ON SUBGROUPS OF A PSEUDO LATTICE ORDERED GROUP

J. Jakubík

Abstract

The purpose of this note is to investigate some problems raised in a recent paper of Conrad and Teller concerning o-ideals and p-subgroups in an abelian pseudo lattice ordered group.

The concept of a pseudo lattice ordered group (" p-group") has been introduced by Conrad [1]. In recent papers by Teller [5] and Conrad and Teller [2] there is developped a systematic theory of p-groups. Let G be an abelian p-group. In $\S 3$ it is proved that if M is a subgroup of G such that $\{a, b\} \cap M \neq \varnothing$ for any pair of p-disjoint elements $a, b \in G$, then M contains a prime o-ideal; this generalizes a result from [2]. In § 4 we prove that the intersection of two p-subgroups of a p-group G need not be a p-subgroup of G. Moreover, if Δ is a partially ordered set and for each $\delta \in \Delta H_{\delta} \neq\{0\}$ is a linearly ordered group, then for the mixed product $G=V\left(\Delta, H_{\delta}\right)$ the following conditions are equivalent: (i) for any two p-subgroups A, B of G their intersection $A \cap B$ is a p-subgroup of G as well; (ii) G is an l-group. If A is an o-ideal of a p-group G and B is a p-subgroup of G, then $A+B$ is a p-subgroup of G.
2. Preliminaries. Let G be a partially ordered group. G is a Riesz group (cf. Fuchs [3], [4]) if it is directed and if from a_{i}, $b_{j} \in G, a_{i} \leqq b_{j}(i, j=1,2)$ it follows that there exists $c \in G$ satisfying $a_{i} \leqq c \leqq b_{j}(i, j=1,2) . \quad G$ is a p-group (cf. [1] and [5]) if it is Riesz and if each $g \in G$ has a representation $g=a-b$ such that $a, b \in G, a \geqq 0, b \geqq 0$ and

$$
\begin{equation*}
x \in G, x \leqq a, x \leqq b \Longrightarrow n x \leqq a, n x \leqq b \tag{*}
\end{equation*}
$$

for any positive integer n.
Throughout the paper G denotes an abelian p-group. Elements $a, b \in G, a \geqq 0, b \geqq 0$ satisfying (*) are called p-disjoint. A subgroup M of G is a p-subgroup, if for each $m \in M$ there are elements $a, b \in M$ such that a, b are p-disjoint in G and $m=a-b$. A subgroup C of G is an o-ideal, if it is directed and if $0 \leqq g \leqq c \in C, g \in G$ implies $g \in C$. Let $O(G)$ be the system of all o-ideals of G (partially ordered by the set inclusion). An o-ideal C of G is called prime, if G / C is a linearly ordered group. For any pair a, b of p-disjoint elements $H(a, b)$ denotes the subgroup of G generated by the set

$$
\{0 \leqq m \in G \mid m \leqq a, m \leqq b\}
$$

Then $H(a, b) \in O(G)$ (cf. [2]).
Let Δ be a partially ordered set and let $H_{\dot{\delta}} \neq\{0\}$ be a linearly ordered group for each $\delta \in \Delta$. Let $V=V\left(\Delta, H_{\delta}\right)$ be the set of all Δ-vectors $v=\left(\cdots, v_{\delta}, \cdots\right)$ where $v_{\delta} \in H_{\delta}$, for which the support $S(v)=$ $\left\{\delta \in \Delta \mid v_{\dot{\delta}} \neq 0\right\}$ contains no infinite ascending chain. An element $v \in V$, $v \neq 0$ is defined to be positive if $v_{\delta}>0$ for each maximal element $\delta \in S(v)$. Then ([2], Th. 5.1) V is a p-group; V is an 1 -group if and only if Δ is a root system (i.e., $\{\delta \in \Delta \mid \delta \geqq \gamma\}$ is a chain for each $\gamma \in \Delta$).
3. Subgroups containing a prime o-ideal. The following assertion has been proved in [2] (Proposition 4.3):
(A) For $M \in O(G)$, the following are equivalent: (1) M is prime; (2) the o-ideals of G that contain M form a chain; (3) if a and b are p-disjoint in G, then $a \in M$ or $b \in M$.

