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LOCALLY COMPACT CLIFFORD SEMIGROUPS

J. W. STEPP

Let S be a locally compact Hausdorff semigroup which is
a disjoint union of subgroups one of which is dense. If S the
disjoint union of exactly two groups one of which is compact,
then S has been completely described by K. H. Hofmann, and
if S is the disjoint union of two subgroups where the dense
subgroup G has the added property that it is abelian and G/Go

is a union of compact groups, then S has been described in a
previous paper of the author.

It is the purpose of this paper to consider S when each
subgroup of S is a topological group when given the relative
topology and G (the dense subgroup) has the added property
that it is abelian and G/Go is a union of compact groups. In
particular, we show how to reduce such a semigroup to a
semigroup which is a union of real vector groups (§3). In §4
we give the structure of S under the added assumption that
E(S) is isomorphic to E[(R*)n], where (12*)* denotes the n-folά
product of the nonnegative real numbers under multiplication.

2* Definitions and notations* If G is a topological group, Go

will denote the identity component. Let ̂  denote the full subcategory
of the category of locally compact abelian groups whose objects G
have the property that G/GQ is a union of compact subgroups. Let
^ c denote the full subcategory of & whose objects Ge have the pro-
perty that Ge is a union of compact subgroups. If Ge^, then by
the structure theorem for locally compact abelian groups [2, p. 389]
there is a real vector subgroup W of G such that G/We^c. If
W = Rn, then n = dim G will be called the dimension of G. We will
use the following properties of ^ and c^c\Pγ\ for each G in ̂  there
is a unique subgroup Gc e ^c such that G/Gc is a real vector group.
P2 [7]; if a: G—> W is a morphism in <& with a(G) dense in W and
if W is a real vector group, then there is morphism β: W —• G in & such
that aβ = Iw (the identity morphism on W). P3 [7]; if a: G-+H is a
morphism in the category of locally compact abelian groups with a(G)
dense in H and Ge^, then Hec^. Also, if G/Go is compact, then
H/HQ is compact.

Let Sf denote the category whose objects S are locally compact
Hausdorff semigroups satisfying (i) S is a disjoint union of subgroups
one of which is dense and (ii) each maximal subgroup of S is a member
of ^, and whose morphisms are the continuous identity preserving
homomorphisms. Let & denote the full subcategory of S? whose
objects R have the properties that (i) each maximal subgroup of R
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is a real vector group and (ii) the minimial ideal of R exists and is
compact (thus a zero for R).

Let SeS^. Then we will use 1 to denote the identity for S.
For each x in S let H(x) — {y eS\yS = xS}. Since S is an abelian
Clifford semigroup, each H(x) is a maximal subgroup of S. Let
δ:S—>E(S) be the function defined by δ(s) is the idempotent of S
such that H(s) = H(δ(s)). If A g S, then JL will denote the closure
of A. Partially order E(S) by e ̂  / if and only if ef = e, and for
each e and / in E(S) let (β, /) = {α e E(S) \e<a<f}. Let Z = {0,1}
under multiplication, and let Zn denote the n-ίold product of n copies
of Z. Finally, for a semigroup T we use K(T) to denote the minimial
ideal when it exists.

3* The purpose of this section is two fold. First we prove that
each S in 6^ splits into the direct product of two closed subsemigroups
V and W, where 7 is a real vector group and where WeS^ with
the added property that K(W) e c^c (Proposition 3.5). Second we prove
that there is a congruence p on S such that S/p is a locally compact
Clifford semigroup with each iϊ-class a real vector group and with
E(S) = E(S/p) (Theorem 3.11).

Throughout this section S will represent a fixed member of S^r

and E(S)* will denote E(S)\{1}.

LEMMA 3.1. Let eeE(S)*. Then H{e) is open in S\H(1) if and
only if άimH(e) = dimH(ΐ) - 1.

Proof. By [7], if H(e) is open in S\iϊ(l), then dimJHΓ(e) =
dimJΪ(l) - 1.

Let eeE(S) with dim JT(β) = dim£Γ(l) - 1. Again by [7], if
feE(S) such that e < f, then dim H(e) < dim H(f). Thus, since
dim£Γ(/) < dimH(l) for all / in £7(3)* [7], (e, 1) - 0 . Let ψ: S-^eS
be the morphism defined by ψ(s) — es. Since H(e) is a topological
group, H{e) is open in H(e) [8] which is eS. Since ψ is continuous
and since H(e) = (S\H(1)) Π f\H{e)), it follows that H(e) is open in.
S\H(1).

COROLLARY 3.2. If eeE(S)*, then there is an f in E(S) with
e < f and dimiϊ(β) - dimiί(/) - 1.

