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LOCALLY COMPACT CLIFFORD SEMIGROUPS
J. W. STEPP

Let S be a locally compact Hausdorff semigroup which is
a disjoint union of subgroups one of which is dense, If S the
disjoint union of exactly two groups one of which is compact,
then S has been completely described by K. H, Hofmann, and
if S is the disjoint union of two subgroups where the dense
subgroup G has the added property that it is abelian and G/G,
is a union of compact groups, then S has been described in a
previous paper of the author,

It is the purpose of this paper to consider S when each
subgroup of S is a topological group when given the relative
topology and G (the dense subgroup) has the added property
that it is abelian and G/G, is a union of compact groups. In
particular, we show how to reduce such a semigroup to a
semigroup which is a union of real vector groups (§3). In §4
we give the structure of S under the added assumption that
E(S) is isomorphic to E[(R®)*], where (R*)" denotes the n-fold
product of the nonnegative real numbers under multiplication,

2. Definitions and notations. If G is a topological group, G,
will denote the identity component. Let & denote the full subcategory
of the category of locally compact abelian groups whose objects G
have the property that G/G, is a union of compact subgroups. Let
&, denote the full subcategory of & whose objects G, have the pro-
perty that G, is a union of compact subgroups. If Ge %, then by
the structure theorem for locally compact abelian groups [2, p. 389]
there is a real vector subgroup W of G such that G/Wew,. If
W = R, then n = dim G will be called the dimension of G. We will
use the following properties of & and &,: P,; for each G in & there
is a unique subgroup G, € &, such that G/G, is a real vector group.
P, [7]; if a: G— W is a morphism in & with «(G) dense in W and
if W is a real vector group, then there is morphism 8: W — G in & such
that af8 = I, (the identity morphism on W). P, [7]; if a: G—H is a
morphism in the category of locally compact abelian groups with a(G)
dense in H and Ge ¥, then He . Also, if G/G, is compact, then
H/H, is compact.

Let & denote the category whose objects S are locally compact
Hausdorff semigroups satisfying (i) S is a disjoint union of subgroups
one of which is dense and (ii) each maximal subgroup of S is a member
of &, and whose morphisms are the continuous identity preserving
homomorphisms. Let <Z denote the full subcategory of .2 whose
objects R have the properties that (i) each maximal subgroup of R
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is a real vector group and (ii) the minimial ideal of R exists and is
compact (thus a zero for R).

Let Se¢.”. Then we will use 1 to denote the identity for S.
For each x in S let H(x) = {yeS|yS = «S}. Since S is an abelian
Clifford semigroup, each H(x) is a maximal subgroup of S. Let
0: S — E(S) be the function defined by d(s) is the idempotent of S
such that H(s) = H(0(s)). If A< S, then A will denote the closure
of A. Partially order E(S) by ¢ < f if and only if ef = ¢, and for
each ¢ and f in E(S) let (e, f) = {ac E(S)|le <a < f}. Let Z=1{0,1}
under multiplication, and let Z” denote the w-fold product of n copies
of Z. Finally, for a semigroup 7 we use K(7T) to denote the minimial
ideal when it exists.

3. The purpose of this section is two fold. First we prove that
each S in .&” splits into the direct product of two closed subsemigroups
V and W, where V is a real vector group and where We.&” with
the added property that K(W) e &, (Proposition 3.5). Second we prove
that there is a congruence o on S such that S/o is a locally compact
Clifford semigroup with each H-class a real vector group and with
E(S) = E(S/p) (Theorem 3.11).

Throughout this section S will represent a fixed member of .&7,
and E(S)* will denote E(S)\{1}.

LEmMMA 3.1. Let ec E(S)*. Then H(e) 1s open in S\H(1) if and
only if dim H(e) = dim H(1) — 1.

Proof. By [7], if H(e) is open in S\H(1), then dim H(e) =
dim H(1) — 1.

Let ec E(S) with dim H(e) = dim H(1) — 1. Again by [7], if
feE(S) such that e < f, then dim H(e) < dim H(f). Thus, since
dim H(f) < dim H(1) for all f in E(S)* [7], (e,1) = @. Let v:S—eS
be the morphism defined by +(s) = es. Since H(e) is a topological
group, H(e) is open in H(e) [8] which is eS. Since + is continuous
and since H(e) = (S\H(1)) N v(H(e)), it follows that H(e) is open in
S\H(1).

