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THE GROUP CHARACTER AND SPLIT
GROUP ALGEBRAS

GEORGE SZETO

G. J. Janusz defined a splitting ring R for a group G of
order n invertible in R. Then, the Brauer splitting theorem
was given by G. Szeto which proves the existence of a finitely
generated protective and separable splitting ring for G. Let
M be a J?G-module and Ro be a subring of R. Then we say
that M is realizable in Ro if and only if there exists a R0G-
module N such that M s R ®RQ N as left i?G-modules. This
paper gives a characterization of splitting rings in terms of
the concept of realizability as in the field case. The other main
results in this paper are the structure theorem for split group
algebras and some properties of group characters.

Throughout this paper we assume that the ring J? is a commutative
ring with no idempotents except 0 and 1, that the group G has order
n invertible in R, and that all iϋG-modules are unitary left i?(?-modules.
We know that the order of G, n, is invertible in R if and only if RG
is separable.

1* In this section we study splitting rings in two ways. That
is, splitting rings can be characterized in terms of the concept of
realizability and structure theorem for split group algebras will be
given.

PROPOSITION 1. Assume the ring R has no idempotents except 0
and 1, and P is a finitely generated and protective R-module. Then
P is a faithful R-module.

Proof. Because P is a finitely generated and protective jR-module,
R = a{P) + Tr(P) where a{P) is the kernel of the operation of R on P
and Tr(P) is the trace ideal of P in R ([3], Proposition A.3). Thus
a{P) is a left direct summand of R ([3], Th. A.2(d)). But R has no
idempotents except 0 and 1 so that a(P) = 0. Therefore P is a faithful
jR-module.

Using the above proposition we can have the following definition
given by G. J. Janusz.

DEFINITION 1. A ring J? is a splitting ring for G if the group
algebra RG is the direct sum of central separable jβ-algebras, each
equivalent to R in the Brauer group of 12; that is,
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RG S φ Σ Home(P<, P<) ,
l

Σ

where {PJ are finitely generated and projective ϋ?-modules. The num-
ber of different conjugate classes in G is equal to s ([5], Definition
6).

DEFINITION 2. Let M be a RG-moάule and Ro be a subring of R.
Then we say that M is realizable in Ro if and only if there exists a
lϋoG-module N such that M = R ®Λ o AT as left jRG-modules.

THEOREM 2. // i£ is strongly separable over Ro and R is a
splitting ring for G, RG = 0Σΐ=iHom J Ϊ(P i, P<); ί&ew Pi is realizable
in Ro for all i if and only if Ro is a splitting ring for G.

Proof. If Ro is a splitting ring for G, that is, if

#oG = Θ±Hom Λ o (P,,P4),
ΐ = l

then Pi = Ro ®Λ o P4. This means that P< is realizable in Ro for all i.
Conversely, if Pi is realizable in Ro for all i, then there is R0G-

module M{ such that P{ = R ®Λ o Λfi for all i. Since i? is a strongly
separable i20-algebra, JB0 1 is a indirect summand of R. By the de-
finition of a split group algebra, Pt is a finitely generated and pro-
jective i?-module for each i; so Mt is a finitely generated and projective
i20-module for each i. In fact, because R = (i?0 lφi2ό) for some Ro-
module R[,

Pi s (Λo 1 θ Λί) Θie0 Mi ^ (iZo 1 <g)Λo Mi) 0 (Λί (g>Λo

Thus Mi = Rt K&^Mi is a i?0-direct summand of P iβ On the other
hand, Pi is finitely generated and projective over R and R is finitely
generated and projective over Ro; so Pi is finitely generated and pro-
jective over Ro. Therefore M{ is a finitely generated and projective
iϋo-module. We then have

RG = 0 Σ Hom^ίPi, P,) = 0 Σ HomΛ(Λ ®Λ o Mi, R ®Ro Mt)
1 l• = 1

(θΣ

Noting that Mi is a finitely generated projective and faithful jβ0-module
for each i by Proposition 1, we have that Ή.omBo(Mi, M^ is a central
separable jβo-algebra with a unique central idempotent in R0G for each
i ([2J, Proposition 5.1). Therefore J?0G ̂  φΣ'=i B.omBo(Mi9 Mt). This
proves that RQ is a splitting ring for G.
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We are going to discuss the structure of a split group algebra
over some kinds of rings, in particular, over a Dedekind ring.

THEOREM 3. Let P denote a finitely generated and protective
R-module. (a) If R is a Dedekind domain, then Homi2(P, P) is free
as a R-module. Consequently, a split group algebra is a free R-
module, (b) If R is a local ring or a semi-local ring or a principal
ideal Dedekind domain, then HomΛ(P, P) is a matrix ring over R.

