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SPHERE TRANSITIVE STRUCTURES AND
THE TRIALITY AUTOMORPHISM

ALFRED GRAY AND PAUL GREEN

Let G be a compact connected Lie group which acts
transitively and effectively on a sphere S71'1. A manifold M
is said to have a sphere transitive structure if the structure
group of the tangent bundle of M can be reduced from O(n)
to G. The study of the existence of such structures is a
generalization of the well-known problem of the existence of
almost complex structures. We completely solve the question
of existence of sphere transitive structures on spheres.

For our study of sphere transitive structures we need to
know some facts about the triality automorphism λ of Spin (8).
We completely determine the cohomology homomorphism in-
duced by λ on the cohomology of the classifying space of
Spin (8).

Berger [1] has classified the holonomy groups of manifolds having
an affine connection with zero torsion. Either from this classification
or directly from Simons [11], it follows that the holonomy group of
an irreducible Riemannian manifold which is not a symmetric space
acts transitively on a sphere.

On the other hand we have the following elementary fact: if the
holonomy group of a Riemannian manifold M is G, then the structure
group of the tangent bundle of M can be reduced to G. Therefore
a more fundamental question than whether or not a Riemannian
manifold M has a given Lie group G as its holonomy group is the
question of the reduction of the structure group of the tangent
bundle of M to G. In this paper we consider the latter question and
give some necessary conditions and some sufficient conditions in terms
of characteristic classes. From the remarks above it suffices to con-
sider the case when G is a connected Lie group which acts transi-
tively and effectively on a sphere.

We introduce the following notions.

DEFINITIONS. Let ξ = (E, M, p, F) be a vector bundle where M
is a CPF-complex and dim F — n. Then a sphere transitive reduc-
tion is a reduction of the structure group O(n) of ξ to a connected
Lie subgroup G of O(n) which acts transitively and effectively on
the sphere Sn~\ In the special case when ξ is the tangent bundle
of M we call the reduction a sphere transitive structure on M.

According to [10] the connected Lie groups G which act effec-
tively and transitively on spheres are the following: SO(ri), U{n),
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SU(n), Sp(w), Sp(n) S0(2), Sp(n) Sp(l), G2, Spin (7), and Spin (9).
We have

SO(n)/SO(n - 1) = S-1, U(n)/U(n - 1) = SU(n)/SU(n - 1) = S 2 - 1 ,

Sp (w)/Sp (w - 1) = Sp (n).S0(2)/Sp fa - 1) SO(2)

- Sp fa) Sp (1)/Sp fa - l) Sp (1) - S 4 - 1 ,

G2/SU(Z) = S 6 , Spin (7)/(?2 = S 7 , Spin (9)/Spin (7) - Slδ .

In § 2 we discuss the triality automorphism λ of Spin (8) and
the cohomology of the self homeomorphism of the classifying space
induced by λ. The results of § 2 are then used in § 3 to determine
the cohomology of the classifying space B Spin fa) fa = 7, 8, 9) and
a good deal of the cohomology of BG2. Then we determine some
necessary conditions for sphere transitive reductions for the cases
G — G2, Spin (7), Spin (9). In § 4 we discuss the existence of sphere
transitive structures on certain homogeneous spaces. In particular
we completely solve the problem of the existence of sphere transitive
structures on spheres.

2* The cohomology of the triality automorphism* Spin (8).
is the simply connected compact Lie group whose Lie algebra is of
type D4. Now D4 is the unique simple Lie algebra with an outer
automorphism of order 3. In fact, if Aut (D4) (resp. Inn (D4)) denotes
the group of all (resp. inner) automorphisms of D4, then the factor
group Aut (jD4)/Inn (D4) is isomorphic to the symmetric group on &
letters. Let /c,λe Aut(D4) be such that their images in Aut(Z)4)/Inn(D4)
generate this group and satisfy the relations λ3 = 1, κ2 = 1, /cXtc = λ2*

According to [7] it is possible to choose K and λ so that the
'principle of triality holds. This means the following. Let V be the
8-dimensional algebra of Cayley numbers and denote the product of
x, y 6 V by xy. Then for A e D4, x, y e V we have

(Ax)y + x(X(A)y) = ((\κ)(A))(xy) .