Proof. Let_£e_E(S) with e < f and (β,/) - 0 . Then H(e) S WJ).
Let ψ: H{f) —* eH(f) morphism defined by ψ(s) = es. Since (e, /) = 0 ,
2ϊ(e) = (H(f)\H(f)) n (f-^^β))), and it follows that H(e) is open in.
WJ)\H(f). Thus, by Lemma 3.1, d\mH(e) - dimίί(/) - 1.
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LEMMA 3.3. A subgroup He^c ofS is closed in S.

Proof. Let g e 3. Since H £ H(e)c for some e in E(S) and
g e d(g)H, it follows that g e H(g)c. Thus there is a compact subgroup
€ of H(g)c with geC. Since {gn}~^ £ C and C is_compact, δ(g) £ {̂ }~=1

[4, p. 15] which is a subset of 3; thus 3(g)eH. By [7], there are
no maximal subgroups of 3 which are topological other than 3; thus
§(g) — e, and £Γg H(e). Thus we need only show that H is a closed
subgroup of H(e), but this follows since H is a locally compact sub-
group of a locally compact topological group.

PROPOSITION 3.4. Let eeE(S), and let ψ be the map from S onto
eS defined by ψ(s) — es. Then there are closed subgroups V and W
of H(l) with the following properties:

(a) W - ψ~\H(e)0),
(b) V is a real vector group, and
(c) The morphism m: V x W—>ψ~ι(H{e)) defined by m(v, w) = v w

is an isomorphism.

Proof. Let a be the natural map from H(e) onto H(e)/H(e)c, let
Q be the corestriction of ψ Hil) to H{e), and let β: H(e)/H(e)c —> H(l)
be a morphism in ̂  such that {aQ)β is the identity map on H(e)/H(e)c

[P2]. Let V = β(H(e)/H(e)c), and let W= Qr\H(e\). Then V and TΓ
are the desired closed subgroups of H{1). The inverse of m is given by
s i-> ((βaψ)(s), [(βctψ)(s)]~Ls) which is clearly continuous. The theorem
now follows.

PROPOSITION 3.5. There are closed subgroups V and W of H(ϊ)
with the following properties:

(a) V is a real vector group,
(b) K(W)e<ϊfc9 and
(c) The morphism m: V x W—>S defined by m(v, w) = v w is

an isomorphism.

Proof. Again by [7], if e e E(S)*, then dim H(e) < dim H(l). Thus
there is an / in E(S) with dim H(f) ^dimH(e) for all e in E(S).
Since dim H(ef) ̂  min {dim H(e), dim jff(/)} with equality holding only
for e < / or f <L e, f is unique. The proposition now follows from
Proposition 3.4 along with the observation that S = ψ~\H{f)) where
ψ: S —>/S is the morphism defined by ψ(s) — sf for all s in S.

PROPOSITION 3.6. If there is a sQ in S with H(sQ)c compact, then
H(s)c is compact for all s in S.
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Proof. From the structure theorem for locally compact abelian
groups [2, p. 389] one can get that if G e ^e9 then Go is compact.
Thus for any s in S we have that H(s)c is compact if and only if
H(S)J(H(S)C)Q is compact. But H(s)c/H(s)c)0 is compact if and only if
H(s)/H(s)0 is compact. Therefore, by P3 and since H(l) = S, the theorem
will follow if we can prove that H(l)/H(ϊ)0 is compact.

We do this by contradiction. That is, assume H(l)/H(l)0 is not
compact, and let e e E(S) satisfying the following:

( i ) H(e)/H(e)o is compact,
(ii) δ(s0) <£ e, and
(iii) if / 6 E(S) with e < f, then H(f)/(f)0 is not compact.
By Corollary 3.2 and since e Φ 1, there is an / in E(S) with e < /

and dimH(e) = dimJff(/) - 1. Let T = Hζf), and let ψ: T-->eT be
the morphism defined by ψ(s) = se. By Proposition 3.4, there is a
real vector subgroup V of H(f), a closed subgroup T^ of H{f) with
ψ~\H{e)c) — TΓ, and a morphism m: V x ΐP —• ψ~~ι(H(e)) which is an
isomorphism. Since W\W — H(e)c which is compact and by [3], W
contains a compact subgroup C such that W/C is a real vector group-
Thus Hw(f)c is compact. Since the corestriction of m\vxw: Vx W—>H(f)
is an isomorphism and 7 is a real vector group, it now follows that
H(f)c is compact. This is the desired contradiction and the proof now
follows.

