ON SUBGROUPS OF A PSEUDO LATTICE ORDERED GROUP

J. Jakubík

The purpose of this note is to investigate some problems raised in a recent paper of Conrad and Teller concerning o-ideals and p-subgroups in an abelian pseudo lattice ordered group.

The concept of a pseudo lattice ordered group ("p-group") has been introduced by Conrad [1]. In recent papers by Teller [5] and Conrad and Teller [2] there is developed a systematic theory of p-groups. Let G be an abelian p-group. In §3 it is proved that if M is a subgroup of G such that $\{a, b\} \cap M \neq \emptyset$ for any pair of p-disjoint elements $a, b \in G$, then M contains a prime o-ideal; this generalizes a result from [2]. In §4 we prove that the intersection of two p-subgroups of a p-group G need not be a p-subgroup of G. Moreover, if Δ is a partially ordered set and for each $\delta \in \Delta$ $H_{\delta} \neq \{0\}$ is a linearly ordered group, then for the mixed product $G = V(\Delta, H_{\delta})$ the following conditions are equivalent: (i) for any two p-subgroups A, B of G their intersection $A \cap B$ is a p-subgroup of G as well; (ii) G is an l-group. If A is an o-ideal of a p-group G and B is a p-subgroup of G, then A + B is a p-subgroup of G.

2. Preliminaries. Let G be a partially ordered group. G is a Riesz group (cf. Fuchs [3], [4]) if it is directed and if from a_i , $b_j \in G$, $a_i \leq b_j$ (i, j = 1, 2) it follows that there exists $c \in G$ satisfying $a_i \leq c \leq b_j$ (i, j = 1, 2). G is a p-group (cf. [1] and [5]) if it is Riesz and if each $g \in G$ has a representation g = a - b such that $a, b \in G, a \geq 0, b \geq 0$ and

$$(*) x \in G, x \leq a, x \leq b \longrightarrow nx \leq a, nx \leq b$$

for any positive integer n.

Throughout the paper G denotes an abelian p-group. Elements $a, b \in G, a \ge 0, b \ge 0$ satisfying (*) are called p-disjoint. A subgroup M of G is a p-subgroup, if for each $m \in M$ there are elements $a, b \in M$ such that a, b are p-disjoint in G and m = a - b. A subgroup C of G is an o-ideal, if it is directed and if $0 \le g \le c \in C, g \in G$ implies $g \in C$. Let O(G) be the system of all o-ideals of G (partially ordered by the set inclusion). An o-ideal C of G is called prime, if G/C is a linearly ordered group. For any pair a, b of p-disjoint elements H(a, b) denotes the subgroup of G generated by the set

 $\{0 \leq m \in G \mid m \leq a, m \leq b\}.$

Then $H(a, b) \in O(G)$ (cf. [2]).

Let Δ be a partially ordered set and let $H_{\delta} \neq \{0\}$ be a linearly ordered group for each $\delta \in \Delta$. Let $V = V(\Delta, H_{\delta})$ be the set of all Δ -vectors $v = (\dots, v_{\delta}, \dots)$ where $v_{\delta} \in H_{\delta}$, for which the support S(v) = $\{\delta \in \Delta \mid v_{\delta} \neq 0\}$ contains no infinite ascending chain. An element $v \in V$, $v \neq 0$ is defined to be positive if $v_{\delta} > 0$ for each maximal element $\delta \in S(v)$. Then ([2], Th. 5.1) V is a p-group; V is an 1-group if and only if Δ is a root system (i.e., $\{\delta \in \Delta \mid \delta \geq \gamma\}$ is a chain for each $\gamma \in \Delta$).

3. Subgroups containing a prime o-ideal. The following assertion has been proved in [2] (Proposition 4.3):

(A) For $M \in O(G)$, the following are equivalent: (1) M is prime; (2) the o-ideals of G that contain M form a chain; (3) if a and b are p-disjoint in G, then $a \in M$ or $b \in M$.

Further it is remarked in [2] that each subgroup M of G fulfilling (3) is a p-subgroup and any subgroup containing a prime o-ideal satisfies (3); then it is asked whether a subgroup M of a p-group G satisfies (3) if and only if it contains a prime o-ideal (a similar assertion is known to be valid for lattice ordered groups). We shall prove that the answer is positive.

We need the following propositions (cf. [2] and [5]):

(B) Let $g = a - b \in G$ where a and b be p-disjoint. Then g = x - y, where x and y are p-disjoint, if and only if x = a + m and y = b + m for some $m \in H(a, b)$.