The Dynkin diagram of D4 is

where {7i, 72, 73, 74} is a simple system of roots of D4. Since K and λ
are outer, they give rise to symmetries of the Dynkin diagram of
D4. It may be checked that {yv 72, 73, 74} may be chosen so that
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1 = 7 3 , λ(7 2 )=7 2 , λ(78) =
74, λ(74) = 7i Henceforth we assume that the principal of triality
holds and that the above choice of simple roots has been made.

Since Spin (8) is simply connected, λ and K induce outer auto-
morphisms of Spin (8); these in turn induce homeomorphisms of
B Spin (8), which we continue to denote by λ and /c. In order to
determine the cohomology of λ and fc, it will be convenient to
use some cohomology classes introduced by Thomas [12]. Let
p: B Spin (n) —> BSO(n) be the map defined by the covering homo-
morphism of Spin (n) over SO(n). Denote by w{ the universal Stiefel-
Whitney classes, by P, the universal Pontryagin classes, and by X
the Euler class of BSO(8). Then H*(BS0(8), Z) = Z[Plf P2, P3, X] +
2-torsion and H*(BS0(8), Z2) — Z2[w2, •••, w8]. According to Thomas
[12] there exist cohomology classes Q{ eiϊ*(J5Spin, Z) (i = 1, 2, 3, 4)
and wf e i ϊ*( i? Spin, Z2) (i = 4, 6, 7, 8) (where Spin denotes the stable
Spin group) such that

p*(Px) = 2QX p*(Wi) = wf (i = 4, 6, 7, 8)

p*(P2) = 2Q2 + Qt p*(Wi) - 0 (i = 2, 3, 5)

= Qs piiQd = wt, pziQz) = w?
- 2Q4 + Q\ p2(QB) = wt2, Pt(Q4) = w*Q .

The cohomology classes Q19 Q2, Q3, wf, wt, wf, wt give rise to the
cohomology classes in if %B Spin (8), Z) and JH

r*(SSpin(8), Z2) which
we denote by the same letters.

THEOREM 2.1. ( i ) There exist

Y e H8(B Spin (8), Z) and ω e H\B Spin (8), Z2)

such that

£P(J5Spin(8), Z) = Z[QU Q2y Q8, Y] + 2-torsion

£Γ*(J5Spin (8), Z2) - Z2\w*, wt, wf, wt, ω] .

Furthermore Y and ω can be chosen so that p*(X) = 2Y — Q2 and

PAY) - ω.
(ii) The cohomology homomorphisms λ* and K* are given as

follows:

Qx , χ*(w*) = w * (i = 4, 6, 7) ,

λ*(Q2) = 3 Γ - 2Q2 , \*(wf) = ω ,

\*(Y) = Y-Q2, χ*(ω) = wϊ + ώ,

λ*(Q3) = Q3 + 2Q,F - 2QLQ2 , ιc*(wf) - wf (i - 4, 6, 7, 8) ,

<c*(Qi) = G* (ΐ = 1, 2, 3) , /c*(α>) - wΐ + ω ,

= ~Y+Q2.
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Before proving this theorem we state without proof a lemma
which we shall need.

LEMMA 2.2. Let s:K—+L be a pn-fold covering of a compact
connected Lie group where p is a prime, and denote by

s*: H*(BL, Z) > H*(BK, Z)

the corresponding cohomology homomorphism of classifying spaces.
Let S be a subset of H*(BK, Z) such that S generates s*(£Γ*(£L, Z))
as a group (ring) and pp(S) generates pp(H*(BK), Z) £ H*(BK, Zp)
as a group (ring). (pp denotes reduction mod p.) Then S generates
H*(BK, Z) as a group (ring).

Proof of Theorem 2.1. Using a result of Borel [2] it is not
hard to see that wt, w*9 w?f and w* are generators of

i ϊ*(5Spin(8), Z2) .