Further it is remarked in [2] that each subgroup M of G fulfilling (3) is a p-subgroup and any subgroup containing a prime o-ideal satisfies (3); then it is asked whether a subgroup M of a p-group G satisfies (3) if and only if it contains a prime o-ideal (a similar assertion is known to be valid for lattice ordered groups). We shall prove that the answer is positive.

We need the following propositions (cf. [2] and [5]):
(B) Let $g=a-b \in G$ where a and b be p-disjoint. Then $g=$ $x-y$, where x and y are p-disjoint, if and only if $x=a+m$ and $y=b+m$ for some $m \in H(a, b)$.
(C) If a and b are p-disjoint, then $n a$ and $n b$ are p-disjoint for any positive integer n and $H(a, b)=H(n a, n b)$ ([2], Proposition 3.1).

Lemma 1. Let M be a subgroup of G fulfilling (3) and let a, b be p-disjoint elements in G. Then $H(a, b) \subset M$.

Proof. Let $h \in H(a, b)$. According to (3) we may assume without loss of generality that $a \in M$. Suppose (by way of contradiction) that $h \notin M$. Then $a+h \notin M$, hence by (B) $b+h \in M$, and analogously $b-h \in M$, thus $2 b \in M$. Further $2 a+h \notin M$ and therefore according to (C) and (B) $2 b+h \in M$, which implies $h \in M$.

Lemma 2. Let M be a subgroup of G satisfying (3) and let $X=\left\{X_{i}\right\}$ be the system of all o-ideals of G such that $X_{i} \subset M$. Then the system X has a largest element.

Proof. Let Y be the subgroup of G generated by the set $\cup X_{i}$.

Then $Y \subset M$ and Y is the supremum of the system $\left\{X_{i}\right\}$ in the lattice \mathscr{G} of all subgroups of G. Since $O(G)$ is a complete sublattice of \mathscr{G} ([2], Th. 2.1), $Y \in O(G)$ and thus $Y \in X$.

Let H be the subgroup of G generated by the set $\cup H(a, b)$ where a, b runs over the system of all p-disjoint pairs of elements in G. Since each set $H(a, b)$ is an o-ideal ([2]), $H=\mathrm{V} H(a, b)(a$ and $b p$-disjoint in G) where V denotes the supremum in the lattice $O(G)$. According to Lemma $1 H \subset M$ whenever the subgroup M of G satisfies (3).

For any $u, v \in G, u \leqq v$, the interval $[u, v]$ is the set

$$
\{x \in G u \leqq x \leqq v\}
$$

Lemma 3. Let M be a subgroup of G satisfying (3) and let N be the largest o-ideal of G that is contained in M. Let $g \in G, g>0$. Then

$$
[0, g] \subset M \Longrightarrow g \in N
$$

Proof. According to Lemma 2 the largest o-ideal N in M exists. Assume that $g \in G, \mathrm{~g}>0,[0, g] \subset M$. The set

$$
Z=\bigcup_{n=1}^{\infty}[-n g, n g]
$$

is clearly an o-ideal in G. Let $z \in Z$, hence $z \in[-n g, n g]$ for a positive integer n. This implies $0 \leqq y \leqq 2 n g$ where $y=z+n g$. Since G is a Riesz group, according to [3, p. 158, Th. 27] there are elements $g_{1}, \cdots, g_{2 n} \in G, 0 \leqq g_{i} \leqq g$ such that $y=g_{1}+\cdots+g_{2 n}$. Thus $g_{i} \in M$, therefore $y \in M$ and $Z \subset M$. Now we have $Z \subset N$ and so $g \in N$.

