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LOCALIZATION OF THE CORONA PROBLEM

T. W. GAMELIN

The corona problem for planar open sets D and the fibers
of the maximal ideal space of H°°(D) are discussed and shown
to depend only on the local behavior of D.

Let D be an open subset of the Riemann sphere C*, and let H^iD)
be the uniform algebra of bounded analytic functions on D. We will
assume always that H^iD) contains a nonconstant function, that is,
that C*\D has positive analytic capacity. Our object is to study the
maximal ideal space ΛT(D) of H°°(D), and the "fibers" ^&(D) of
^£{Ώ) over points XedD. The basis for our investigation is the
observation that the fiber ^tχ(D) depends only on the behavior of D
near λ. This localization principle is used to obtain information re-
lated to the corona problem.

The corona of D is the part of ^£φ) which does not lie in the
closure of D. Our main positive results are that D has no corona
under either of the following assumptions:

(1) that the diameters of the components of C*\D (in the spherical
metric, if D is unbounded) be bounded away from zero; or

(2) that for some fixed m ^ 0, the complement of each com-
ponent of D has ίgm components.

The proofs rest on the localization principle, and on Carleson's
solution of the corona problem for the open unit disc [2]. Each of
the above conditions includes the extension of Carleson's theorem to
finitely connected planar domains due to Stout [9].

In the negative direction, we present an example, due to E. Bishop,
of a connected one-dimensional analytic variety W which is not dense
in the maximal space of H°°(W). The construction is similar to that
of Rosay [8].

1* Two basic lemmas. The localization process depends on the
following two lemmas.

LEMMA 1.1. Let XedD, and let U be an open neighborhood of
X. If feH°°(DΓ\ U), there is FeH°°(D) such that F -f extends to
be analytic at X, and (F — /)(λ) — 0. Moreover, F can be chosen so
that \\F\\D ^ 33H/IU*.

Indication of proof. Suppose U = A(X; S) is the disc of radius
δ, centered at λ. Let g be a smooth function supported on U, such
that g = 1 on z/(λ; δ/2), and \dg/dz\ ^ 4/δ. Define /=0of fJ9, and set
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7Γ J J ζ — Z dz

For a description of the properties of Tgf9 see II.1 or VIII.10 of [3].
The desired function is obtained by adjusting Tgf by a constant:

ΓΓT ψ f
9 π J J λ — z dz

LEMMA 1.2. Let XedD, and let feH°°(D). Then there is a
bounded sequence fneH°°(D) such that fn extends to be analytic at
λ, and fn{z) -+f(z) uniformly on any subset of D at a positive distance
from X. Moreover, if f extends continuously to Du{λ}, then the fn

converge uniformly to f on D.

Proof. This is VIΠ.10.8 of [3]. The proof is the same as that
of 1.1, except that one uses a sequence of gn whose supports shrink
to {λ}.

2* The fibers* In order to define the fibers, we prove the fol-
lowing lemma.

LEMMA 2.1. If φe^(D), then there is a unique point XeD
such that φ{f) = /(λ) for all functions feHoa(D) which are analytic
at λ.

Proof. If D is bounded, then the coordinate function z belongs
to H^iD), and the point λ = φ(z) is easily seen to have the desired
properties. Since D may be unbounded, we must be more circumspect.

For convenience, we rotate the sphere so that oo e D, and so that
φ is not "evaluation at oo". Choose heH°°(D) such that /&(<*>) = 0
while φ(h) = 1. Then zheH°°(D). We will show that λ = <p(zh) has
the desired properties. Note that φ((z — X)h) = 0.

Suppose fe £Γ°°(Z)) extends to be analytic in a neighborhood of λ
Then (/ - f(\))/(z - λ) 6 H"(D), so that φ(f - /(λ)) - φ(h(f - /(λ))) =
φ((z - \)h)φ((f - f(\))/(z - λ)) - 0, and φ(f) = /(λ).

For the uniqueness, suppose that λ' Φ λ belongs to D. We must
find FeH^iD) which is analytic at λ and at λ', and which satisfies
F(X) Φ F(\'). Using 1.2, we see that there is feH°°(D) such that /
is analytic at λ and at λ',/(oo) = 0, and / is not identically zero on
D. If zoeD is such that f(z0) Φ 0, then one of the three functions
A s/ι (/ - /<A»/O - So) e H°°(D) will separate λ and λ\ That does it.