Furthermore if po:Z—>Ro denotes the inclusion, where Ro is the
rationale, then it is obvious that

ff*(J?Spin(8), RQ) = Λote>(Qi), A>(Q2), A>(Q8), ft(P*(^))]

We first establish part of (ii). The automorphism tc of Spin (8)
gives rise to an outer automorphism £ of SO(8); this is the ordinary
orientation reversing automorphism of SO(8). The induced homo-
morphism £* is the identity on H*(BS0(8), Z2) and satisfies £*(Pi) =
Pi (i = 1, 2, 3), κ*(X) = -X. Hence κ*(wf) = wf (i = 4, 6, 7, 8), and
κ*(Q.) = Q. (ί = l, 2, 3). It is also easy to see that λ*(Qx) = Q, and
χ*(w?) = wf for i = 4, 6, 7.

We may write

- apo(X) + bpo(Q2) + cpo(Ql) ,

- dpo(X) + epo(Q2) + fpo(Ql) ,

where α, 6, c, d, β, / are rational numbers. Using the facts that
λ*(Q?) = Ql, λ3 = 1, /ΓλΛ: = λ2, and the knowledge of /c*, we calculate
that c = / = 0, α = e = -1/2, and δd = -3/4.

To compute δ, d, and λ*((o0(Q3)) we must resort to some calcula-
tions with roots. Let Q19 Q2y Q3, and X denote the real cohomology
classes corresponding to Q19 Q2, Q3, and p*(X). Then we may regard
Qi, Q2ι Q3 and X as polynominals on the Lie algebra of a maximal
torus of Spin (8), i.e., polynomials in the roots of Spin (8). A calcula-
tion shows in fact that (if we write τ0 = — Ti — 2τ2 - τ3 - %),
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Q, = -2ε(7o + Ύl + 7 | + ΎΪ) ,

Q2 = ε2(-7l7l - 1Ί\Ί\ + Ί\Ί\ + Ί\Ί\

X = £2(-Ύl7l - ΎlΎl + Jill + 7Ϊ7Ϊ) ,

Q3 = -2ε3(τt>1 + 7W + 7ί7̂  + Ί\Ί\

Thus we obtain

( * )

Define Y = -X*(p*(X)) and ω - p^Y)- Then λ*(^8*) = α>. From
this, equations (*), and the fact that iJ*(i?Spin (8), Z) has only
2-torsion, we obtain the rest of (ii).

From (ii) and Borel [2] we see that ω may be taken to be the
remaining generator of ϋ*(i?Spin (8), Z2). This fact together with
(ii) and Lemma 2.2 imply (i).

3* The cohomology of B Spin (7), B Spin (9), and BG2. We
first compute the cohomology of B Spin (7) and its inclusion in BSO(S).
Actually there are two natural 8-dimensional representations of Spin (7)
according to [8]. These are equivalent in 0(8) but not in £0(8). Denote
these representations by j+ and j _ . In the terminology of [8] j+
and j _ give rise to the two distinct 3-fold vector cross products on
E\ Let i: Spin (7) —* Spin (8) be the natural inclusion. The following
lemma [8], [13] will be necessary.

LEMMA 3.1. We have the following commutative diagrams

Spin (8) —

<ϊ
Spin (7) —

3

ί-> Spin (8)

- * SO (8)
+

Spin (8) •

Ί
Spin (7) •

λ2

i

)

3-

> Spin (8)

I '
> SO(8).

Where it is convenient we write j ± to mean either j+ or j _ .
Let i*: H*(B Spin (8)) — H*(B Spin (7)) and

jl: H*(BS0 (8)) -»H*(B Spin (7))

be the induced cohomology homomorphisms of i and j ± on classifying
spaces.
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THEOREM 3.2. Identify i*(wf) with wf (i — 4, 6, 7), i*(ω) with
ω, i*(Qi) with Q< (i = 1, 3) and i*(Y) with Y. Then we have

( i ) H*(B Spin (7), Z) = Z[QU Q,, Y] + 2-torsion,
H*(BSpin (7), Z2) = Z2[w*, w*, w*, α>];

(ii) i*(wi) = 0 and i*(Q2) = 2Y;
(iii) j*(Pd = 2Qιt ji(wt) = wf (i = 4, 6, 7)

i*(P2) = - 2 Γ + QJ, iϊ(wf) = α>;
iϊ(P.) = Q, - 2Q.Γ,

(iv) The kernel of j± on integral cohomology is the ideal
generated by 4P2 — PI + 8X.