SUBLEMMA. Let e and f be elements of E(S) with dim H(e) —
dim H(f) + 1 and with f < e. If H is a subgroup of H(e) with

o then fH is a closed subgroup of S.

Proof. Let gefHΠ H(f). Since He ct?c, fH S H(f)c, and thus
there is a compact subgroup C of H(f) which is open relative to
H(f)c and with g eC. Let ψ: H(e) —>fH(e) be the morphism defined by
ψ(s) — fs. It follows from Proposition 3.4 and the fact that H(f) is
open in H(e)\H(e) that ψ^iC) is a locally compact semigroup which
contains a dense group ψ^iC) Π H(e) whose complement C is compact*
By [3], there is a unique compact subgroup CL of ψ~\C) f] H(e) and a
one-parameter subgroup M of ψ~ί(C)f]H(e) such that ψ^iC) — M C^
Let {ga}aeA be a net in fH which converges to g. Since C is open in
H(f)c, there is a β e A such that if a :> β, then ga 6 C. For each aeA
with a ^ β there is an haeH with #α = /Λα. It follows that each
haeCly and therefore there is an h in Cx n i ϊ such that fh — g. Thus
/ff ^fHQ fH. We now have /ff is a closed subgroup of iϊ(/)c, and
therefore fHe^c. The sublemma now follows by Lemma 3.3.

LEMMA 3.7. If H is a subgroup of S with He<ϊfc and if feE(S),
then fH is closed.
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Proof. Let h e H; then δ(h)-f ^ δ(h). If δ(h)f = δ(h), then /if =
fδ(h)H = δ(Λ)-ff = -ff which is closed by Lemma 3.3. If £(&)•/ < δ(h),
then there is a chain of idempotents ex , eq+1 which is maximal with
respect to the properties: (i) eλ = δ(h)f and (ii) eq+ι — δ(h). Observe
that since e19 •••, eq+1 is maximal, aimH(ei) = dim iϊ(eί+1) — 1 for i =
1, 2, , g. If fH is not closed, then there is an integer p, 1 ̂  p ^ q
such that epiϊ is not closed and ep+1H is closed. Since epH — (ep-ep+ί)H =
ep{ep+ιH) and since ep+1He ^ c , ê J?" is closed (sublemma). Thus epH is
both closed and not closed which is impossible; thus it follows that
fH must be closed.

Now that one has Lemma 3.7 it is easy to prove the following
corollary.

COROLLARY 3.8. (i) For each x in S, xH(l)c is closed.
(ii) If U is a nonempty compact subset of S, then U-H(l)c is

closed.

THEOREM 3.9. Let R = {(x, y)eS x S\xH(l)c = yH(l)c}. Then R
is a congruence, and S/R is a locally compact semigroup with the
following properties:

(i) If θ is the natural map from S onto S/R, then θ is an open
map and θ (H(s)) s H(s)/(δ(s)H(l)c) for all s in S.

(ii) The corestriction of θ \E{S) to E(S/R) is an isomorphism.

Proof. Clearly R is a congruence. Since H(ϊ) acts as a group
of homeomorphisms on S and since θ~ι(θ(A)) = A H(1)C for all A Φ 0 ,
it follows that θ is an open map. Since θ is an open map, S/R is
locally compact and also multiplication is continuous. We now show
S/R is Hausdoff. Let x, y e S with α?jBΓ(l)β Φ yH(ΐ)e. Since yH(l)c is
closed (Corollary 3.8) and since S is a locally compact (thus regular)
Hausdorff space, there is a compact neighborhood Nx of x with
Nx Π yH(l)c = 0 . Thus y g Nx-H(l)e which is closed by Corollary 3.8,
and using the fact that S is regular we obtain a compact neighbor-
hood Ny of y with Ny Π (N9-H(l))β= 0 . It follows that (N, H(l)e)n
(NX*H(1)C) = 0 , and thus S/R is Hausdorff. This completes the proof.

REMARK. We wish to point out that each maximal subgroup of
S/R is connected, and thus H(θ(s))c is compact for each s in S.

LEMMA 3.10. Let Te^ with K(T) compact. Then for each non-
negative integer n there is a Tn in 6^ and a surmorphism an: T—»Tn

in Sf satisfying:
(a) The corestriction of an\E(s) to E(T%) is an isomorphism.
(b) Ifxe Twith dimH(x)^n, thenan(H(x)) = H(an(x))^H(x)IH(x)c.
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(c) If xe T with άimH(x) > n, then the corestriction of a\H{x) to
H(a(x)) is an isomorphism.