The fiber ^C(JD) of ^(Ό) over λ e D consists of all φ e
such that φ(f) =/(λ) for all feH°°(D) which extend to be analytic
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in a neighborhood of λ From the definition of ^fλ(D)f and 2.1, we
conclude that the ^€χ{D) form a partition of ^(Ό) into disjoint
closed subsets. If λ e D> then ^€λ{D) consists of the single homomor-
phism "evaluation at λ." If ψa is a net in ^(Ό) converging to
φe^tχ{D), and if φa lies in the fiber over λα, then the Xa converge
to λ.

By 1.2, the functions in H°°(D) which extend analytically across
XedD are dense in the functions in H°°(D) which extend continuously
to λ. We conclude the following.

LEMMA 2.2. If feH~{D) extends continuously to DU{λ}, then
φ{f) = /(λ) for all φ e

The next theorem shows that the fibers and fiber algebras depend
only on the behavior of D near λ.

THEOREM 2.3. Let λ e 3D, and let U be an open neighborhood of
λ. The fibers ^C(D) and ^£χ{D Γi U) are homeomorphic. The re-
striction of H°°(D) to ^tλ(D) coincides (modulo this identification)
with the restriction of H°°(DΓ\ U) to ^ ( ΰ n U).

Proof. Since Hoo(D)c:Hoo(DΓ\U), every homomorphism in
U) determines a homomorphism in ^(Ό) by restricting it to

H°°(D). The restrictions of the homomorphisms in ^x(Df\ U) belong
to the fiber ^€χ(D). This determines a continuous map of ^ ( f l ί l U)
into ^fχ(D), which we must show is one-to-one and onto.

For this, let <pe^%(D), and feH°°(Dn U). Choose F as in 1.1,
and define φ(f) = φ(F). By the definition of the fiber, φ(f) is inde-
pendent of the function F, subject to the conditions of 1.1. Using
2.2 one sees that φ is multiplicative on H^iDoU). Moreover, if φ
is already the restriction of some ψ e ̂ £λ(Ό Π U) to H°°(D), then the
definition of φ shows that φ coincides with ψ. It follows that the
correspondence φ <-+ φ is a homeomorphism, as was required. On ac-
count of 1.1, again, the fiber algebras are isomorphic.

COROLLARY 2.4. With the above identification of ^£λ{Ώ) and
U), the adherence of D in ^C(D) coincides with the adherence

of Df]U i

Proof. A net in DΓ\ U will converge to φe^tλ(D) in ^£(Ώ) if
and only if it converges to φ e ^ ( J 5 n U) in . / ( f l ί l U).

As another consequence of 2.3, we have the following extension
of a result in [10].
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THEOREM 2.5. The cluster set of feH°°(D) at XedD coincides
with the range (of the Gelfand transform) of f on

Proof. Every point in the cluster set of / at λ is assumed by /
on ^X(Ώ). On the other hand, suppose that w does not belong to
the cluster set of / at λ. Then there is an open neighborhood U of
λ such that | / — w | ^ ε > 0 o n j D n ί 7 . Consequently / — w is inverti-
ble in H°°(D Π U), and / cannot assume the value w on ^€ι(Ώ Π U) =

COROLLARY 2.6. If XedD and feH°°(D), then

S U P M / ) | - lim sup|/(z)| .

THEOREM 2.7. The restriction Aλ of H°°(D) to ^/£χ(Ώ) is a closed
subalgebra of C(^//χ(Ό)) whose maximal ideal space is

Proof. This follows readily from the following assertion: If
heAλ, then there is FeH°°(D) such that F = h on ^ , and | | JP | | ^
66||fe||. In order to establish this assertion, choose feH°°(D) such
that / — h on ^fλ. By 2.6, there is an open neighborhood U of λ
such that I/I ^ 2\\h\\ on Df] U. The desired function F is now the
extension of f\Dnu given by 1.1.

3* The corona problem* The open set D is dense in
if and only if whenever f, •• , fne H~(D) satisfy \f\ + . . . + \fn\ ^
δ > 0 on D, then there exist glf , gn e H°°(D) such that fgx + . . . +
fngn = l . We wish to consider open sets D with the following property,
which is (at least formally) stronger than the assertion that D be
dense in

Property (*). For each integer n ^ 1 and each δ > 0, there are
constants C(n, δ) such that whenever f19 , fn e H°°(D) satisfy |/y | <;
1,1^3 £n, and Σ IΛI ^ * on D, then there exist glf , ^ e H~(D)
such that Σ / i ^ = 1 and | ^ | ^ C(n, δ), 1 £ j ^ n.