Proof. Since i: Spin (7) —> Spin (8) covers the ordinary inclusion
of SO(Ί) in SO(8), we have (i*oP*)(X) = 0. Thus i*(Q2) - 2F. From
this fact, Theorem 2.1 and Lemma 2.2 we obtain (i) and (ii). Further-
more (iii) follows from (i), (ii), and Lemma 3.1; finally (iv) is an easy
calculation from (iii).

Let M be a CTΓ-complex and let ξ be an oriented vector bundle
over M with fiber dimension 8. Denote by /: Λf —>BSO(8) the classify-
ing map determined by ξ. We shall say that ξ admits a nontransi-
tive Spin (7) reduction if / — poiog for some g: M —»J5Spin (7):

B Spin (7) -^B Spin (8)

4 \p

M —> BSO (8) .

(Here i and p denote the maps induced by the maps Spin (7) -* Spin (8)
and Spin (8) —> £0(8) which we also designate by i and p.) On the
other hand by Lemma 3.1, M admits a sphere transitive Spin (7)
reduction in the sense of this paper if and only if for some
g:M—• 2? Spin (7) we have / = p°\oiog or / = poχ2oiog. Therefore
we have the following lemma.

LEMMA 3.3. Assume w2(ξ) = 0. Then ξ has a transitive Spin (7)
reduction (that is a reduction of SO(8) to j ± (Spin (7))) if and only
if ^ ( f ) has a nontransitive Spin (7) reduction.

Next we determine the primary and secondary obstructions to the
existence of sphere transitive Spin (7) structures.

THEOREM 3.4. Let M be a CW-complex and let ξ be an oriented
vector bundle over ξ with fiber dimension 8. Denote by c2(ξ) and
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cs(ξ) the primary and secondary obstructions to the existence of a transi-
tive j± (Spin (7)) structure. Then c\ξ) e H\M, Z2), c%ξ) e H8(M, Z),
and we have

= w2(ξ) ,

= 4P2(f) - Pl(ξ) ± 8X(ί) .

Proof. We first note that SO(8)/Spin (7) is diffeomorphie to real
protective space P7. Hence c\ξ) e H2(M, πx(P7)) - H*(M, Z2) and
c\ξ) e H\M, π7(P7)) = H\M, Z). A transgression argument given in
[8] shows that w2(ξ) = e2(f).

Assume that wa(ξ) = 0. By Lemma 3.3, ξ has a sphere transitive
i ± (Spin (7)) structure if and only if λ^f) has a nontransitive Spin (7)
structure. The first obstruction to the latter is Xfa*1^)), as is
well-known. On the other hand by Theorem 2.1 and 3.2 we have

Pϊ(ξ) + X(ξ) .

Hence the theorem follows.

COROLLARY 3.5. Let ξ be an oriented vector bundle with fiber
dimension 8 over a CW-complex M. Assume that dim M 5^8 and
that He(M, Z) has no 2-torsion. Then ξ has a sphere transitive
j ± (Spin (7)) structure if and only if wz(ξ) — 0 and

4P2(ί) ~ Pί(ξ) ± X(ξ) - 0 .

Theorems 2.1 and 3.4 and Corollary 3.5 correct an error in [8].
We now turn to Spin (9). First we need a lemma.

LEMMA 3.6. We have the following commutative diagram:

Spin (8) x Spin (8) — Spin (16)

Spin (8) — > Spin (9) > SO(16)
fc i

where A is the standard map of Spin (8) x Spin (8) into Spin (16), p
is the covering projection, k is the standard inclusion of Spin (8) in
Spin (9), and I is the sphere transitive 16-dimensional representation
of Spin (9).