(C) If a and b are p-disjoint, then na and nb are p-disjoint for any positive integer n and H(a, b) = H(na, nb) ([2], Proposition 3.1).

LEMMA 1. Let M be a subgroup of G fulfilling (3) and let a, b be p-disjoint elements in G. Then $H(a, b) \subset M$.

Proof. Let $h \in H(a, b)$. According to (3) we may assume without loss of generality that $a \in M$. Suppose (by way of contradiction) that $h \notin M$. Then $a + h \notin M$, hence by (B) $b + h \in M$, and analogously $b - h \in M$, thus $2b \in M$. Further $2a + h \notin M$ and therefore according to (C) and (B) $2b + h \in M$, which implies $h \in M$.

LEMMA 2. Let M be a subgroup of G satisfying (3) and let $X = \{X_i\}$ be the system of all o-ideals of G such that $X_i \subset M$. Then the system X has a largest element.

Proof. Let Y be the subgroup of G generated by the set $\bigcup X_i$.

Then $Y \subset M$ and Y is the supremum of the system $\{X_i\}$ in the lattice \mathcal{G} of all subgroups of G. Since O(G) is a complete sublattice of \mathcal{G} ([2], Th. 2.1), $Y \in O(G)$ and thus $Y \in X$.

Let *H* be the subgroup of *G* generated by the set $\bigcup H(a, b)$ where *a*, *b* runs over the system of all *p*-disjoint pairs of elements in *G*. Since each set H(a, b) is an *o*-ideal ([2]), $H = \bigvee H(a, b)$ (*a* and *b p*-disjoint in *G*) where \bigvee denotes the supremum in the lattice O(G). According to Lemma 1 $H \subset M$ whenever the subgroup *M* of *G* satisfies (3).

For any $u, v \in G$, $u \leq v$, the interval [u, v] is the set

$$\{x \in G \ u \leq x \leq v\}.$$

LEMMA 3. Let M be a subgroup of G satisfying (3) and let N be the largest o-ideal of G that is contained in M. Let $g \in G$, g > 0. Then

$$[0, g] \subset M \Longrightarrow g \in N$$
 .

Proof. According to Lemma 2 the largest o-ideal N in M exists. Assume that $g \in G$, g > 0, $[0, g] \subset M$. The set

$$Z = \bigcup_{n=1}^{\infty} [-ng, ng]$$

is clearly an o-ideal in G. Let $z \in Z$, hence $z \in [-ng, ng]$ for a positive integer n. This implies $0 \leq y \leq 2ng$ where y = z + ng. Since G is a Riesz group, according to [3, p. 158, Th. 27] there are elements $g_1, \dots, g_{2n} \in G, 0 \leq g_i \leq g$ such that $y = g_1 + \dots + g_{2n}$. Thus $g_i \in M$, therefore $y \in M$ and $Z \subset M$. Now we have $Z \subset N$ and so $g \in N$.

LEMMA 4. Let M be a subgroup of G fulfilling (3) and let N be the largest o-ideal of G contained in M. Then G/N is a linearly ordered group.

Proof. Assume (by way of contradiction) than G/N is not linearly ordered. According to Lemma 1 $H \subset N$, hence by [2], Theorem 4.1 G/N is a lattice ordered group. Thus there exist elements $X, Y \in G/N$ such that $X \land Y = \overline{0}, X > \overline{0}, Y > \overline{0}$ ($\overline{0}$ being the neutral element of G/N). From [2] (Proposition 2.2, (ii)) it follows that there are elements $x \in X, y \in Y$ such that x and y are p-disjoint in G and hence $x \in M$ or $y \in M$. Clearly $x \notin N, y \notin N$ and thus according to Lemma 3 there exist elements $x_i, y_i \in G$ such that

$$0 < x_{\scriptscriptstyle 1} \leqq x, \; 0 < y_{\scriptscriptstyle 1} \leqq y, \; x_{\scriptscriptstyle 1}
otin M, \; y_{\scriptscriptstyle 1}
otin M$$
 .

J. JAKUBÍK

Then in G/N we have $\overline{0} < x_1 + N \leq x + N = X$, $\overline{0} < y_1 + N \leq y + N = Y$, whence

$$(x_1+N)\wedge(y_1+N)=0$$
.