COROLLARY 3.2. If ec E(S)*, then there is an f in E(S) with
e < f and dim H(e) = dim H(f) — 1.

Proof. Let f e E(S) with e < fand (e, f) = @. Then H(e) = H(f).
Let +: H(f) — ¢H(f) morphism defined by +(s) = es. Since (¢, f) = @,
H(e) = (H(H\H(F)) N (v~ (H(e))), and it follows that H(e) is open in.
H(H\H(f). Thus, by Lemma 8.1, dim H(e) = dim H(f) — 1.
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LEMMA 3.3. A subgroup He %, of S is closed in S.

Proof. Let ge H. Since H & H(e), for some e in FE(S) and
g € 0(9)H, it follows that g € H(g),. Thus there is a compact subgroup
C of H(g), with geC. Since {g"}7_, S C and C is compact, §(g) € {g"}7_.
[4, p. 15] which is a subset of H; thus d(g) e H. By [7], there are
no maximal subgroups of H which are topological other than H; thus
d(g) = e, and H< H(e). Thus we need only show that H is a closed
subgroup of H(e), but this follows since H is a locally compact sub-

group of a locally compact topological group.

PROPOSITION 3.4. Let ec E(S), and let + be the map from S onto
eS defined by +(s) = es. Then there are closed subgroups V and W
of H(1) with the following properties:

(@) W =y(H(e).),

(b) V is a real wvector group, and

(¢) The morphism m: V x W— -~ (H(e)) defined by m(v, w) = v-w
18 an 1somorphism.

Proof. Let a be the natural map from H(e) onto H(e)/H(e),, let
Q be the corestriction of |z, to H(e), and let B: H(e)/H(e),— H()
be a morphism in & such that (¢Q)B is the identity map on H(e)/H(e),
[P,)]. Let V = B(H(e)/H(e).), and let W = Q~*(H(e),). Then V and W
are the desired closed subgroups of H(1). The inverse of m is given by
s ((Bay)(s), [(Bay)(s)]~'s) which is clearly continuous. The theorem
now follows.

PROPOSITION 3.5. There are closed subgroups V and W of H(1)
with the following properties:

(a) V is a real vector group,

() K(W)ew,, and

() The morphism m: V x W— S8 defined by m(v, w) = v-w is
an 1somorphism.

Proof. Again by [7], if e ¢ E(S)*, then dim H(e) < dim H(1). Thus
there is an f in E(S) with dim H(f) < dim H(e) for all ¢ in E(S).
Since dim H(ef) < min {dim H(e), dim H(f)} with equality holding only
for e < f or f <e, f is unique. The proposition now follows from
Proposition 3.4 along with the observation that S = —*(H(f)) where
v: S — fS is the morphism defined by +(s) = sf for all s in S.

PROPOSITION 3.6. If there is a s, in S with H(s,), compact, then
H(s), ts compact for all s in S.
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Proof. From the structure theorem for locally compact abelian
groups [2, p. 389] one can get that if Ge <&, then G, is compact.
Thus for any s in S we have that H(s), is compact if and only if
H(s)./(H(s),), is compact. But H(s),/H(s).), is compact if and only if
H(s)/H(s), is compact. Therefore, by P, and since H(I) = S, the theorem
will follow if we can prove that H(1)/H(1), is compact.

We do this by contradiction. That is, assume H(1)/H(1), is not
compact, and let e e E(S) satisfying the following:

(i) H(e)/H(e), is compact,

(ii) 0d(s;) = e, and

(iii) if f e E(S) with e < f, then H(f)/(f), is not compact.

By Corollary 3.2 and since e = 1, there is an f in E(S) with e < f
and dim H(e) = dim H(f) — 1. Let T = H(f), and let 4: T—eT be
the morphism defined by +(s) = se. By Proposition 3.4, there is a
real vector subgroup V of H(f), a closed subgroup W of H(f) with
= (H(e),) = W, and a morphism m: V x W — 4(H(e)) which is an
isomorphism. Since W\W = H(e), which is compact and by [3], W
contains a compact subgroup C such that W/C is a real vector group.
Thus Hy(f). is compact. Since the corestriction of m |, .2 VX W—H(f)
is an isomorphism and V is a real vector group, it now follows that
H(f), is compact. This is the desired contradiction and the proof now

follows.