Proof. Let Fέ denote the automorphism group of the exceptional
Jordan algebra of 3 x 3 Hermitian matrices of Cay ley numbers. Let
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The subgroup Hi of F± which leaves E{ fixed is isomorphic to Spin (9)
(see [7]). On the other hand Spin (8) is isomorphic to HX{\H2{\ Hd.
Let

/°
Vx — matrices of the form I z

\w 0 0,

(0 2 0

£ 0 w\

0 w 0

(0 0 z

0 0 w \

z w 0,
Then Vi is an irreducible representation space for Hi9 Since there
is only one irreducible 16-dimensional representation of Spin (9), each
representation of Hi on V\ is just I. Now the representation of
Spin (8) on Vι is λ x 1, on V2 is λ x λ2, and on V3 is 1 x λ2. Hence
we get the commutative diagram

Spin (8) x Spin (8) > Spin (16)

/ \P

Spin (8) > Spin (9) > SO(16) .

We claim that k2 is the standard inclusion of Spin (8) in Spin (9)
while kt and fc3 are not. This may be proved by showing that
&?(#*(£ Spin (9), Λo)) is Λ0[P l f P2, P., X2] S i ϊ*(5Spin (8), Ro) for i -
2, but not for i = 1 or 3. (See the proof of the next theorem.)
This completes the proof of the lemma.

THEOREM 3.7. ( i ) There exist cohomology classes

^eiϊ 1 6(5Spin(9), Z)

and φ e Hld(B Spin (9), Z2) such that

i f*(£Spin (9), Z) = Z[QH ζ)2, Q8, Z] + 2-torsion

in (9), Z2) = Z2[w4, wβ, w7, w8, φ] .
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Here k*(Qi) = Qι (ί = 1, 2, 3), kf(4Z) = p*(X2 - P|), k*(wf) = wf (i =
4, 6, 7, 8), and kf(φ) = ω2 + ωw8*.

(ii) TFe /tαt e (modulo elements of order 2)

0 - 4Q,

Z*(P2) - - 2

Z - 2Q2Qz + 2Q\Q3 + 1OQΛJ - 2Q[Q

^ - 2Q\Z + Qί

- 10Q&Z + Q

.) = 0 for ί = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13

Proof. Let f be an 8-dimensional vector bundle with w2{ξ) = 0
and set v = λ(ί) φ λ 2 ( ί ) . Then the Pontryagin, Euler, and Stiefel-
classes of v may be computed by means of the Whitney sum formula
together with Theorem 2.1. On the other hand any maximal torus
(maximal 2-subgroup) of Spin (8) is also a maximal torus (maximal
2-subgroup) of Spin (9). Therefore the formulas for above mentioned
characteristic classes are the most general possible.

Set Z = l*(X) and ψ = l*(w16). Then we obtain (ii). Finally (i)
follows from (ii) and Lemma 2.2.

Theoretically the kernel of ϊ* can be determined from Theorem
3.7 (ii). This yields some necessary conditions that a 16-dimensional
vector bundle have a transitive Spin (9) reduction. However, we omit
the details. In the only example we consider in § 4, namely the
Cayley plane, it is simpler to use Theorem 3.7 itself.

We conclude this section by noting a few facts about the coho-
mology of BG2 and its inclusion in B Spin (7).

LEMMA 3.8. Let g be the standard inclusion of G2 in SO(7),
and denote by h the lifting of g into Spin (7):
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Spin (7) — U Spin (8)

G2 > SO(Ί) .

9

If ί denotes the standard inclusion of Spin (7) in Spin (8), then we
have

Proof. This follows from the fact that G2 is the fixed point set
of λ.

THEOREM 3.9. (i) We have

H*(BG2, Bo) = R0[g*(Pd, g*(P*)]
= R0[h*(QJ, h*(Q3)] ,

where g* and h* are induced by g and h defined in the previous
lemma and Ro denotes the rationals.

(ii) In integral cohomology, the kernel of g* is the ideal generated
by 4P2 — PI and the kernel of h* is the ideal generated by Y.