Proof. Because P is a finitely generated and projective 12-module,
Hom^P, P)~P®R Hom^P, R). Let the rank of P be k. Then P s
ΦΣ?=ί R 0 If Σ*=ί R a r e k — 1 copies of R and I is in the class group
of R. By substitution,

<g>Λ HomΛ(P, R) s ( θ g R ®ί) ®R Horn, ( θ Σ R 0 I

= ( θ Σ Rθή®R ( θ Σ Homs(Λ, 12) 0 Homs(/, 12))

= (0 Σ R 0 /) ®* (0 Σ R 0 /-1)

= (θ ( g 1
 Λ) θ ( θ Σ Λ ®^ /-1) 0 ( θ Σ R ®RI)

= (θ ( g 1 «) θ ( θ Σ I-1) 0 ( 0 Σ l) 0 R

= ( θ Σ Λ ) θ ( θ Σ Λ )

= f©Σ.) 12. This proves part (a).

For part (b), because P is a free module of finite rank over each of
these rings, Homβ(P, P) is a matrix ring over R. For a local ring
12, see Theorem 12 in Chapter 9 in [6] For a semi-local ring 12, see
the remark on Theorem 3.6 in [2]. For a principal ideal Dedekind
domain, see Exercises 22.5 and 56.6 in [4].

REMARK. There exist split group algebras over those rings in
the above theorem from the proof of the Brauer splitting theorem
([8], Th. 2).

THEOREM 4. Let R denote a Dedekind domain, P a finitely
generated and projective R-module and P(R) the class group of R.
Then, for P ^ © Σ t i 1 R 0 J, there is I in P(R) such that P = J"1

where k — rank (P) and J is in P(R) if and only if Ή.omB(P, P) is a
"matrix ring over R of order k by k.
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Proof. Because Hom^P, P) is a matrix ring over R if and only
if there exists / in P{R) such that P (g)Λ / ~ 0 Σ<=i #> a direct sum
of ά-copies of R (Lemma 9, [7]). But P~ ®Σ*=ί.RφJΓ for some

J in P(R); so ( ( ® g Λ) © j ) ®* I = 0 Σ Λ ,

where we use the fact that J ^ / ^ J I. But

0 ( J / ) S

then P J — J?. So, if we can prove the fact that J(£)RI = /•/, the
theorem is proved. In fact, because /•/ is in P(R) and J I is pro-
jective and finitely generated, the exact sequence

0 > Ker (π) > J(g)R I-?-* J I > 0

splits. Thus J 0R I = Ker (π) 0 J /. Let RM denote the quotient
ring with respect to a prime ideal M.

RM &)R (J ®R I) = RM ®R Ker (π) 0 RM (g) R{J I) ,

that is, RM = i?^ ® Λ Ker (π) 0 J?^. Hence J?^ ® Λ Ker (TΓ) = 0 for all
prime ideals M. On the other hand, because Ker(τr) is finitely gene-
rated, Ker(ττ) = 0 by Nakayama's lemma. This proves that J ® Λ / =
J I. Therefore the theorem is completed.

COROLLARY 5. Keep the same notations as Theorem 4. // the
rank of P and the order of J are relative prime, then Hom^P, P)
is a matrix ring over R.

Proof. It suffices to prove that there exists / in P(R) such that
J-1 = p by Theorem 4. Consider the subgroup generated by Jk.
Because k, the rank of P and the order of J are relative prime, this
subgroup is the same as the subgroup generated by /. Hence J =
Jίk for some i from 1 to the order of J minus 1. Thus I = {J~y is
what we want. In fact, P = {J~γ)ik = (Jikyι = J"1.

DEFINITION 3. The subgroup of P{R), E7, is called the R — Z group
for a finitely generated and protective i2-module P if U — {I such that
7 is in P(R) and I>P=P}. (For this group see Theorem 14 and
Theorem 15 in [7]).
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THEOREM 6. (a) Let R be a Dedekind domain and H = {J such
that P ~ φΣfc!1 R Θ J and HomR(P, P) is a matrix ring over R where
J is in P(R)}. Then H is a subgroup of P(R). (b) Assume the R —
Z group is equal to P(R). Then, P is a free R-module if and only
if Homi2(P, P) is a matrix ring over R.