LEMMA 3.1. An open set D has the property (*) if and only if
wherever E is a union of disjoint open sets, each one of which is
conformally equivalent to D, then E is dense in

Proof. Suppose D has property (*), and suppose that flf ,
fn 6 H°°(E) satisfy Σ IΛI ^ 8 > ° We can assume that \fό | ^ 1, 1 ^
j ^ n. Using property (*), we can solve the relation Σ / ^ = 1 on
each subset of E conformally equivalent to D. The uniform estimate
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on the g/& guarantees that the resulting solutions belong to HCO(E).
So E is dense in ^£(Έ). On the other hand, if D does not have
property (*), one easily constructs /„ , fn e H°°(E) such that Σ \fs |2>
δ > 0, while Σ/i0i — 1 has no analytic solutions j7lf •••,#„ which are
bounded on all of E.

Now Carleson [2] has shown that the open unit disc has the
property (*). From this, and localization, we can use a simple topol-
ogical argument, as in [5], to deduce the following.

THEOREM 3.2. If the diameters (in the spherical metric) of the
components of the complement of D are bounded away from zero,
then D is dense in

Proof. By rotating the sphere, we can assume that °o e D. Sup-
pose the diameters of the components dD are bounded below by ε > 0.
If λ e 3D, then D Π Δ(X\ ε/2) is simply connected, that is, each component
of Dn^(λ;ε/2) is conformally equivalent to a disc. By 3.1 and
Carleson's theorem, D Π 4(λ; ε/2) is dense in ̂ f (D Π J(λ; ε/2)). By 2.4,
^x(D) belongs to the closure of D in ̂ £(D). Since this is true for
all XedD, D is dense in

The work of Behrens [1] shows that, under the hypotheses of
3.2, each fiber algebra Aλ is a logmodular algebra (on its Shilov
boundary). In particular, the Gleason parts of Aλ are one point parts
and analytic discs. Using a Melnikov criterion (cf. [4]), it can be
seen that each ^tx is a peak set of H°°(D), so that ^ ^ contains every
part which it meets. Hence the Gleason parts of H°°{D), under the
assumptions of 3.2, are the distinct components of D, together with
one-point parts and analytic discs.

Concerning the existence of the constants C(ny δ) for multiply
connected domains, one can say the following.

THEOREM 3.3. For each choice of integers m, n ^ 1, and each
δ > 0, there exist constants Cm(n, δ) such that property (*) is valid,
with the constants Cm(n, δ), for all domains D which have r^m
boundary components.

Proof. Proceeding by induction, we can assume that the theorem
is true, with m replaced by m — 1, so that the required constants
Cw_i(w, δ) exist. We also assume that for some n and <5, the constant
Cm(n, δ) fails to exist. From this we will obtain a contradiction.

By hypothesis, there are domains Dk, 1 ̂  k < <χ>, which have m
boundary components, such that property (*) fails for Dk, with con-
stant C(n, δ) — k. We can assume that Dk is a circle domain, obtained



78 T. W. GAMELIN

from the open unit disc A by excising m — 1 disjoint closed subdiscs,
one of which is centered at 0. Let rk be the smallest number such
that the annulus {rk < \z\ < 1} is contained in Dk. There will be two
cases to consider: lim sup rk < 1 and lim sup rk = 1.

First, suppose that lim sup rk = 1. By passing to a subsequence,
we can assume that rk converges to 1 sufficiently rapidly, so that Dk

is conformally equivalent to a domain Ek obtained from the rectangle
|2-&-i < I m φ < 2-\ _ i < Re (z) < 1} by excising m - 1 holes, so that
at least one of the excised holes meets {Re (z) < —1/2}, and at least
one meets {Re (z) > 1/2}. If E = ΌEk, then the proof of 3.1 shows
that E cannot be dense in ^€(E). Now the open sets E+ = {z e E:
Re (z) > —1/2} and E_ = {z e E: Re (z) < 1/2} are unions of domains,
each of which has a complement with rgm — 1 components. In view
of the induction assumption, E+ and E_ are dense in ^£(E^) and
respectively. If XeE satisfies Re (λ) > -1/2, then ^£λ(E) =
while if XeE satisfies Re (λ) < 1/2, then ^tλ{E) = ^ ( £ L ) . In any
event, every Λ?λ{E) is adherent to E, so that E is dense in ^£(E).
This contradiction allows us to reject the case lim sup rk = 1.

