example which proves that one cannot take $\varepsilon=0$ in Theorem 1.2.

Example 2.3 Let H be a separable Hilbert space and $\left\{e_{n}\right\}_{n=1}^{\infty}$ an orthonormal basis for H. Let A be the algebra of all compact operators on H and $A_{0}=\left\{a \in A\right.$: each e_{i} is an eigenvector of $\left.a\right\}$. That means A_{0} is the algebra of compact diagonal operators for the basis $\left\{e_{n}\right\}$. For each $n=1,2, \cdots$ define q_{n} to be the orthogonal projection on the subspace spanned by $\left\{e_{1}, \cdots, e_{n}\right\}$. It is known that $\left\{q_{n}\right\}$ is a positive, increasing approximate identity for A. Also A_{0} is the C^{*}-algebra generated by $\left\{q_{n}\right\}$. Thus the theorem applies.

Now let p be the orthogonal projection on the subspace spanned by any vector $x=\sum_{i=1}^{\infty} x_{i} e_{i}$, where we assume $x_{i} \neq 0$ for all i and $\|x\|=1$. To see that the ε condition of the theorem is necessary, suppose there was some $b \in A_{0},\|b\|=1, b \geqq p$. Thus

$$
\langle b x, x\rangle=\sum_{n=1}^{\infty}\left\langle b e_{n}, e_{n}\right\rangle\left|x_{n}\right|^{2} \geqq\langle p x, x\rangle=\langle x, x\rangle=\sum_{n=1}^{\infty}\left|x_{n}\right|^{2} .
$$

This would mean $\left\langle b e_{n}, e_{n}\right\rangle=1$ for all n, contradicting the compactness of the operator b.

Bibliography

1. J. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc. 21 (1969), 749-752.
2. C. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. (2) 126 (1967), 286-302.
3. —, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277-294.
4. -, Interpolation in W^{*}-algebras, Duke Math. J. 35 (1968), 525-533.
5. J. Dixmier, Les C*-Algebres et leurs representations, Gauthier-Villars, Paris, 1964. 6. J. Glimm and R. V. Kadison, Unitary operators in C^{*}-algebras, Pacific J. Math. 10 (1960), 547-566.
6. R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400.
7. S. Sakai, The theory of W^{*}-algebras, mimmeographed notes, Yale University, New Haven, 1962.
8. M. Takesaki, On the conjugate space of an operator algebra, Tohoku Math. J. $\mathbf{1 0}$ (1958), 194-203.
9. ——, Singularity of positive functionals, Proc. Japan Acad. 35 (1959), 365-366.

Received April 10, 1969.
University of California
Santa Barbara, California