Proof. The proof is by induction. Let RQ = {(x, y) \ x — y or x e K{ T)
and yeK(T)}. Clearly Ro is a congruence, and since K(T) is compact,
it follows that T/Ro is a locally compact semigroup. Let aQ be the
natural map from T onto T/Ro = To. Then, clearly, aQ and TQ satisfy
(a)-(c) for n = 0.

Let k be a nonnegative integer such that there is a TkeS^ and
a surmorphism ak:T—+Tk satisfying (a)-(c). If & ^ d i m i ϊ ( l ) , then
let Tk+1 = Tk and ak+ι = α t . Then Tfc+1 and α t + ι satisfy (a)-(c). If
k < dim H(1X_ let A - {e € E( Tk) | dim H(e) = k + 1}, and let f& -
{aJG Tk\xeH(e) for some e in A). For each e in A let φe:S-+eS be
the morphism defined by ψβ(s) = βs. Then ψ~ι(H{e)) C) fk = H(e), and
thus each H(e) is open relative to fk. Let J?ft+1 = {(x, y) e Tkx Tk\x = y
or δ(x) = δ(̂ /) G -A and a? e yH(δ(y))c}. It is easy to show that Rk+1 is
a congruence. By Proposition 3.6 and since K(Tk) = {0}, each H(e)e

is compact. Since each H(e)c is compact and since each H(e) with
e € A is open in Γfc+1, it follows that Tk/Rk+1 is a locally compact semi-
group. Let Tk+1 = Tk/Rk+1 and <xA+1 = 370:*, where 37 is the natural
map from Tk onto Tk/Rk+1. Then Γ A + 1 G ^ and αA + 1 : T-~*Tk+1 is a
surmorphism satisfying (a)-(c) for % = k + 1. The theorem now follows
by induction.

THEOREM 3.11. Let SeS^. Then there is a TeS^ and a sur-
morphism a: S-* T in Sf satisfying:

(i) The corestriction of a\E{s) onto E(T) is an isomorphism.
(ii) Each H-class of T is a real vector group.

Proof. By Proposition 3.5, there is an isomorphism β: S-+V x T
where V is a real vector group and where Te£* with K(T)e^c.
By first applying Theorem 3.9 and then Lemma 3.10 for n = dim H(l)
one can obtain a surjective morphism βt: T-+ Tn which preserves the
structure of E(T) and where the ίf-class of Tn are real vector groups.
Let T = V x Tn and α : S ~ > F x Tn be the map defined by a(s) =
(Pri(@(s))> βi(Pr2(β(s))). Then clearly Γ a n d α S ^ Γ satisfy the con-
ditions of the theorem.

4* Let &Z denote the full subcategory of £f whose objects S
have the property that E(S) ~ Zq for some nonnegative integer q.
In this section we characterize the objects in <pf. The fact that there
are objects in S? that are not in ,5? is demonstrated by J. G. Home,
Jr., in [6J. However, if Se<9* with dimiϊ(l) ^ 2, then it is shown
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that Se&ζ.
Let R+ denote the multiplicative group of positive real numbers,

and recally that Rx denotes the multiplicative semigroup of nonnegative
real numbers.

LEMMA 4.1. Let E be a Hausdoff topological space which is the
disjoint union of R+ x Rx and a singleton set {w}, where R+ x Rx

has the product topology. If {w} U (R+ x {0}) is homeomorphic to Rx

with w e (0,1] x {0}, then E is not locally compact at w.

Proof. We assume E is locally compact at w and show that this
assumption leads to the conclusion that Rx is compact. Let U be an
open neighborhood of w with Ό compact. Then t7"\Z7 is a compact
subset of R+ x Rx. Since w U (R+ x {0}) is homeomorphic to Rx with
(0,1] x {0} = ((0,1] x {0}) U {w}, there is an a in R+ with {(xf 0) 10 < x < a} £ U.
For each δ inR+ with 0<δ<αeither {b}xRxSU or ({b}xRx)Π (U\U)Φ0.
To see this, assume ({δ} x Rx) Γ) (U\U) = 0 Then {δ} x Rx is the disjoint
union of the two relatively open sets (E/U) Π ({&} x Rx) and Uf] ({δ} x Rx).
Since {6} x R* is connected and {6} x Rx Π UΦ 0 , (E\Ϊ7) Π ({6} x Rx) = 0
and hence {6} x Rx Q U.