Hence we can assume that there is an r < 1 such that each D&
contains the annulus {r < |λ | < 1}. Let D be the disjoint union of
the sets Dk, and let H°°(D) be the algebra of bounded functions on
D which are analytic on each Dk. Again the proof of 3.1 shows that
D cannot be dense in the maximal ideal space ^(Ώ) of H°°{D).

Let N be the set of positive integers, and let Δ be the open unit
disc. It will be convenient to regard I? as a subset of Δ x N, so that
H°°(Δ x N) becomes a subalgebra of H°°(i)). Our argument at this point
is motivated by Behrens' discussion of ^/έ{Δ x N) in [1]. As Behrens
notes, Carleson's theorem shows that Δ x N is dense in ^ί(Δ x N).

Let φe^iD), and let Z be the function in H~{D) defined by
Z(X, n) = λ. We will find a net in D converging to φ, and for this
we consider two cases.

First, suppose that \φ(Z\ > r. The restriction φ of φ to H°°(Δ x N)
belongs to ^£{Δ x N), so there is a net (λβ, ka) in Δ x N such that
(λα, ka)-+φ in ^^(z/ x N). In other words, /(λα, ka)—>φ(f) for all
feH°°(D) which extend to be analytic on each slice Δ x {k}, k^l.
In particular, Xa = Z(λα, fcΛ) —> ^(^), so that r < |λα | < 1 and (λα, ka) e D
eventually. If F e H°°{D) is arbitrary, we expand F in a Laurent
series, writing F = Fo + F19 where F0(X, k) is analytic on Δx {k}, F^X, k)
is analytic on En = DnU{\X\ ^ 1}, and 2^(00, k) = 0. Note that Fo

and jP\ belong to H°°(D), because the annuli we are splitting across
have the same widths. In fact, FQ e H°°(Δ x N). Now l^(λ, k) =
F^φiZ), k) + (λ - <p(Z))ίί(λ, Jfc), where H{ ,k) is analytic on £7^ Since
the distance from the boundaries of the Ek to 9>(J£) always exceeds
\φ(Z)\ - r, we find that HeH°°(D). Hence
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F = G + (Z - φ{Z))H ,

where GeH°°(J x N), and HeH°°(D). Now JF(λβ> ka) = G(λβ, ka) +
<λα - φ(Z))H(\a, ka) converges to φ(G) = ?>(F). So (λα, fcα) —> φ in
^/ί(D), and 9 is in the closure of D in ^#(D).

Next, suppose that [9>(2Γ)| ^ r. The Ek defined above are circle
domains with ^m — 1 holes. The induction assumption shows that
if E is the disjoint union of the Ekf then E is dense in Λ?{E). Hence
there is a net (λβ, ka) e Eka x {ka} such that /(λβ, ka) —* <p(/) for all
feH°°(D) which extend to be analytic on i?. The Laurent series
argument again shows that eventually (λα, ka) eD, and (λα, fcα) —» 95 in
v^(D). Again 9 lies in the closure of Zλ

It follows that D is dense in ^(D), contradicting our previous
assertion. That completes the proof of the theorem.

Now for m, n ^ 1 and δ > 0, let Cm(n, δ) denote the best possible
constant for which property (*) is valid for domains whose complements
have ^ m components. The Cm(n, δ) increase with m. If supm Cm(n, δ) =
C(n, δ) is finite for all n >̂ 1 and δ > 0, then every open subset D of
the complex plane has property (*), with constants C(n, δ). This can
be seen by approximating each component of D by finitely connected
domains, and using a normal families argument. If this is the case,
then D is dense in ^€(J)) for every planar open set D. On the other
hand, we have the following.

THEOREM 3.4. If there exist n > 1 and δ > 0 such that
8VLpmCm(n, δ) = oo, then there is a domain ( = connected open set) D
such that D is not dense in

Proof. Suppose that for some integer n ^ 1 and some δ > 0,
there is a finitely connected domain Dk such that property (*) fails,
with constant C(n, δ) — k. We can assume that Dk is contained in
the rectangle {-1 < Re (z) < 1, 2~k~ι < Im (z) < 2~k}, and that dDk

meets both vertical sides of the rectangle. As in 3.1, \jDk is not
dense in ^f(\jDk). Hence there is a point λe9(11-0*) such that
^^(UJ5fe) is not contained in the closure of l)Dk. We can assume
that Re (λ) ^ 0. Let E be the union of U Dk and the rectangle
{-1< Re (z)< -1/2, 0 < Im (z) < 1}. Then E is connected, and ^ME) =

Dk). By 2.4, E is not dense in ^{E). That proves the theorem.