Proof. The proof of (i) and the fact that g*(4P2 - PI) = 0 con-
sists of identifying the Pontryagin classes with polynomials in the
roots of SO(7), computing the images of these polynomials under #*,
and using the fact that there are two generators of M*(BG2, Λo), one
4-dimensional, and the other 12-dimensional. We omit the details.
From Lemma 3.8, Theorem 2.1 and Theorem 3.2, we have h*(Y) = 0
and h*(ω) = 0. An easy calculation shows that g*(4P2 — PI) = 0.
That Y and 4P2 — PI generate the kernels of /*,* and g* follows
from (i).

4* Sphere transitive structures on spheres and other homo-
geneous spaces* The study of the existence of almost complex
structures on spheres is a well-known problem in algebraic topology;
it was solved by Borel and Serre [4]. Thus the results of this
section can be viewed as a generalization of this problem. Many of
the results we present are not new. However, we give them in
order that we may write down in an organized fashion the complete
solution to the problem of the existence of sphere-transitive structures
on spheres.

We shall need two preliminary results.

LEMMA 4.1. Let G act transitively and linearly on S2n~l with
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isotropy subgroup H. Then if the tangent bundle of S2n can be
reduced to G, the subgroup of elements of π2n__2{H) which are in-
essential in G has order at most 2.

Proof. Consider the following commutative diagram:

H JU G - ί U S0(2n) -2-> S0(2n + 1)

A A V
Here the p{ are evaluation maps, j and k denote the inclusion of the
respective isotropy subgroups, and h denotes the representation of G
arising from the action on S2n~\ Let d1 be the boundary operator

in the homotopy sequence of the fibration H • G > S211"1 a n d
d2 the boundary operator in the homotopy sequence of fibration
S0(2n) -> S0(2n + 1) — S2n. Let ck e πk(Sk) denote the homotopy class
of the identity map of Sk. A reduction of the structure group of the
tangent bundle of S2n to G is equivalent to the existence of an element
oc e π2n_λ{G) such t h a t h+(a) = d2(c2n). Then p1Λ<x)=zP2*K(a)=pi*di(Czn) =

2c2n_, and so dtfc^) = ί ^ α ) - 0. Hence S ^ ^ ί S 1 - 1 ) S 7Γ2.-2(H>
has order at most 2. By the exactness of the homotopy sequence
this subgroup is equal to ker (k: π2n_2(H) —•ττ2n_2(G)).

LEMMA 4.2. We have τι4n_2 (Sp (n)) = 0 and (2n — 1)! divides the
order of π4n_2 (Sp (n - 1)) for n^>2.

Proof. 7c4n_2(Sv (n)) is in the stable range and is 0 by Bott
periodicity. To prove the other assertion we consider the homo-
morphism of homotopy sequences of fibrations induced by the com-
mutative diagram

\e identity

U(2n - 1) > U(2n) -—> S4*~ι

where the horizontal lines are fibrations. Let dt and d2 be the boundary
maps of the homotopy sequences of the upper and lower lines,
respectively. Then c*odt = 32; hence the order of I m ^ ) is a multiple
of the order of Im(32). But Z{2n^n = πin_2(U(2n - I ) ) c l m 3 2 see [5]..
Hence (2n — 1)! divides the order of π4n_2(S#(n — 1)).

THEOREM 4.3. Let τ(Sn) denote the tangent bundle of Sn. The
following is a complete list of sphere transitive structures on
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spheres:

( i ) SO(n) on τ(S"),
(i i) £7(3) on τ(S6),
(iii) SU(S) on τ(S6),
(iv) G2 on τ(S7).

Proof. We have (i) because Sn is orientable and (iv) because S7

is parallelizable. (ii) is a consequence of the fact that S6 has an
almost complex structure. Actually, however, it turns out that
structure group of the tangent bundle τ(S6) can be reduced to SU(3)
(see [8]) so that (iii) holds.

Next we show that there are no other sphere transitive struc-
tures. We do this case by case.

U(n): Borel and Serre proved that for n Φ 1, 3 τ(S2n) cannot
have a U(n) structure.

SU(n): Since τ(S2n) (n ^ 1, 3) cannot have a U(n) structure, it
cannot have an SU(n) structure because SU(n) £ U(n).