We now prove there is a r 0 < α in J?+ satisfying; if beR+ and
δ <; r0, then {6} x Rx Q U. If this were not the case, then by the
above there would exists a sequence {δJ^U in R+ such that {bn9 0 ) } ^
converges to w, and each ({bn} x Rx) Π (U\U) Φ 0 . For each positive
integer n let xn be an element of Rx such that (δ%, α?H) 6 U\U. Since
t/\ϊ7 is a compact subset of JR+ X RX, the sequence {(6%, a;J}~=1 has a
cluster point (δ, a?). Thus {(δ%, 0)}^=1 converges to w and clusters to
(δ, 0) which is impossible. Thus we now can conclude that there is a
r0 in R+ such that if δ e R+ with δ ̂  r0, then {δ} xRxς^U. We point out
at this point that if δ e R+ and δ ^ r0, then {δ} x i?2' = {w} U {δ} x Rx.

For each Z in Rx, {(r, ϊ) | r 0 ^ r) is connected, and (r0, I) e C7. Thus
a similar argument to the one above proves there is an l0 in Rx such
that if I ̂  l0 then {(r, Z) | r 0 ^ r} S Ϊ7. Similarly, there is a ί0 e R+ with
ίo ̂  n and such that if t eR+ with t ̂  ί0, then {(t, ϊ) |0 ̂  Z ^ Zo} S ί7.
Let B = [r0, ί0] x [0, Zo] which is a compact subset of JS+ x Rx. It is
easy to show that E\B g U and thus E - U\jB and is compact. In
particular, (iϋ x {0}) U {w} is compact and homeomorphic to Rx. This
is the desired contradiction.

THEOREM 4.2. If S is a member of & with dimiϊ(l) = 2, then
E(S) s Z\

Proof. Since Se&, S has a zero. By Corollary 3.2, there is an
element / in E(S) with dimH(/) = 1.
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Case 1. There is only one / in E(S) with dim H(f) = 1. That is,
E(S) = {0, β, 1}. By [7], S\{0} s i2+ x 22". By [5] and since i?+ x {0} =
(R+ x {0}) U {0}, R x {0} is homeomorphic to Rx. By applying Lemma
4.1 we have S is not locally compact at {0}. Thus Case 1 is impossible.

Case 2. There are exactly two idempotents e1 and e2 with
dim Hie,) = dimH(e2) = 1. Clearly in this case E(S) = Z\

Case 3. There are at least three idempotents elf e2, e3 with
dim H(βi) = 1. Let P19 and P2 be one-parameter subgroups of H(l)
with ^ = Pi U {βj (Proposition 3.5). Let {sa} be a net in H(l) which
converges to e3. Since S\H(1) is an ideal, {s"1} does not have a cluster
point. Since H(l) = Pi-P2, there are nets {slα} £ PL and {s2a} s P2 such
that slα s2α = sα for all a. By [3] and since {s"1} does not have a cluster
point, either {slΰc} clusters to eι and {si;1} clusters to e2 or {si;1} clusters
to et and {s2α} clusters to e2. But the former implies eγ = e3 e2, and
the latter implies e2 = e^ez. Since e8 e2 — 0 and e^ez — 0, either ex = 0
or e2 = 0. This is the desired contradiction. Thus Case 3 is impossible.

LEMMA 4.3. Let S be a member of & with dimϋΓ^l) >̂ 2, and
let eeE(S) with H(e) ~ R+. Then there is an f in E(S), such that
dimH(f) = d i r n d l ) - 1 and that ef= 0.

Proof. By Corollary 3.2 and since dimJEΓ l̂) ^ 2, there is an
idempotent ex in S such that e < eλ and that dim H{e^) — dim H(e) + 1 — 2.
Let T = Hie,), then Γ is a member of ^? and dim Hτ(l) = 2. Thus,
by applying Theorem 4.2 to T one observes that there is an / in EiT)*
(and thus in E(S)*) such that / Φ 0 and that ef = 0. Let / be a
maximal such idempotent with respect to / Φ 0 and e/ = 0.

Claim, dim £Γ(/) = dim Hs(ί) — 1. If this were not the case, then
applying Corollary 3.2 two time we observe there are idempotents f,
and /2 such that / < Λ < /2 and dim Hjf) = dim #(/,) - 1 - dim Hif2) - 2.
By applying Proposition 3.4 to iϊ(/2) we observe there is a subsemigroup

such that ίΓ(i2) = {/} and dimiϊ^l) = 2. By Theorem 4.2,
there is an idempotent /3 in EiR)* (and thus E(S)*) such that fzΦ f
and / 3 /i = / . But since ft and / 3 are elements of EiS)* which are
larger that /, ef Φ 0 and e/3 Φ 0. In fact, since ef ^ e and e/3 ̂  β,
e/x = ef2 = e. However, 0 = β/= e(/i/8) = e/8 = e, and this is the desired
contradiction. Therefore, / is maximal in EiS)*. From the proof of
Lemma 3.1, we have that / maximal in EiS)* implies dimiϊ(/) =
dim H(ί) — 1. For the remainder of this paper we will use the follow-
ing notation. If S 6 £f and e eE(S)f then ψe: S-+eS is the morphism
defined by ψeis) = es for all s in S.