SUBLEMMA. Let e and f be elements of E(S) with dim H(e) =
dim H(f) + 1 and with f <e. If H is a subgroup of H(e) with
He %, then fH is a closed subgroup of S.

Proof. Let ge fHN H(f). Since He%,, fH < H(f)., and thus
there is a compact subgroup C of H(f) which is open relative to
H(f), and with g € C. Let +: H(e) — fH(e) be the morphism defined by
() = fs. It follows from Proposition 3.4 and the fact that H(f) is
open in H(e)\H(e) that ~*(C) is a locally compact semigroup which
contains a dense group 4—(C) N H(e) whose complement C is compact.
By [3], there is a unique compact subgroup C, of ¥+ *(C) N H(e) and a
one-parameter subgroup M of ~(C)N H(e) such that *(C) = M.C..
Let {g.}4c4 be a net in fH which converges to g. Since C is open in
H(f),, thereis a 8 ¢€ A4 such that if « = B, then g, C. Foreachac A4
with @ = 8 there is an h,e H with g, = fh,. It follows that each
h.€C,, and therefore there is an & in C, N H such that fo = g. Thus
fH < fH< fH. We now have fH is a closed subgroup of H(f)., and
therefore fHe %,. The sublemma now follows by Lemma 3.3.

LEMMA 3.7. If H is a subgroup of S with He &, and if fe E(S),
then fH s closed.



LOCALLY COMPACT CLIFFORD SEMIGROUPS 167

Proof. Let he H; then o(h)-f < o(h). If o(h)f = é(h), then fH =
fo(h)H = o(h)H = H which is closed by Lemma 3.3. If d(h)-f < o(h),
then there is a chain of idempotents e, .-, ¢,,, which is maximal with
respect to the properties: (i) ¢, = d(h)f and (ii) e,., = d(h). Observe
that since e, ---, ¢,, is maximal, dim H(e;) = dim H(e;,) — 1 for ¢ =
1,2, --.,q9. If fH is not closed, then there is an integer »,1 < p =< gq
such that ¢,H is not closed and e,,,H is closed. Since e¢,H = (¢,-¢,+,)H =
e,(¢,+.H) and since ¢, Hec &,, ¢,H is closed (sublemma). Thus ¢,H is
both closed and not closed which is impossible; thus it follows that
fH must be closed.

Now that one has Lemma 3.7 it is easy to prove the following
corollary.

COROLLARY 3.8. (i) For each x in S, xH(1), is closed.
(i) If U is a monempty compact subset of S, then U-H(1), s
closed.

THEOREM 3.9. Let R = {(x,y)eS x S|xHQ1), = yHQ1),}. Then R
is a congruence, and S/R is a locally compact semigroup with the
following properties:

(i) If 6 is the natural map from S onto S/R, then 6 is an open
map and 6 (H(s)) = H(s)/(0(s)H(Q1),) for all s in S.

(ii) The corestriction of 6|z to E(S/R) is an isomorphism.

Proof. Clearly R is a congruence. Since H(1l) acts as a group
of homeomorphisms on S and since 6-'(0(A4)) = A-H(1), for all A+ @,
it follows that 6 is an open map. Since # is an open map, S/R is
locally compact and also multiplication is continuous. We now show
S/R is Hausdoff. Let z,yeS with xH(1), # yH(1),. Since yH(l), is
closed (Corollary 3.8) and since S is a locally compact (thus regular)
Hausdorff space, there is a compact neighborhood N, of 2z with
N, NyHQ), = @. Thus y¢ N,-H(1), which is closed by Corollary 3.8,
and using the fact that S is regular we obtain a compact neighbor-
hood N, of y with N, N (N,-H(1)),= @. It follows that (N,-H(1),)N
(N,-H1),)= @, and thus S/R is Hausgdorff. This completes the proof.

REMARK. We wish to point out that each maximal subgroup of
S/R is connected, and thus H(d(s)), is compact for each s in S.

LEMMA 3.10. Let Te.&” with K(T) compact. Then for each non-
negative integer n there is a T, in S and o surmorphism «,: T— T,
m & satisfying:

(@) The corestriction of |z to E(T,) is an isomorphism.

(b) Ifxe T with dim H(x)<n, then a,(H(x))= H(a,(x))= H(z)) H(x)..
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(¢) If xe T with dim H(x) > n, then the corestriction of & |y, to
H(a(x)) s an isomorphism.