Lemma 4. Let M be a subgroup of G fulfilling (3) and let N be the largest o-ideal of G contained in M. Then G / N is a linearly ordered group.

Proof. Assume (by way of contradiction) than G / N is not linearly ordered. According to Lemma $1 H \subset N$, hence by [2], Theorem 4.1 G / N is a lattice ordered group. Thus there exist elements $X, Y \in G / N$ such that $X \wedge Y=\overline{0}, X>\overline{0}, Y>\overline{0}(\overline{0}$ being the neutral element of G / N). From [2] (Proposition 2.2, (ii)) it follows that there are elements $x \in X, y \in Y$ such that x and y are p-disjoint in G and hence $x \in M$ or $y \in M$. Clearly $x \notin N, y \notin N$ and thus according to Lemma 3 there exist elements $x_{1}, y_{1} \in G$ such that

$$
0<x_{1} \leqq x, 0<y_{1} \leqq y, x_{1} \notin M, y_{1} \notin M
$$

Then in G / N we have $\overline{0}<x_{1}+N \leqq x+N=X, \overline{0}<y_{1}+N \leqq y+N=$ Y, whence

$$
\left(x_{1}+N\right) \wedge\left(y_{1}+N\right)=\overline{0}
$$

Thus by using repeateadly [2], Proposition 2.2, we can choose elements $x_{2} \in x_{1}+N, y_{2} \in y_{1}+N$ such that x_{2} and y_{2} are p-disjoint in G. Therefore (without loss of generality) we may assume $x_{2} \in M$ and this implies $x_{1} \in x_{1}+N=x_{2}+N \subset M$, a contradiction. The proof is complete.

Theorem 1. Let M be a subgroup of a p-group G. Then $(3) \Rightarrow(2)$ and the condition (3) is equivalent to (1') M contains a prime o-ideal.

Proof. According to Lemma $4(3) \Rightarrow\left(1^{\prime}\right)$. By [2] $\left(1^{\prime}\right) \Rightarrow(3)$. Assume that M is a subgroup of G fulfilling (3). Let K_{1}, K_{2} be o-ideals of G such that $M \subset K_{1} \cap K_{2}$. Let N have the same meaning as in Lemma 4. Since $N \subset M$,

$$
K_{1} \subset K_{2} \Longleftrightarrow K_{1} / N \subset K_{2} / N
$$

K_{1} / N and K_{2} / N are o-ideals of G / N and G / N is linearly ordered, hence $K_{1} / N \subset K_{2} / N$ or $K_{2} / N \subset K_{1} / N$; therefore (2) holds.

If M is an o-ideal of G satisfying (3), then by Theorem $1 M$ contains a prime o-ideal N; according to [2] (Corollary 1 to the Induced Homomorphism Theorem) G / M is isomorphic to $(G / N) /(M / N)$ and hence (G / N being linearly ordered) G / M is a linearly ordered group and M is prime. Thus it follows from Theorem 1 that (3) $\Rightarrow(1)$ for $M \in O(G)$ (cf. (A)).

Let us remark that if M is a subgroup of G fulfilling (3) then M need not contain any nonzero o-ideal that is a lattice; further (3) is not implied by (2).

Example 1. Let B be an infinite Boolean algebra that has no atoms and put $\Delta=\{b \in B \mid b \neq 0\}$. For each $\delta \in \Delta$ let $H_{\delta}=E$ where E is the additive group of all integers with the natural order, $G=$ $V\left(\Delta, H_{\partial}\right)$. Let $M=\left\{v \in G \mid v_{1}=0\right\}$ (by 1 we denote the greatest element of B). Then M is a prime o-ideal of G, hence M satisfies (3) and M contains no lattice ordered o-ideal different from $\{0$).