LOCALLY COMPACT CLIFFORD SEMIGROUPS 171

We omit the proof of the next lemma since the proof is straight
forward.

LEMMA 4.4. (i) If f and e are element of E((Rx)n) with
Aim H{f) = 1, dim H(e) = n - 1 and if ψj\f) Π f7ι{e) = {1}, then the
morphism m: ψjι{f) x Ψ71(e) —* (Rx)n, defined by m(s, t) = st, is an
isomorphism.

(ii) If ee E(S) with dim H(e) = p, then (a) Ψ7ι(e) ~ (Rx)n~p and
(b)

LEMMA 4.5. // a: (Rx)n -+ (Rx)n e& is a snrmorphism with
a{E(RxY) = E{{Rx)n), then a is an isomorphism.

Proof. The proof is by induction on dimiϊ(l). The lemma is
trivially true for n = 0. If n = 1, then α(J?+) is a dense connected
subgroup of Rx and thus α(jξ+) = R+. By [2, p. 84], a\R+:R+-+R+
is an isomorphism, and thus it follows that a is bijective. We show
a is a closed map. Let A be a closed subset of Rx. If A s •#+» then
there is an r in R+ with [ 0 , r ] n 4 = 0 . Thus a(A) is closed in JK+

and [0, f(r)) n α(A) S [0, /(r)] Π a(A)==0. Since [0, /(r)) is open in
Rκ, 0 g α(A), and thus it follows that aζA) = α(A). If 0 e A, then either
A = Rx or there is an r in i?+ with r ? i . If A = jβ*, then clearly
α:(A) is closed. If there is an r in R+ with r g i , then A =
([0, r] n A) U ([r, oo) n A). We now have

a(A) = α([0, r] Π A) U ([r, oo) n A)]

- α([0, r] n A) U α([r, oo) n A) .

Since [0, r] n A is compact, α:([0, r] Π A) is compact, thus closed, and
by the first case a([r, <*>) n A) is closed. We now have a is a closed
bijection and thus an isomorphism.

Let n be an integer larger than 1 such that the lemma is true for
all nonnegative integers less than n. Let S denote (Rx)n, and define
a: E(S) ~> E(S) by ά(e) = a(e) for all e in E(S). Since a is bijective
and since E(S) is finite, a is an isomorphism. For each e in ^7(5)
define ψe: S-^eS by ^β(s) = es for all s in S. Let βx = (0,1,1, , 1)
and e2 = (1, 0, 0, , 0), and let A = ψ7^(et) and B = ψ7^(e^. Then
A s JBX, -B = (JB )11-1 and ^ e2 = 0. Define F: A x B -> S by 2̂ (α, 6) = αδ;
then, by Lemma 4.4i, JP7 is an isomorphism. Let f1 = a(e^ and f2 =
α(β2). We now show α(A) = ψ7*(fύ = Λ f «(5) = Ψv t̂A) = (ΛTΛ a^d
α(A) Π oc(B) — {1}. From which it will follow by Lemma 4.4i that the
morphism G: a(A) x a(B)—»S, defined by G(α, b) — abf is an isomorphism.
Let Ai = ψJlifd and A2 = ψj^(f2) Since α is an isomorphism, ά pre-
serves the less than order on E(S); thus dimifCΛ) = άimHfa) — n — 1



172 J. W. STEPP

and dim H(f2) = dim H(e2) = 1. Therefore, A, ~ Rx and A2 ^ {Rx)n~ι

(Lemma 4.4iia). If Ax Π A2 Φ {1}, then either f1eA1 Π A2 or there is
an element g e H(l) f] AίπA2 with g Φ 1. Since Λ / 2 = oc{e^ a(e^ =
^(e^a) = tf(0) = 0, Λ g A2, and thus there is a # e H(l) n 4i Π Λ with
# Φ 1. Since ^ = 12* either {#w}Γ=i converges to f1 or {(̂ ~x)%}Γ=i con-
verges to / x [3]. But both imply fxeA2 which is impossible by the
above. Thus AιnA2 = {1}. Clearly, a(A) £ A,. Let t e Ax. Since
a(S) — a(A B) = α(A) α(J5), there is an element αeα(A) and bea(B)
such that ί = ab. It follows that fγ — / xί = / xα 6 = fj) which implies
b e A,. But a{B) s #i and J5L n Λ = {1}; thus b = {1}. The proof that
α(l?) = 1?! is similar and will therefore be omitted. We now have the
following commutative diagram:

^ > ^3

A x J5>—-—^>α(A) x a{B) .