Proof. The proof is by induction. Let R, = {(x, y)|x =y or x € K(T)
and y € K(T)}. Clearly R, is a congruence, and since K(7T) is compact,
it follows that T/R, is a locally compact semigroup. Let «, be the
natural map from T onto T/R, = T,. Then, clearly, a, and T, satisfy
(a)-(c) for n = 0.

Let k& be a nonnegative integer such that there is a T, ¢.%” and
a surmorphism «,: T'— T, satisfying (a)-(c). If %k = dim H(1), then
let Tpo, =T, and @, = «,. Then T,,, and «,,, satisfy (a)-(c). If
k< dim HQ1), let A= {ecE(T,)|dimH(e) =k + 1}, and let T, =
{x e T,|x e H(e) for some ¢ in A). For each ¢ in A let v,: S —eS be
the morphism defined by +.(s) = es. Then v (H(e)) N T = H(e), and
thus each H(e) is open relative to T,,. Let B, ={(x,y) e T, X Tple=y
or 6(x) = d(y)e A and xcyH(d(y))}. It is easy to show that R, is
a congruence. By Proposition 3.6 and since K(T,) = {0}, each H(e),
is compact. Since each H(e), is compact and since each H(e) with
ec A is open in T, it follows that T/ Ry, is a locally compact semi-
group. Let Ti, = T,/Ri, and gy, = N, where 7 is the natural
map from T, onto T}/R,,,. Then T,,,€¢.% and a,,:T— T, is a
surmorphism satisfying (a)-(c) for n = k + 1. The theorem now follows
by induction.

THEOREM 3.11. Let S€.5%”. Then there is a Te.S” and a sur-
morphism a: S — T in & satisfying:

(i) The corestriction of |z onto E(T) is an isomorphism.

(ii) FEach H-class of T is a real vector group.

Proof. By Proposition 3.5, there is an isomorphism 8: S—V x T
where V is a real vector group and where Te.&” with K(T)ec Z..
By first applying Theorem 3.9 and then Lemma 3.10 for » = dim H(1)
one can obtain a surjective morphism B,: T — T, which preserves the
structure of E(T) and where the H-class of T, are real vector groups.
Let T=V x T, and a:S— V x T, be the map defined by a(s) =
(2.,(8(8)), B(p,(B(s))). Then clearly T and a: S — T satisfy the con-
ditions of the theorem.

4. Let 5% denote the full subcategory of .&¥ whose objects S
have the property that E(S) = Z* for some nonnegative integer gq.
In this section we characterize the objects in .5%. The fact that there
are objects in . that are not in &7 is demonstrated by J. G. Horne,
Jr., in [6]. However, if Se.%” with dim H(1) < 2, then it is shown
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that Se &

Let R, denote the multiplicative group of positive real numbers,
and recally that R® denotes the multiplicative semigroup of nonnegative
real numbers.

LEMMA 4.1. Let E be a Hausdoff topological space which is the
disjoint union of R, X R® and a singleton set {w}, where R, X R”
has the product topology. If {w}U (R, x {0}) is homeomorphic to R®
with we (0, 1] x {0}, then E is not locally compact at w.

Proof. We assume FE is locally compact at w and show that this
assumption leads to the conclusion that R® is compact. Let U be an
open neighborhood of w with U compact. Then U\U is a compact
subset of R, X R* Since w U (B, X {0}) is homeomorphic to R* with
(0, I < {0} = ((0, 1] X {0}) U {w}, there is an a in B, with {(x, 0)|0<z<a}<SU.
For each b in R, with 0<b<a either {b} x R*< U or ({0} x R N(T\U) = & .
To see this, assume ({8} x R®)N(U\U) = @. Then {b} x R* is the disjoint
union of the two relatively open sets (E/U) N ({b} x R%) and UN ({b} X R*).
Since {b} x R is connected and {b} x R°NU =+ @, (BE\U)N({b} x R®) = Q&
and hence {b} x R* < U.

We now prove there is a 7, < a¢ in R, satisfying; if be R, and
b<r, then {b} x R* < U. If this were not the case, then by the
above there would exists a sequence {b,};., in R, such that {b,, 0)} .,
converges to w, and each ({0} x BR*) N (U\U) # @. For each positive
integer n let «, be an element of R* such that (b,, ,) e U\U. Since
I7\U is a compact subset of R, x R® the sequence {(b,, #,)}—, has a
cluster point (b, ). Thus {(b,, 0)};-, converges to w and clusters to
(b, 0) which is impossible. Thus we now can conclude that there is a
7, in R, such that if b ¢ R, with b < r,, then {b} x R* < U. We point out
at this point that if be R, and b < 7, then {b} x R*= {w} U {b} x R*.