Sp(w): Since τ(S*n) (n Φ 1) cannot have a U(2n) structure and
Sp (n) g U(2ri), τ(Sin) cannot have a Sp (n) structure.

Sp(w) SO(2): We have Sp (n)-S0(2) S J7(2w). Thus the argu-
ment for Sp (w) applies in this case also.

Sp(w) Sp(l): For n ^ 1, Sp(w) Sp(l) is covered by

Sp (n) x Sp (1) = Sp (n) x S3 .

We have τrΛ(Sp (n) Sp (1)) = ^ Sp (w) φ 7r,(S3) for A; > 1. By the second
part of Lemma 4.2, it follows that for n Ξ> 2, π4%_2 (Sp (^) Sp (1)) =
^4%-2(S3) and τr4%_2(Sp(π — l) Sp(l)) is the direct sum of π4n_2(S*) with
a group of order at least (2n — 1)!. Since 7Γ4w_2(S

3) is finite, it follows
that the necessary condition for a Sp (n) Sp (l)-structure on S4n given
by Lemma 4.1 fails, for n > 1.

Spin (7): According to Theorem 3.2 (iv) a necessary condition
that an 8-dimensional vector bundle ζ have a transitive Spin (7)
reduction is that 4P2(f) - Pί(f) + SX(ζ) = 0. The tangent bundle of
S8 (or its negative) does not satisfy this condition.

Spin (9): Suppose the tangent bundle r = τ(S16) had a transitive
Spin (9) structure. We have P^τ) = 0 (i = 1, , 7), X(τ) = 2. Hence
by Theorem 3.7 (ii), Q^τ) = 0 (i = 1, •••, 7) and Z(τ) = 0 (at least
with rational coefficients). This contradicts the fact that we must
have X(τ) = Z(z). The same argument shows that — r cannot have
a transitive Spin (9) reduction.

We conclude with some brief remarks about the existence of
sphere transitive structures on various simply connected compact
homogeneous spaces other than spheres. Denote by Pn(C) and Pn(Q)
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complex and quaternionic projective spaces of real dimension 2n and
An, respectively. Also let Qn denote the space of all nonoriented
2-planes in Rn+\

THEOREM 4.4. The homogeneous spaces S6xS2, S4xS\ S4xS2xS2,
(S2)4, P\C), P\C) x S2, P\C) x P2(C), P\C)_x S\ P\C)x S2 x S2,
P'iQ) x P2(C), P\Q) x S\ P\Q) x S2 x S\ Q2 x Pι(Q), Q2 x P2(C),
Q2 x S4, Q2x S2 x S2 do not possess sphere transitive Spin (7) structures.

Proof. For each case one computes (see [3]) the Pontryagin and
Euler classes and verifies that they do not satisfy P2 — 4P* ± 8X — 0.

In contrast to Theorem 4.4 we have the following result.

THEOREM 4.5. Either orientation of the spaces P2(Q), Q4, and
G2/SO(4) possesses a sphere transitive Spin (7) structure.

Proof. According to [3] each of these spaces has integral
cohomology Z[u]/(u4) where u is a 4-dimensional generator. Further-
more Px = 2u, P2 = 7u2, and X = ±Zu2 for each of these spaces (with
the proper choice of u). Theorem (4.5) now follows from Theorem
3.4.

It would be interesting to construct explicitly a sphere transitive
Spin (7) structure (i.e., a 3-fold vector cross product) on P\Q).

Finally we have the following theorem.

THEOREM 4.6. Let C = F4/Spin (9) denote the Cayley plane with
the canonical orientation. Then C does not possess a sphere transi-
tive Spin (9) structure, but — C does.

Proof. We have iP(C, Z) - Z[u]/(u4) where u is an 8-dimen-
sional generator. With the proper choice of u we have by [3] that
for the Cayley plane, P2 = 6u, P4 - 39u2, Pλ = P3 = 0, and X = ±Zu\
It is well known that at least one orientation of C possesses a sphere
transitive Spin (9) structure. It is not hard to verify that — C
satisfies the conclusions of Theorem 3.7 while C does not. Hence
we get Theorem 4.6.
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