By the inductive hypothesis, a\A:A—+a(A) and a\B:B—>a(B) are
isomorphisms. The lemma now follows.

LEMMA 4.6. Let X, Y and Z be Hausdorff spaces and assume
F: X x Y—>Z is a continuous surjection. If there are continuous
surjections a: Z—+X and β: Z—+Y such that the diagram

X x Y

X u

a

 z » Y
β

is commutative, then F is a homeomorphism.

Proof. The inverse of F is given by z\-+ (a(z), β{z)) which is
clearly continuous.

THEOREM 4.7. // S is an object in both & and ̂ f, then S ̂  (Rx)n

where n — dim.ffs(l).

Proof. The proof is by induction on dimU(l). The claim for
dimlϊ(l) = 1 is proven in [5]. Let n be an integer larger than 1
such that the claim is true for all positive integers less than n. Let
e be an idempotent with e > 0 and eS = Rx (Corollary 3.2). By Lemma
4.3 there is an idempotent / with / Φ 0, dim H(f) = n — l and ef = 0.
Let A = ψγ(f) and B = ψ7\e). Then by the inductive hypothesis,
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A = Rx and B = {R*y~\ Also ψ7\H(e)) = H(e) x B ^ R+ x B (Pro-
position 3.4). Now define a morphism F: A x B—>S by F(a, b) = ab.
Observe that ψe(F(a, b)) = eab =• ea and ψf(F(a, b)) = /&. We now show
S = A £. Since J0(S) = Z it follows that E(S) = E(A)Έ(B). Let
s e S ; then <5(s) — e^fx for some βxei7(A) and Λe-E(-B). Also, s = δ(s) g
for some g e Hs(ϊ). Since -ff̂ (l) Π ί^(l) = {1} (see proof that A1f]B1 =
{1} in Lemma 4.5), g = a-b for some aeHA(ϊ) and beHB(l). Thus

8 = <5(% = δ(s)ab = ^Λαδ = (e^iffi) eA B. Clearly, <̂ ,(A) = e i S eS.
Let teeS; then ί = βα δ for some α e A and beB. Thus £ = eab =
eb a — ea and hence eA = &S. By Lemma 4.5, ψ*β 1̂ : A—> βS is an
isomorphism. Similarly it can be shown that fB = / S and thus, by
Lemma 4.5, ψf\B: B-+ fS is an isomorphism. We now have the
following diagram

Br = A <—-^— A x B £*—> 5 ^ (ij )-i

which can be reduced to

Ax B

/ I \

Thus by Lemma 4.6, F is an isomorphism, and the theorem now
follows by induction.

DEFINITION. An object S in S? is an H-semigroup if (i) Hs(l) = i2α_
and (ii) K(S) is compact.

LEMMA 4.8. Let S be a object in ,9^ having the added properties
that (i) HS{1) is a real vector group of dimension n and (ii) K{S) is
compact. Then there are subsemigroups Sί9 , Sn of S which are
Hsemigroups, the morphism m: Xi=ιSi—*S defined by m((slt , sn)) =
Si s2 snis a surmorphism which preserves the H-class structure of
Xi=ιSi9 and also m induces an isomorphism on the groups of units.
Further, for each i there is an idempotent Cι with dim H{e^) = n — 1
and Si = f

Proof. Since E(S) = Zn, there are exactly n-idempotents elf , en

in S with dim iϊfe) = n — 1. By Proposition 3.4 and since JEΓ̂ l) is
a real vector group, each ψj}{H(e^c), is an H-semigroup. Let St =

)c)y and let F:S—>(Rx)n be a surmorphism which preserves
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the jff-class structure of S (Proposition 3.11 then Theorem 4.7). Since
F preserves the iϊ-class structure of S, dim H{e^) = dim H{F{e^)) — n — 1
for i = 1, 2, , n and, also, F{S%) = φ7\(H(e\)) ~ Rx for i = 1, 2, , n,
where βj = Ffa). Using the structure of (Rx)n we know f 7*(F(e\)) =z i2*
if and only if there is an integer j(i), 1 ^ i(ί) ^ w such that

is an isomorphism. For each i, i = 1, 2, , n let TΓ̂ : Si—*Si/K(Si) be
the natural map where SJK(Si) denotes the Rees quotient semigroup.
Since each K(Si) is compact [3], πt is a closed map. Thus for each
i there is a bijective morphism ft: S4 —» J?* such that the following
diagram commutes

By Lemma 4.5 each β{ is an isomorphism. Since each K(Si) is compact,
it is easy to show that a net {ga}aeA S S< has a cluster point if and
only if {7ri(ga)}aeA has a cluster point. Thus it follows that {ga}a&A C Ŝ
has a cluster point if and only if {Pr.{i)(F(ga))}aeA has a cluster point.