For each ! in R,, {(r, l)|r, < 7} is connected, and (r,, I) e U. Thus
a similar argument to the one above proves there is an I, in R® such
that if [ =1, then {(r, l)|7, < r} £ U. Similarly, there is a t,¢ R, with
t, = 7, and such that if te R, with ¢=¢, then {({,D)|0ZI<} & U.
Let B = [r, t] x [0, l,] which is a compact subset of B, x R*. It is
easy to show that E\B< U and thus E= UU B and is compact. In
particular, (R x {0}) U {w} is compact and homeomorphic to R*. This
is the desired contradiction.

THEOREM 4.2. If S is a member of # with dim H(1) = 2, then
ES) = Z*.

Proof. Since Se.<Z, S has a zero. By Corollary 3.2, there is an
element f in E(S) with dim H(f) = 1.
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Case 1. There is only one f in E(S) with dim H(f) = 1. That is,
E(S) ={0,e,1}. By [7], S\{0} = R, x R°. By [5] and since R, X {0} =

(R. x {0}) U {0}, R x {0} is homeomorphic to R*. By applying Lemma
4.1 we have S is not locally compact at {0}. Thus Case 1 is impossible.

Case 2. There are exactly two idempotents ¢, and e, with
dim H(e,) = dim H(e,) = 1. Clearly in this case E(S) = Z=.

Case 3. There are at least three idempotents e, e, ¢, with
dim H(e¢;) = 1. Let P, and P, be one-parameter subgroups of H(1)
with P, = P; U {e;} (Proposition 3.5). Let {s,} be a net in H(1) which
converges to e;. Since S\H(1) is an ideal, {s;'} does not have a cluster
point. Since H(1) = P, P,, there are nets {s,,} & P, and {s,,} & P, such
that s,,+s,, = s, for all @. By [3] and since {s;'} does not have a cluster
point, either {s,,} clusters to e, and {s;.} clusters to e, or {s;} clusters
to e, and {s,,} clusters to ¢,, But the former implies e, = e;-¢;,, and
the latter implies e, = ¢,-¢;,. Since ¢;2¢, = 0 and ¢,-¢; = 0, either ¢, =0
or ¢, = 0. This is the desired contradiction. Thus Case 3 is impossible.

LEMMA 4.3. Let S be a member of <% with dim Hg(1) = 2, and
let ec E(S) with H(e) = R.. Then there is an f in E(S), such that
dim H(f) = dim Hs(1) — 1 and that ef = 0.

Proof. By Corollary 3.2 and since dim Hg(l) = 2, there is an
idempotent ¢, in S such that ¢ < ¢, and that dim H(e,) = dim H(e) + 1= 2.
Let T = H(e,), then T is a member of <#Z and dim H,(1) = 2. Thus,
by applying Theorem 4.2 to T one observes that there is an f in E(T)*
(and thus in E(S)*) such that f + 0 and that ef =0. Let f be a
maximal such idempotent with respect to f = 0 and ef = 0.

Clatm. dim H(f) = dim Hg(1) — 1. If this were not the case, then
applying Corollary 3.2 two time we observe there are idempotents f,
and f, such that f < f, < f; and dim H(f) = dim H(f)) —1 = dim H(f,) — 2.
By applying Proposition 3.4 to H(f,) we observe there is a subsemigroup
R < H(f,) such that K(R) = {f} and dim H.(1) = 2. By Theorem 4.2,
there is an idempotent f; in E(R)* (and thus E(S)*) such that f, = f
and f.-f, = f. But since f, and f, are elements of E(S)* which are
larger that f, e¢f, = 0 and ef, = 0. In fact, since ¢f, < e and ¢f, < ¢,
ef.=ef,=e¢. However, 0 =ef =e(f.f:) =ef; = e, and this is the desired
contradiction. Therefore, f is maximal in E(S)*. From the proof of
Lemma 3.1, we have that f maximal in E(S)* implies dim H(f) =
dim H(1) — 1. For the remainder of this paper we will use the follow-
ing notation. If Se.%” and ec E(S), then +,: S— eS is the morphism
defined by +r.(s) = es for all s in S.
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We omit the proof of the next lemma since the proof is straight
forward.