Example 2. Let $\Delta=\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, where $\delta_{1}<\delta_{3}, \delta_{2}<\delta_{3}$ and δ_{1}, δ_{2} are incomparable. Put $H_{\hat{\delta}_{i}}=E(i=1,2,3), G=V\left(\Delta, H_{\delta}\right), M=\left(v \in G \mid v_{\hat{o}_{1}}=\right.$ $\left.v_{\hat{\delta}_{2}}=0\right\}$. Then the only o-ideal that contains M is G, thus (2) holds. Let $a, b \in G$ such that $a_{\delta_{1}}=1, \quad a_{\delta_{2}}=a_{\delta_{3}}=0, \quad b_{\delta_{2}}=1, \quad b_{\delta_{1}}=b_{\delta_{3}}=0$. The elements a and b are p-disjoint in G and $a \notin M, b \notin M$, hence M does not fulfil (3).
4. Intersections and sums of two p-subgroups. Another problem formulated in [2] is whether the intersection of two p-subgroups of a p-group G must be a p-subgroup of G; there is remarked in [2] that this conjecture seems rather dubious. The answer to this problem is negative.

Example 3. Let $\Delta=\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, where $\delta_{1}>\delta_{3}, \delta_{2}>\delta_{3}$ and δ_{1}, δ_{2} are incomparable. Let $H_{\delta_{i}}=E(i=1,2,3), G=V\left(\Delta, H_{\dot{\delta}}\right)$. We write $v\left(\delta_{i}\right)$ instead of $v_{\hat{o}_{i}}$. Let $c_{i} \neq 0(i=1,2)$ be positive integers, $c_{1} \neq c_{2}$. Denote

$$
A_{i}=\left\{v \in G \mid v\left(\delta_{3}\right)=c_{i}\left[v\left(\delta_{1}\right)+v\left(\delta_{2}\right)\right]\right\}
$$

($i=1,2$). Let $i \in\{1,2\}$ be fixed. For proving that A_{i} is a p-subgroup of G we have to verify that to each $v \in A_{i}$ we can choose $a, b \in A_{i}$, $a \geqq 0, b \geqq 0$ such that (*) holds and $v=a-b$. It is easy to verify that it suffices to consider the case when 0 and v are uncomparable, hence we may assume $v\left(\delta_{1}\right)>0, v\left(\delta_{2}\right)<0$ (the case $v\left(\delta_{1}\right)<0, v\left(\delta_{2}\right)>0$ being analogous). Let $a, b \in G$,

$$
\begin{aligned}
& a\left(\delta_{1}\right)=v\left(\delta_{1}\right), a\left(\delta_{2}\right)=0, a\left(\delta_{3}\right)=c_{i} a\left(\delta_{1}\right) \\
& b\left(\delta_{1}\right)=0, b\left(\delta_{2}\right)=-v\left(\delta_{2}\right), b\left(\delta_{3}\right)=-c_{i} v\left(\delta_{2}\right)
\end{aligned}
$$

Then a and b have the desired properties, hence A_{i} is a p-subgroup of G. Denote $C=A_{1} \cap A_{2}$. If $v \in C$, we have

$$
c_{1}\left[v\left(\delta_{1}\right)+v\left(\delta_{2}\right)\right]=v\left(\delta_{3}\right)=c_{2}\left[v\left(\delta_{1}\right)+v\left(\delta_{2}\right)\right]
$$

and thus (since $\left.c_{1} \neq c_{2}\right) v\left(\delta_{3}\right)=0, v\left(\delta_{2}\right)=-v\left(\delta_{1}\right)$. Therefore any element $v \in C, v \neq 0$ is incomparable with 0 and C is not a p-subgroup of G.

The method used in this example can be employed for proving the following theorem:

THEOREM 2. Let Δ be a partially ordered set and for each $\delta \in \Delta$ let $H_{\dot{\delta}} \neq\{0\}$ be a linearly ordered group, $V=V\left(\Delta, H_{\delta}\right)$. If V is not lattice ordered, then V contains infinitely many pairs of p-subgroups A_{1}, A_{2} such that $A_{1} \cap A_{2}$ is not a p-subgroup of V.