Let xeS and let {#α}αe4 be a net in ^ ( 1 ) which converges to x.
Then for each a there are elements g^a) e S* i = 1, 2, , n such that
«̂ = flri(α) flr.(α) flr (α). Since P y .U )F(^(α)) - PrjU)(F(ga)) for ΐ -

1,2,3, « ,w and since PrjU)(F(ga)) has a cluster point and by the
above, each {gi{a)}aBA has a cluster point. Clearly, we can choose a
subnet {ga}aeB such that each {&(«)}«e* converges. It now follows
that α?em(XJUjS>i). Clearly, m induces an isomorphism on the groups
of units.

THEOREM 4.9. Let S e Sζ. Then S ~ T x Rn for a suitable n and
where Tis an object in &[ satisfying the following: There are subsemi-
groups S19 , Sn of T with each Si an H-semigroup and a surmor-
phism m: Hτ(l)c x (XLiSi) —» T which preserves the H-class structure
and which induces an isomorphism on the groups of units. Further,
there are surmorphisms Gx: S -—> (R*)n and G2: Hτ(ϊ)c x (X?=1S,) -» (R*)n

such that the following diagram is commutative

Hτ(l)c x (XM) -^> T
\

(RT
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Proof. By Proposition 3.5, S = T x Rm for a suitable choice of
m, where Te^ with K(T)e<έ?c. Since E(S) s #w for some w and
since JE?(S) = E(T), Γe^f. Using Lemma 3.1 and Corollary 3.2, it is
easy to see that dimii^l) = n. Since i7(S) = Zn

f there are exactly w
idempotents elf , en such that dim H{E%) — n — 1. For each β4 let
Ci be a compact subgroup of H{e^e which is open relative to H(βi)c. It
follows from Proposition 3.4 and the fact that each iϊ(β;) is open in
Γ\iίΓ(l), that each Ψ7/(C;) is a locally compact semigroup which contains
a dense group whose complement is compact. Since each ψ7^(Ci) e£S
and by [7], there is a one-parameter subgroup Pi gΞ ψ7}(Ci) Π Hτ(ΐ) such
that Pif)Ci^0. For each i let S< = P*; then each S* an iϊ-semigroup.
Let m: iϊΓ(l)c x (X?=iSi)—• Γ be a morphism defined by m(g, s19 , O =
g s^ s2 sw and let m^ X?=1Sί—> ϊ7 be the morphism defined by
m^s) = m(l, s) for all s in X?=1Sί.

Let T/R be the semigroup constructed as in Theorem 3.9 and let
F: T—> T/J? be the natural map. Since F preserves the ίf-class struc-
ture, dim H(F(ei)) = n — 1 for each i. Since for each i F(K(Si)) is a
compact ideal for F(Pi), F\Pd = FiPjUFiK/St)) [5]; thus Ί
Also, H{F{e%))0 is a compact ideal for F(P,); thus i^S,) = F ( P j =
F(Pi) U H(F(ei))e. It now follows from Lemma 4.8 that Fim^Xf^Si)) =
T/R and thus mi(X^=iSί) iJΓ(l) = Γ. Therefore, m is a surmorphism.

Let Tί - m1(X?=1Sΐ). Since £7(7) - ^ ( X t A ) ) s ^%, J2?(Γ) ~ Z%
and thus it follows that dim 13^(1) = n. Let Fx: T,-* TJR, be the
natural map where Tί/Rί is the semigroup guaranteed by Theorem 3.9.
Let Ht = HTJR^I). Then Jϊi is an ^-dimensional vector group with

jBΓi. Thus by P2 there is a morphism /S: H, -* Xf^P*
such that Fymβ = /̂ /Λi It follows that the inverse of i^LjXf^Pί)
is the corestriction of m ^ to m^X-UP*). Thus m^Xt^Pi) is a locally
compact subgroup i?Γl(l) and thus closed. Therefore, it follows that
the corestriction of mj XLiPί X?=iP» —• X?=iP» is an isomorphism.
Since Hτ(l) = rn^X?^) Π -ffΓ(l)β and m^XΓ^P..) n fl"Γ(l)β - {1}, it now
easily follows that m induces an isomorphism on the group of units.

The remainder of the proof follows directly from Theorem 3.11
and Theorem 4.7.

The author wishes to thank the referee for his many helpful
suggestions. In particular, the author wishes to thank the referee for
his suggestions on the order in which the results should be presented.
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