LEmMA 4.4. () If f and e are element of E(R®)") with
dim H(f) = 1,dim H(e) = n — 1 and if 7 (f) N ¥7'(e) = {1}, then the
morphism m: ¥7(f) X ¥ (e) — (B*)", defined by m(s, t) = st, is an
isomorphism.

(i) If e E(S) with dim H(e) = p, then (a) ¥ *(e) = (R*)"* and
(b) v.[(R")"] = (B°)".

LEmMMA 4.5. If a:(R)"—(R)"e<# 18 a surmorphism with
a(B(R*)") = E((R*)"), then a is an isomorphism.

Proof. The proof is by induction on dim H(1). The lemma is
trivially true for n = 0. If » =1, then a(R,) is a dense connected
subgroup of R® and thus «(R,) = R,. By [2, p.84], a|; R, —R,
is an isomorphism, and thus it follows that « is bijective. We show
a is a closed map. Let A be a closed subset of R*. If A & R,, then
there is an » in R, with [0,7r] N A = @&. Thus a(A4) is closed in R,
and [0, f(r)) N a(4) = [0, f(r)] N a(4) = @». Since [0, f(r)) is open in
R®, 0 ¢ a(A), and thus it follows that a(4) = @(4). If 0 A, then either
A = R® or there is an r in R, with r¢ A. If A = R* then clearly
a(A) is closed. If there is an » in R, with r¢ A, then 4 =
({0, 71 n A) U (Ir, ) N A). We now have

a(A) = ([0, r] N A) U ([r, =) N 4)]
= ([0, r] N A) U a([r, ) N A) .

Since [0, 7] N A is compact, a([0, r] N A) is compact, thus closed, and
by the first case a([r, ) N A) is closed. We now have « is a closed
bijection and thus an isomorphism.

Let n be an integer larger than 1 such that the lemma is true for
all nonnegative integers less than n. Let S denote (E®)", and define
a: E(S) — E(S) by a(e) = a(e) for all e in E(S). Since & is bijective
and since E(S) is finite, @ is an isomorphism. For each e¢ in E(S)
define +,: S—eS by 4r.(s) =es for allsin S. Let ¢, =(0,1,1, .-+, 1)
and ¢, =(1,0,0,---,0), and let A =+;'(e) and B = +'(e;). Then
A= R* B=(R")""'and ¢,-¢, = 0. Define F: A x B— S by F(a, b) = ab;
then, by Lemma 4.4i, F' is an isomorphism. Let f, = a(e¢,) and f, =
a(e). We now show a(4) = ¥ '(f) = R?, a(B) = ¥7}(f,) = (R*)", and
a(4) N a(B) = {1}. From which it will follow by Lemma 4.4i that the
morphism G: a(4) x a(B)— S, defined by G(a, b) = ab, is an isomorphism.
Let A, = ¥7)(f,) and 4, = ¥7X(f,). Since & is an isomorphism, & pre-
serves the less than order on E(S); thus dim H(f,) = dim H(e) =n — 1
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and dim H(f,) = dim H(e,) = 1. Therefore, A, = R®* and A, = (B*)"
(Lemma 4.4iia). If 4, N A, + {1}, then either f, €4, N A, or there is
an element ge H1) N A, N A, with g = 1. Since f,-f, = afe)-a(e,) =
alee) = a(0) =0, f,¢ A,, and thus there is a ge H(1) N 4, N 4, with
g # 1. Since A, = R* either {9"};-, converges to f, or {(g~*)"};-, con-
verges to f, [3]. But both imply f, € A, which is impossible by the
above. Thus 4, N A4, = {1}. Clearly, a(4) & A,. Let teA,. Since
a(S) = a(A-B) = a(A)-a(B), there is an element a € a(4) and b e a(B)
such that ¢ = ab. It follows that f, = f.t = f.a-b = f,b which implies
beA,. But a(B)S B, and B, N A, = {1}; thus b = {1}. The proof that
a(B) = B, is similar and will therefore be omitted. We now have the
following commutative diagram:

a

S — S
F- G
A x BaXelz, pa) x aB) .

By the inductive hypothesis, a|,; A— a(4A) and «|z: B— a(B) are
isomorphisms. The lemma now follows.