Proof. Assume that V is not lattice ordered. Then Δ is no root system, hence there exist elements $\delta_{1}, \delta_{2}, \delta_{3}$ such that $\delta_{1}>\delta_{3}$, $\delta_{2}>\delta_{3}$ and δ_{1}, δ_{2} are incomparable. Choose $e_{i} \in H_{\delta_{i}}, e_{i}>0$ and let c_{1}, c_{2} be positive integers, $c_{1} \neq c_{2}$. Let $V_{1}=\left\{v \in V \mid v_{\dot{o}}=0\right.$ for each $\delta \notin\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$,

$$
A_{\boldsymbol{i}}=\left\{v \in V_{1} \mid v\left(\delta_{1}\right)=n_{1} e_{1}, v\left(\delta_{2}\right)=n_{2} e_{2}, v\left(\delta_{3}\right)=c_{i}\left(n_{1}+n_{2}\right) e_{3}\right\}
$$

where n_{1} and n_{2} run over the set of all integers $(i=1,2)$. Analo-
gously as in Example 3 we can verify that A_{1} and A_{2} are p-subgroups of V. Let $v \in C=A_{1} \cap A_{2}$. Then $c_{1}\left(n_{1}+n_{2}\right)=c_{2}\left(n_{1}+n_{2}\right)$, thus $n_{2}=$ $-n_{1}$ and $v\left(\delta_{3}\right)=0$. Therefore no element of C is strictly positive and C is no p-subgroup of G. Since the positive integers $c_{1} \neq c_{2}$ are arbitrary there exist enfinitely many such pairs A_{1}, A_{2}.

As a corollary, we obtain:
Proposition 1. Let $V=V\left(\Delta, H_{\dot{\delta}}\right)$, where each $H_{\dot{\delta}}$ is linearly ordered. Then the following conditions are equivalent: (i) V is lattice ordered; (ii) if A and B are p-subgroups of V, then $A \cap B$ is a p-subgroup of V as well.

Proof. By Theorem 2 (ii) implies (i). Let V be lattice ordered. Then a subgroup A of V is a p-subgroup of V if and only if it is an 1-subgroup of V; since the intersection of two 1 -subgroups is an 1-subgroup, (ii) is valid.

Proposition 2. Let Δ be a partially ordered set and for any $\delta \in \Delta$ let $H_{\delta} \neq\{0\}$ be a linearly ordered group. Assume that there exist $\delta_{1}, \delta_{2}, \delta_{3} \in \Delta$ such that $\delta_{1}<\delta_{3}, \delta_{2}<\delta_{3}$ and δ_{1}, δ_{2} are incomparable, $V=V\left(\Delta, H_{\dot{\delta}}\right)$. Then there are infinitely many p-subgroups A, B of V such that $A+B$ is not a p-subgroup of V.

Proof. Denote $V_{1}=\left\{v \in V \mid v(\delta)=0\right.$ for each $\left.\delta \notin\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}\right\}$ and let c be a fixed positive integer, $e_{i} \in H_{\delta_{i}}, e_{i}>0(i=1,2,3)$. Put

$$
\begin{aligned}
& A=\left\{v \in V_{1} \mid v\left(\delta_{1}\right)=n e_{1}, v\left(\delta_{2}\right)=-c n e_{2}, v\left(\delta_{3}\right)=n e_{3}\right\}, \\
& B=\left\{v \in V_{1} \mid v\left(\delta_{1}\right)=v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=n e_{3}\right\}
\end{aligned}
$$

where n runs over the set of all integers. A and B are linearly ordered subgroups of V, hence they are p-subgroups of V. The set $C=A+B$ is the system of all elements $v \in V_{1}$ such that

$$
v\left(\delta_{1}\right)=n_{1} e_{1}, \quad v\left(\delta_{2}\right)=-c n_{1} e_{2}, \quad v\left(\delta_{3}\right)=n_{2} e_{3}
$$

where n_{1}, n_{2} are arbitrary integers. Hence there is $g \in C$ satisfying

$$
g\left(\delta_{1}\right)=e_{1}, \quad g\left(\delta_{2}\right)=-c e_{2}, \quad g\left(\delta_{3}\right)=0
$$