Proof. For any Jf and J" in H, there are Γ and Γ in P(R) such
that J'-{F)k = R and /"•(/")* = R by Theorem 4. We then have
/'. J"*(Γ-Γ)k = (J' Γk)(J".Γk) = R. Thus J ' . J " is in H. Also, for
any J in H, there is I in P(R) such that J Ik = R. We then have
j-i.(/*)-i = #, that is, J-l-{I~l)k = R. Thus J-1 is in if. Therefore
H is a subgroup of P(R). This proves part (a).

For part (b), one way is clear. If P is free, then HomΛ(P, P) is
a matrix ring over i?. Conversely, if HomΛ(P, P) is a matrix ring
over i?, P = θ Σ f e 1 i 0 / with J in H by Theorem 4. But the R - Z
group is equal to P(R); then P = R for all I in P(R). Thus if = 0.
Therefore P is a free ϋϊ-module.

REMARK, (a) Corollary 5 can be expressed in terms of the R — Z
group as following. If the exponent of the R — Z group and the
order of / is relative prime, then Homi2(P, P) is a matrix ring over
R.

(b) Theorem 4, Corollary 5, and Theorem 6 tell us the structure
of Homβ(P, P), any component of a split group algebra. We thus
have the similar structure theorems for group algebras by considering
P π P2, Ps and Jly J2, . Js in the same time where Piy i = 1, 2,
•. s are in the definition of a split group algebra RG with

Pi = ΘΣtRΘJi as in Theorem 4.

2 Let us recall the group character of a finitely generated and
projective jRG-module.

DEFINITION 4. Let M be a finitely generated and projective
module with dual basis {Flf F2, Fu; Xlf X2, Xu}. Then the
group character TM:G-+R is defined by TM{g) = χ? = 1 FiigX^ for any
fir in G ([8], §2).

In this section some properties of group characters will be given.
Let K be a field and K(φ) be K(φ(g^, φ(g2), φ(gn)) where φ is a
group character for G = {gu g2, •••£»}. We know that JBΓ(0>) is a
separable extension over iί. In the ring case, JB[Γ*] can be proved
as a strongly separable ϋϊ-algebra where Tι is a group character for
G. Finally, we point out the usual orthogonality relations on group
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characters in the ring case.

THEOREM 1. (a) Let Tι be TP. where Pi is in the definition of
a split group algebra RG (see Definition 1). Then Tι(g) is a constant
for all splitting rings R with the same prime ring Ro for a given
group G, where g is in G. (b) Tι(g) is a sum of n\h-roots of 1 where
g is in G and g%i — 1G, the identity of G.

Proof. Since R is a splitting ring for G, RG = ΘΣ?=i HomΛ(Pf, P%).
Setting Rr = R[ ΛΓΓ] where Λ/T is a primitive
is the exponent of G, we have

RG ~ R' ®R RG ~ R <g)Λ ( ® Σ Hom^P,, P,))

Λ' <g)Λ Pi9 Rr ®R Pt) .

By Lemma 1 in [8], Rf is also a splitting ring for G. Clearly,

TR>®RP. = T% (1) .

Next, consider R' = Rol^T]. It is a splitting ring for G ([8],
Th. 2); that is, R"G ~ Θ Σ U ΈLomB,,(P!', P/') We then have

RG = R' ®R,, R"G = 0 Σ ΊIomBf(R ® B . P/', J?' <g)Λ,, P/') .
ί = 1

Thus TP,, = T^^^^pv (2), and for each i

HoiMl? ® Λ . P/', Λ' <8)Λ. P/0 - Hom^(i2' ® Λ P4, iϊ' ® Λ P,) .

The later implies that Rf <g)Λ,, P/' = (i2' 0 Λ P,) 0 Λ , J, where J is in
the class group of Rf ([7], Lemma 9). Consequently,

^•R'
Rf,P

f

i'

From (1), (2) and (3), Γ* = Γp^. But jβr/ depends on i?0 and G only
so that Tι is a constant for all splitting rings R with the same prime
ring RQ for a given group G, i — 1, 2, •••, s. This proves part (a).

The proof for part (b) divides into two cases. Case 1. Char(J?)
is equal to pr where p is a prime integer and r is a positive integer.
Then the prime ring of R is Zj(pr) where Z is the set of integers. Let
V1 be a primitive mth-root of 1 where m is the exponent of G.