LEMMA 4.6. Let X,Y and Z be Hausdorff spaces and assume
F: X x Y—Z is a continuous surjection. If there are continuous
surjections a: Z— X and B: Z — Y such that the diagram

XxY
P/ e\
YN
X2 Z Y

1s commutative, then F is a homeomorphism.

Proof. The inverse of F' is given by z+ (a(z), B(z)) which is
clearly continuous.

THEOREM 4.7. If S is an object in both # and &%, then S = (R*)"
where n = dim Hg(1).

Proof. The proof is by induction on dim H(1). The claim for
dim H(1) =1 is proven in [5]. Let # be an integer larger than 1
such that the claim is true for all positive integers less than n. Let
¢ be an idempotent with e > 0 and ¢S = R (Corollary 38.2). By Lemma
4.3 there is an idempotent f with f 0, dim H(f) =» — 1 and ef = 0.
Let A = ¥7(f) and B = «%(e). Then by the inductive hypothesis,
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A= R and B = (R°)"*. Also +;'(H(e)) = H(e) Xx B= R, x B (Pro-
position 3.4). Now define a morphism F: A x B— S by Fl(a, b) = ab.
Observe that +,(F{(a, b)) = eab = ea and +(F(a, b)) = fb. We now show
S = A-B. Since E(S)= Z" it follows that E(S) = E(A)-E(B). Let
s €.S; then d(s) = e,- f, for some ¢, € E(4) and f, € E(B). Also, s=0d(s)-g
for some g € Hy(1).” Since H,(1) N Hz(1) = {1} (see proof that A, N B, =
{1} in Lemma 4.5), ¢ = a-b for some ac H,(1) and bec Hy(1). Thus
s = 0(s)g = 0(s)ab = e,f,ab = (e,a)(f.b) € A-B. Clearly, ,(4) =eA < eS.
Let teeS; then t = ea-b for some ac A and be B. Thus ¢t = eab =
eb-a = ea and hence ¢A =eS. By Lemma 4.5, +,|,: A—eS is an
isomorphism. Similarly it can be shown that fB = fS and thus, by
Lemma 4.5, +/|z: B— fS is an isomorphism. We now have the
following diagram

P,

Rz A" A xB—12,B= Ry

1%14 l l‘Ple

eS —t S LCAN fS

which can be reduced to

A x B

Py E| N

=

A— S-— B
W lave  @Fle)oys

Thus by Lemma 4.6, F' is an isomorphism, and the theorem now
follows by induction.

DEFINITION. An object S in . is an H-semigroup if (i) Hy(1) = R.
and (i) K(S) is compact.

LEMMA 4.8. Let S be a object in .4 having the added properties
that (i) Hy(1) ©s a real vector group of dimension n and (i) K(S) s
compact. Then there are subsemigroups S, -+, S, of S which are
H-semigroups, the morphism m: X, S;— S defined by m((s,, -+, 8,)) =
8,+8,% =+ +8, 18 a surmorphism which preserves the H-class structure of
X, S;, and also m induces an isomorphism on the groups of units.
Further, for each i there is an idempotent e; with dim H(e;) =n — 1
and S; = y}(H(e).)-

Proof. Since E(S) = Z", there are exactly n-idempotents e, ---, ¢,
in S with dim H(e;) = n — 1. By Proposition 3.4 and since Hg(l) is
a real vector group, each v '(H(e),), is an H-semigroup. Let S; =
¥ }(H(e;),), and let F:S— (R")" be a surmorphism which preserves
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the H-class structure of S (Proposition 3.11 then Theorem 4.7). Since
F preserves the H-class structure of S, dim H(e;) = dim H(F'(e;)) = n — 1
for i=1,2, .-+, n and, also, F(S,) = ¥ (H(e)) = R* for i = 1,2, -+, n,
where ¢} = F(e;). Using the structure of (R*)" we know +;'(Fi(e})) = R*
if and only if there is an integer j(i), 1 < j(i) < n such that

P, |13 (F(e): ¥a'(F(e) — B

is an isomorphism. For each 7,7 =1,2, .-+, n let 7;: S;— S;/K(S;) be
the natural map where S/K(S;) denotes the Rees quotient semigroup.
Since each K(S;) is compact [3], 7; is a closed map. Thus for each
7 there is a bijective morphism B;: S; — R® such that the following
diagram commutes

Si P"j(i)°F|Si R®

ﬁil /'-‘
¢ /B
SIK(S)

By Lemma 4.5 each B, is an isomorphism. Since each K(S;) is compact,
it is easy to show that a net {g.... & S; has a cluster point if and
only if {7;(9.)}«c. has a cluster point. Thus it follows that {g.}... & S;
has a cluster point if and only if {P,, (F(g.)}«cs has a cluster point.