4* An example of Bishop* Here we present an example of a
one-dimensional analytic variety W which is not dense in ^jt(W).
The example has been in circulation for some time, being originally
discovered by E. Bishop some years ago, but the example has never
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appeared in print.
To construct the example, let S be the shell {(#, w): 1/2 < max (\z\,

|w|) < 1} in C2. For each integer n, let Vn be the set of (z, w) eS
such that either 2nz or 2nw is a Gaussian integer. The Vn form an
increasing sequence of connected one-dimensional analytic subvarieties
of S9 whose union is dense in S.

Suppose / is a bounded function on U Vn which is analytic on
each Vn. From Schwarz's lemma it is easy to see that / is uniform-
ly continuous, so that / extends to be continuous and analytic on S.
By Hartogs' theorem, / extends to be analytic on the unit polydisc
in C\

LEMMA 4.1. There fails to exist a constant C > 0 with the fol-
lowing property: For each n, there are fn, gneHco(Vn) satisfying'
zfn + wgn = 1 and | /J ^ C, \gn\ ̂  C.

Proof. Suppose there is such a constant. A normal families argu-
ment produces bounded functions / and g on U Vn such that zf +
wg = 1, and / and g are analytic on each Vn. By the remarks preced-
ing the lemma, / and g extend analytically to the unit polydisc, and the
extensions satisfy zf + wg = 1. Substituting z = w = 0, we obtain a.
contradiction, thereby establishing the lemma.

THEOREM 4.2. There is a connected one-dimensional analytic
variety W such that H°°(W) separates the points of W, while W is-
not dense in the maximal ideal space of H°°{W).

Proof. Let W be the variety obtained from the disjoint (!) union
of the Vn, n ^ 2, by identifying some prescribed point pn of Vn to
the point of Vn+1 with the same z and w coordinates, so that distinct
identified pairs have distinct coordinates. Then W is a connected
variety, the coordinate functions z and w remain defined on W, and
they satisfy \z\ + \w\ > 1/2 on W. By 4.1, there fail to exist func-
tions /, g eH°°(W) satisfying zf+ wg — 1, so that W is not dense in

5. Extension to Riemann surfaces* It is easy to extend Lemmas
1.1 and 1.2, which allow one to localize the fibers and fiber algebras,,
to domains on a finite bordered Riemann surface. More specifically,
we can easily handle the following situation.

Let D be an open set on a Riemann surface S, let λ e 3D, and
let U be an open coordinate disc centered at λ. Suppose there is a
function h meromorphic on ΰ U ί 7 such that h(X) — 0, k~ι{h(U)) = U,
and H is a one-to-one covering of U over h{U). If feH°°(DΓ\ ί7)»
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then /o h-1 e H^QiiD) Π h(U)). By 1.1, there is a function G e H°°(h(D))
such that G — foh-1 is analytic at 0 and vanishes there. Then Goh =
FeH°°(D), and JP7 — / is analytic at λ and vanishes there. So Lemma
1.1 is valid. Also, Lemma 1.2 is valid. If the fiber ^χ{Jΰ) is defined
as in §2, then 2.2 and the localization Theorem 2.3 are true.

Now suppose D is a domain on a finite bordered Riemann surface.
It is easy to see, using meromorphic functions, that 2.1 is valid, that
is, that ^//{Ώ) can be partitioned into disjoint closed "fibers" ^£χ(D)
over points λ e D. In this case, the required function h always exists,
for any point λ e 3D, so that the fibers are local. In particular, if D
is a finite bordered Riemann surface, then D is dense in ^£{D), and
the fibers and fiber algebras associated with points of dD are identical
to those associated with the disc algebra H°°(Δ). This latter theorem
has been proved in a variety of ways in the literature. For one of
the simplest proofs, see [7].

If D is an open set lying on a compact Riemann surface, such
that H°°(D) contains a nonconstant analytic function, and if the fibers
^C(D) are defined as in §2, then again the ^fλ{D),XeD, form a
partition of ^€{D) into disjoint closed subsets, and the localization
Theorem 2.3 is valid. The details of the proofs are left.
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