Then Rf = Z/(pr)[\/T] is a splitting ring for G ([8], Th. 2); that
is, RG ~ ©Σ?=i HomR,(Pi9 Pi). Since Rf is a local ring (see the proof
of Theorem 2 in [8]) and P4 is a finitely generated and projective R'-
module for each i, P< is a free Jϊ'-module for each i ([6], Th. 12 in
Chapter 9). Therefore T\g) is a sum of nf-roots of 1 where g is in
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G and gnί = 1G, the identity of G.
Char(iϋ) is equal to 0. Then the prime ring of R is Z(n), the

quotient ring of Z with respect to the multiplicative closed set {n,
n2, •••}. By the Brauer splitting theorem again, Rf = Z(n)[1fT]
is a splitting ring for G; that is R'G = ®Σ5=i Hom^P,, P{). Since
R is a principal ideal Dedekind domain, Pi is a free i?'-module for
each i ([4], Exercises 22.5 and 56.6). Therefore Tι{g) is a sum of
w?-roots of 1 as in Case 1.

THEOREM 2. Let R[T] denote RlT^g,), Ti(g2)} •••] where G is

equal to {gλ, g2y , gn}. Then R[Tι] is a strongly separable R-algebra

for each i.

Proof. As in the above theorem, R divides into two cases. Case
1. Char(iϋ) = 0. Then the prime ring of R is Z(ri), the quotient
ring of integers with respect to the multiplicative closed set {n, n2, }.
We know that the quotient field of Z(w)[T%)] is Q{Tι{g)) for each
g in G and the quotient field of Z(n)[^T] is Q(^T), where Q is
the set of rationale. Because Zinjl^l] is separable over Z(n) by
the Brauer splitting theorem, Q(ΛΠΓ) is unramified over Q ([1], Th.
2.5). But Q{Tι{g)) is a subset of Q(^T) and contains Q; so QiT'ig))
is unramified over Q ([9], Proposition 3.2.4). Thus ZinftT^g)] is
separable over Z{n) by Theorem 2.5 in [1] again. This implies that
R^zwZinJlT^g)] is a separable .R-algebra ([2], Corollary 1.6); so
R[Tι{g)]y the homomorphic image of i ϋ 0 z{n) ίΓ(w)[jΓ%)], is also a se-
parable ϋ?-algebra. On the other hand, because T\g) is integral over
R, RlT^g)] is a strongly separable iϋ-algebra. Therefore R[Tl] is a
strongly separable iZ-algebra.

Case 2. Char(iϋ) is pr for some prime integer p and a positive
integer r. Then the prime ring of R is Z/(pr). We know that UΓ/(pr)
[T%)] is a local ring with the nilpotent maximal ideal {p)l{pr)[Ti(g)\.
Also, Z/ip^lT^g)] is a Noetherian ring such that

Let Λf denote (p)/(2>r)[Γ*(ί/)] Then (pVίpO ί^/ίPOI^ίflr)])^ is equal to
for Γ̂ flr) is in if, ( )^ is a local ring at M.

is a separable Z/(p) extension. Therefore ZI{pr)[Tι{g)] is a separable
Z/(2>r)-algebra ([1], §1). Then as in Case 1, R[Tι] is a strongly sep-
arable iϋ-algebra by the same arguments. This proves the theorem.
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REMARK. We know that an element a in the separable closure
of R is separable means that it satisfies a separable polynomial over
R. This is also equivalent to that R[a] is a separable .β-algebra ([5],
Lemma 2.7). Then T\g) is a separable element such that T\g) is a
sum of wf-roots of 1. Because these roots satisfy the separable
polynomial, X%i — 1 = 0, all roots are also separable elements. But
it is not true that a sum of separable elements is separable. The
following example is due to G. J. Janusz. Let R be Z(2), the
quotient ring of Z with respect to the multiplicative closed set
{2, 22, •••}, S be R[i] where i2 = - 1 . Then S is strongly separa-
ble over R. An element a -j- ib is a separable element if and only if
(α + ib) — (a — ib) = 2ib is invertible in S ([5], Lemma 2.1). Hence
the separable elements are of the form a + i2j where a is in Z(2)
and j = 0, 1, 2, . Clearly, 1 + i and 1 + i2 are separable elements
but (1 + i) + (1 + ί2) = (2 + i3) is not.

We conclude this section by pointing out the usual orthogonality
relations on group characters as in the field case.

T H E O R E M 3 . / / T* = TP., for i = 1,2, ---, s, then

where n is the order of G and δί5 is the Kronecker delta.

Proof. Let Et be the ΐth-central primitive idempotent of RG,

Σ

Q n

where kι — rank(P{) ([8], Lemma 5). Taking the characters in both
sides, we have the answer.

REMARK. By using the above theorem and standard methods,
the other usual orthogonality relations on group characters can be
proved (see § 31 in [4]).

The author wishes to thank Professors F. R. DeMeyer and G. J.
Janusz for their many valuable suggestions and discussions.
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