Thus by using repeateadly [2], Proposition 2.2, we can choose elements $x_2 \in x_1 + N$, $y_2 \in y_1 + N$ such that x_2 and y_2 are *p*-disjoint in *G*. Therefore (without loss of generality) we may assume $x_2 \in M$ and this implies $x_1 \in x_1 + N = x_2 + N \subset M$, a contradiction. The proof is complete.

THEOREM 1. Let M be a subgroup of a p-group G. Then $(3) \Rightarrow (2)$ and the condition (3) is equivalent to (1') M contains a prime o-ideal.

Proof. According to Lemma 4 $(3) \Rightarrow (1')$. By [2] $(1') \Rightarrow (3)$. Assume that M is a subgroup of G fulfilling (3). Let K_1, K_2 be o-ideals of G such that $M \subset K_1 \cap K_2$. Let N have the same meaning as in Lemma 4. Since $N \subset M$,

$$K_{\scriptscriptstyle 1}\,{\subset}\,K_{\scriptscriptstyle 2} {\,\Longleftrightarrow\,} K_{\scriptscriptstyle 1}/N\,{\subset}\,K_{\scriptscriptstyle 2}/N$$
 .

 K_1/N and K_2/N are o-ideals of G/N and G/N is linearly ordered, hence $K_1/N \subset K_2/N$ or $K_2/N \subset K_1/N$; therefore (2) holds.

If M is an o-ideal of G satisfying (3), then by Theorem 1 M contains a prime o-ideal N; according to [2] (Corollary 1 to the Induced Homomorphism Theorem) G/M is isomorphic to (G/N)/(M/N) and hence (G/N) being linearly ordered) G/M is a linearly ordered group and M is prime. Thus it follows from Theorem 1 that $(3) \Rightarrow (1)$ for $M \in O(G)$ (cf. (A)).

Let us remark that if M is a subgroup of G fulfilling (3) then M need not contain any nonzero o-ideal that is a lattice; further (3) is not implied by (2).

EXAMPLE 1. Let B be an infinite Boolean algebra that has no atoms and put $\Delta = \{b \in B \mid b \neq 0\}$. For each $\delta \in \Delta$ let $H_{\delta} = E$ where E is the additive group of all integers with the natural order, $G = V(\Delta, H_{\delta})$. Let $M = \{v \in G \mid v_1 = 0\}$ (by 1 we denote the greatest element of B). Then M is a prime o-ideal of G, hence M satisfies (3) and M contains no lattice ordered o-ideal different from $\{0\}$.

EXAMPLE 2. Let $\Delta = \{\delta_1, \delta_2, \delta_3\}$, where $\delta_1 < \delta_3$, $\delta_2 < \delta_3$ and δ_1 , δ_2 are incomparable. Put $H_{\delta_i} = E(i = 1, 2, 3)$, $G = V(\Delta, H_{\delta})$, $M = (v \in G | v_{\delta_1} = v_{\delta_2} = 0)$. Then the only o-ideal that contains M is G, thus (2) holds. Let $a, b \in G$ such that $a_{\delta_1} = 1$, $a_{\delta_2} = a_{\delta_3} = 0$, $b_{\delta_2} = 1$, $b_{\delta_1} = b_{\delta_3} = 0$. The elements a and b are p-disjoint in G and $a \notin M$, $b \notin M$, hence M does not fulfil (3).

112

4. Intersections and sums of two *p*-subgroups. Another problem formulated in [2] is whether the intersection of two *p*-subgroups of a *p*-group G must be a *p*-subgroup of G; there is remarked in [2] that this conjecture seems rather dubious. The answer to this problem is negative.

EXAMPLE 3. Let $\Delta = \{\delta_1, \delta_2, \delta_3\}$, where $\delta_1 > \delta_3$, $\delta_2 > \delta_3$ and δ_1, δ_2 are incomparable. Let $H_{\delta_i} = E(i = 1, 2, 3)$, $G = V(\Delta, H_{\delta})$. We write $v(\delta_i)$ instead of v_{δ_i} . Let $c_i \neq 0$ (i = 1, 2) be positive integers, $c_1 \neq c_2$. Denote

$$A_i = \{v \in G \mid v(\delta_{\scriptscriptstyle 3}) = c_i[v(\delta_{\scriptscriptstyle 1}) + v(\delta_{\scriptscriptstyle 2})]\}$$