Let €8S and let {g.}.., be a net in Hy(1) which converges to .
Then for each a there are elements g;(@)e S; 2 =1, 2, --+, » such that
0o = 0.(0)-0u(@) +++ -g,(@). Since P, F(gia)) = P, (F(g,) for i =
1,2,3, ---, % and since P, (F(9.)) has a cluster point and by the
above, each {g;(®)}.., has a cluster point. Clearly, we can choose a
subnet {g.}..sz such that each {g/{a)}..» converges. It now follows
that x e m(X~,S;). Clearly, m induces an isomorphism on the groups
of units.

THEOREM 4.9. Let Se.&,. Then S = T x R" for a suitable n and
where T is an object in &7 satisfying the following: There are subsemi-
groups S, +++, S, of T with each S; an H-semigroup and a Surmor-
phism m: Hp(1), x (X&.S;) — T which preserves the H-class structure
and which induces an isomorphism on the groups of units. Further,
there are surmorphisms G;: S — (B*)" and G,: Hp(1), X (X~.S;) — (R*)"
such that the following diagram is commutative

Hy(1), X (X18) — T
N\ /
NG
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Proof. By Proposition 3.5, S = T x R™ for a suitable choice of
m, where Te.S” with K(T)e%,. Since E(S) = Z" for some n and
gince E(S) = E(T), Te &;. Using Lemma 3.1 and Corollary 3.2, it is
easy to see that dim H,(1) = n. Since E(S) = Z", there are exactly n»
idempotents e, ---, ¢, such that dim H(E;)) = n — 1. For each ¢; let
C; be a compact subgroup of H(e;), which is open relative to H(e;),. It
follows from Proposition 3.4 and the fact that each H(e;) is open in
T\H,(1), that each v;(C;) is a locally compact semigroup which contains
a dense group whose complement is compact. Since each ;'(C;) € &
and by [7], there is a one-parameter subgroup P; & v.(C;) N H,(1) such
that P, N C;# @. For each ¢ let S; = P;; then each S; an H-semigroup.
Let m: Hy(1), X (X~.S;)— T be a morphism defined by m(g, s,, +++, 8,) =
g+8,* Sy +++ +8, and let m;: X~,S;— T be the morphism defined by
m,(s) = m(l, s) for all s in X,S,.

Let T/R be the semigroup constructed as in Theorem 3.9 and let
F: T— T/R be the natural map. Since F' preserves the H-class struc-
ture, dim H(F'(e;)) = n — 1 for each 7. Since for each ¢ F(K(S,) is a
compact ideal for F(P,), F(P;) = F(P,) UF(K/S,)) [5]; thus F(S,) = F(P)).
Also, HiF(e)), is a compact ideal for F(P,); thus F(S;) = F(P) =
F(P,) U H(F(e;)),- It now follows from Lemma 4.8 that Fi(m,(X~,S;)) =
T/R and thus m;(X~,S;)-H;(1) = T. Therefore, m is a surmorphism.

Let T, = m,(X?.S;). Since E(T) = E(m,(X.S,) = Z", E(T)= Z"~,
and thus it follows that dim H, (1) = n. Let F.: T, — T\/R, be the
natural map where T\/R, is the semigroup guaranteed by Theorem 3.9.
Let H, = H,/R,(1). Then H, is an n-dimensional vector group with
F.(m(X:.P)) = H. Thus by P, there is a morphism 8: H, — X.P;
such that Fim,8 = I, z. It follows that the inverse of F\|[, (X.P;)
is the corestriction of m,8 to m, (X, P;). Thus m, (X% P;) is a locally
compact subgroup H, (1) and thus closed. Therefore, it follows that
the corestriction of m,| X~ Pt X1 P,— X, P, is an isomorphism.
Since H,(1) = my(X~.P,) n H;(1), and m,(X~.P;) N H (1), = {1}, it now
easily follows that m induces an isomorphism on the group of units.

The remainder of the proof follows directly from Theorem 3.11
and Theorem 4.7.

The author wishes to thank the referee for his many helpful
suggestions. In particular, the author wishes to thank the referee for
his suggestions on the order in which the results should be presented.
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