If $g=a-b, a \in C, b \in C, a \geqq 0, b \geqq 0$, then $a \neq 0 \neq b$ (since $g \ngtr 0$, $g \nless 0)$, thus $a\left(\delta_{3}\right)=b\left(\delta_{3}\right) \geqq e_{3}$. There exists $v \in V_{1}$ such that $v\left(\delta_{3}\right)=$ $a\left(\delta_{3}\right), v\left(\delta_{1}\right)<a\left(\delta_{1}\right)$ and $b\left(\delta_{1}\right), v\left(\delta_{2}\right)<a\left(\delta_{2}\right)$ and $b\left(\delta_{2}\right)$. Thus $v<a, v<b$, but $2 v \nless a, 2 v \nless b$. Therefore a and b are not p-disjoint in G and C is no p-subgroup of G.

One of the problems raised in [2] is affirmatively solved by

Theorem 3. Let A be an o-ideal of G and let B be a p-subgroup of G. Then $A+B$ is a p-subgroup of G.

Proof. Let us denote $G / A=\bar{G}$ and for any $t \in G$ write $t+A=\bar{t}$. Let $A+B=X, x \in X$. There are elements $a \in A, b \in B$ such that $x=a+b$ and since B is a p-subgroup there exist $b_{1}, b_{2} \in B$ such that $b=b_{1}-b_{2}$ and b_{1}, b_{2} are p-disjoint in G. Further $x=u-v, u$, $v \in G$, where u and v are p-disjoint in G. According to [2] \bar{G} is a p-group and by [2], Proposition 2.2, \bar{b}_{1} and $\bar{b}_{2}(\bar{u}$ and \bar{v}) are p-disjoint in G. Further we have

$$
\bar{x}=\bar{b}_{1}-\bar{b}_{2}=\bar{u}-\bar{v}
$$

hence if we apply (B) (§3) to the p-group \bar{G} it follows that there exists $\bar{m} \in H(\bar{u}, \bar{v})$ fulfilling

$$
\bar{b}_{1}=\bar{u}+\bar{m}, \quad \bar{b}_{2}=\bar{v}+\bar{m}
$$

Again, by Proposition 2.2 of [2], there is $m_{1} \in \bar{m}$ such that $m_{1} \in H(u, v)$. Thus according to (B) the elements $u_{1}=u+m_{1}$ and $v_{1}=v+m_{1}$ are p-disjoint in G and $x=u_{1}-v_{1}$. Since

$$
u_{1} \in \bar{u}_{1}=\bar{u}+\bar{m}_{1}=\bar{u}+\bar{m}=\bar{b}_{1}=b_{1}+A \subset A+B=X
$$

and analogously $v_{1} \in X$, the set X is a p-subgroup of G.

References

1. P. Conrad, Representations of partially ordered Abelian groups as groups of real valued functions, Acta Math. 116 (1966), 199-221.
2. P. Conrad and J. R. Teller, Abelian pseudo lattice ordered groups, Publications Math. (to appear)
3. L. Fuchs, Partially ordered algebraic systems, Moskva, 1965.
4. -_, Riesz groups, Ann. Scuola Norm. Sup. Pisa 19 (1965), 1-34.
5. J. R. Teller, On abelian pseudo lattice ordered groups, Pacific J. Math. 27 (1968), 411-419.

Received July 1, 1969.
Technical University
Košice, Czechoslovakia