(i = 1, 2). Let $i \in \{1, 2\}$ be fixed. For proving that A_i is a *p*-subgroup of *G* we have to verify that to each $v \in A_i$ we can choose $a, b \in A_i$, $a \ge 0, b \ge 0$ such that (*) holds and v = a - b. It is easy to verify that it suffices to consider the case when 0 and v are uncomparable, hence we may assume $v(\delta_1) > 0, v(\delta_2) < 0$ (the case $v(\delta_1) < 0, v(\delta_2) > 0$ being analogous). Let $a, b \in G$,

$$egin{aligned} a(\delta_1) &= v(\delta_1), \ a(\delta_2) &= 0, \ a(\delta_3) &= c_i a(\delta_1) \ , \ b(\delta_1) &= 0, \ b(\delta_2) &= -v(\delta_2), \ b(\delta_3) &= -c_i v(\delta_2) \ . \end{aligned}$$

Then a and b have the desired properties, hence A_i is a p-subgroup of G. Denote $C = A_1 \cap A_2$. If $v \in C$, we have

$$c_1[v(\delta_1) + v(\delta_2)] = v(\delta_3) = c_2[v(\delta_1) + v(\delta_2)]$$

and thus (since $c_1 \neq c_2 v(\delta_3) = 0$, $v(\delta_2) = -v(\delta_1)$. Therefore any element $v \in C$, $v \neq 0$ is incomparable with 0 and C is not a p-subgroup of G.

The method used in this example can be employed for proving the following theorem:

THEOREM 2. Let Δ be a partially ordered set and for each $\delta \in \Delta$ let $H_s \neq \{0\}$ be a linearly ordered group, $V = V(\Delta, H_s)$. If V is not lattice ordered, then V contains infinitely many pairs of p-subgroups A_1 , A_2 such that $A_1 \cap A_2$ is not a p-subgroup of V.

Proof. Assume that V is not lattice ordered. Then \varDelta is no root system, hence there exist elements δ_1 , δ_2 , δ_3 such that $\delta_1 > \delta_3$, $\delta_2 > \delta_3$ and δ_1 , δ_2 are incomparable. Choose $e_i \in H_{\delta_i}$, $e_i > 0$ and let c_1 , c_2 be positive integers, $c_1 \neq c_2$. Let $V_1 = \{v \in V \mid v_{\delta} = 0 \text{ for each } \delta \notin \{\delta_1, \delta_2, \delta_3\}\}$,

$$A_{m{i}} = \{ v \in V_{_1} \mid v(\delta_{_1}) = n_{_1}e_{_1}, \,\, v(\delta_{_2}) = n_{_2}e_{_2}, \,\, v(\delta_{_3}) = c_{_i}(n_{_1} + n_{_2})e_{_3} \}$$

where n_1 and n_2 run over the set of all integers (i = 1, 2). Analo-

gously as in Example 3 we can verify that A_1 and A_2 are *p*-subgroups of V. Let $v \in C = A_1 \cap A_2$. Then $c_1(n_1 + n_2) = c_2(n_1 + n_2)$, thus $n_2 = -n_1$ and $v(\delta_3) = 0$. Therefore no element of C is strictly positive and C is no *p*-subgroup of G. Since the positive integers $c_1 \neq c_2$ are arbitrary there exist enfinitely many such pairs A_1 , A_2 .

As a corollary, we obtain:

PROPOSITION 1. Let $V = V(\Delta, H_i)$, where each H_i is linearly ordered. Then the following conditions are equivalent: (i) V is lattice ordered; (ii) if A and B are p-subgroups of V, then $A \cap B$ is a p-subgroup of V as well.

Proof. By Theorem 2 (ii) implies (i). Let V be lattice ordered. Then a subgroup A of V is a p-subgroup of V if and only if it is an 1-subgroup of V; since the intersection of two 1-subgroups is an 1-subgroup, (ii) is valid.

PROPOSITION 2. Let Δ be a partially ordered set and for any $\delta \in \Delta$ let $H_{\delta} \neq \{0\}$ be a linearly ordered group. Assume that there exist $\delta_1, \delta_2, \delta_3 \in \Delta$ such that $\delta_1 < \delta_3, \delta_2 < \delta_3$ and δ_1, δ_2 are incomparable, $V = V(\Delta, H_{\delta})$. Then there are infinitely many p-subgroups A, B of V such that A + B is not a p-subgroup of V.

Proof. Denote $V_1 = \{v \in V \mid v(\delta) = 0 \text{ for each } \delta \notin \{\delta_1, \delta_2, \delta_3\}$ and let c be a fixed positive integer, $e_i \in H_{\delta_i}$, $e_i > 0$ (i = 1, 2, 3). Put

$$egin{aligned} &A = \{ v \in V_1 \mid v(\delta_1) = ne_1, \ v(\delta_2) = -cne_2, \ v(\delta_3) = ne_3 \} \ , \ &B = \{ v \in V_1 \mid v(\delta_1) = v(\delta_2) = 0, \ v(\delta_3) = ne_3 \} \end{aligned}$$

where *n* runs over the set of all integers. A and B are linearly ordered subgroups of V, hence they are *p*-subgroups of V. The set C = A + B is the system of all elements $v \in V_1$ such that

$$v(\delta_{\scriptscriptstyle 1})=n_{\scriptscriptstyle 1}e_{\scriptscriptstyle 1}$$
 , $v(\delta_{\scriptscriptstyle 2})=-cn_{\scriptscriptstyle 1}e_{\scriptscriptstyle 2}$, $v(\delta_{\scriptscriptstyle 3})=n_{\scriptscriptstyle 2}e_{\scriptscriptstyle 3}$

where n_1 , n_2 are arbitrary integers. Hence there is $g \in C$ satisfying

$$g(\delta_1) = e_1$$
, $g(\delta_2) = -ce_2$, $g(\delta_3) = 0$.

If g = a - b, $a \in C$, $b \in C$, $a \ge 0$, $b \ge 0$, then $a \ne 0 \ne b$ (since $g \ge 0$, $g \lt 0$), thus $a(\delta_3) = b(\delta_3) \ge e_3$. There exists $v \in V_1$ such that $v(\delta_3) = a(\delta_3)$, $v(\delta_1) < a(\delta_1)$ and $b(\delta_1)$, $v(\delta_2) < a(\delta_2)$ and $b(\delta_2)$. Thus v < a, v < b, but 2v < a, 2v < b. Therefore a and b are not p-disjoint in G and C is no p-subgroup of G.

One of the problems raised in [2] is affirmatively solved by

114

THEOREM 3. Let A be an o-ideal of G and let B be a p-subgroup of G. Then A + B is a p-subgroup of G.

Proof. Let us denote $G/A = \overline{G}$ and for any $t \in G$ write $t + A = \overline{t}$. Let A + B = X, $x \in X$. There are elements $a \in A$, $b \in B$ such that x = a + b and since B is a p-subgroup there exist $b_1, b_2 \in B$ such that $b = b_1 - b_2$ and b_1, b_2 are p-disjoint in G. Further x = u - v, u, $v \in G$, where u and v are p-disjoint in G. According to [2] \overline{G} is a p-group and by [2], Proposition 2.2, $\overline{b_1}$ and $\overline{b_2}$ (\overline{u} and \overline{v}) are p-disjoint in G. Further we have

$$\overline{x} = \overline{b}_1 - \overline{b}_2 = \overline{u} - \overline{v}$$
,

hence if we apply (B) (§ 3) to the *p*-group \overline{G} it follows that there exists $\overline{m} \in H(\overline{u}, \overline{v})$ fulfilling

$$ar{b}_1=ar{u}+ar{m}$$
 , $ar{b}_2=ar{v}+ar{m}$.

Again, by Proposition 2.2 of [2], there is $m_1 \in \overline{m}$ such that $m_1 \in H(u, v)$. Thus according to (B) the elements $u_1 = u + m_1$ and $v_1 = v + m_1$ are *p*-disjoint in *G* and $x = u_1 - v_1$. Since

$$u_1\in ar u_1=ar u+ar m_1=ar u+ar m=ar b_1=b_1+A\subset A+B=X$$

and analogously $v_1 \in X$, the set X is a p-subgroup of G.

References

1. P. Conrad, Representations of partially ordered Abelian groups as groups of real valued functions, Acta Math. 116 (1966), 199-221.

2. P. Conrad and J. R. Teller, Abelian pseudo lattice ordered groups, Publications Math. (to appear)

3. L. Fuchs, Partially ordered algebraic systems, Moskva, 1965.

4. -----, Riesz groups, Ann. Scuola Norm. Sup. Pisa 19 (1965), 1-34.

5. J. R. Teller, On abelian pseudo lattice ordered groups, Pacific J. Math. 27 (1968), 411-419.

Received July 1, 1969.

TECHNICAL UNIVERSITY KOŠICE, CZECHOSLOVAKIA