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THE STRICT TOPOLOGY ON BOUNDED SETS

F. DENNIS SENTILLES

If B is a Banach algebra with approximate identity and
the Banach space X is a left B-module, the strict topology 3
on X is the topology given by the seminorms x — || Tz ||, one
for each T'c B. It is shown that § is the finest locally convex
topology on X agreeing with itself on the bounded sets in X,
and that in certain circumstances a single semi-norm x — || Az ||
determines 8 on each bounded set. It is then natural to in-
vestigate the sufficiency of sequences in determining the strict
topology. A study is made of the finest locally convex topology
on X having the same convergent sequences as 8, and sufficient
conditions are given which place the strict topology in the
context of earlier sequential studies of other authors.

In [17] a study is made of the strict topology as defined above.
In [16] some partial results are given which make S the Mackey
topology on X,. A crucial result is the extension of [7] to the general
setting of [17]. In this paper we present the proofs of this and other
results needed for [16] along with some improvements and more ap-
plication and exploitation, particularly to a study of sequences in X,
where for example it will be shown that in the case of a countable:
approximate identity for B, a sequentially continuous linear operator
on X, is continuous.

2. The main result on bounded sets. For each » > 0let B, =
{xe X: ||z|] £ r}. It follows readily from [14, Th. 2, p. 10] that o7~ =
{WcX: W is absolutely convex, absorbent and for each » > 0 there
is a B-neighborhood V, of 0 such that WnB,oB,NV,} forms a base
of neighborhoods of 0 for a locally convex topology on X which, fol-
lowing Dorroh [7], we will denote by A’. In the special case of’
X =C(S) and B = C,(S), 8 has proven useful in [4], [6] and [15]
and it was finally shown in [7] that 8 = £ on C(S). We will extend
this to the general setting in [17]. Notice that A’ is the finest locally-
convex topology on X agreeing with 5 on each set B, and that 8 < 8'.
A general study of topologies defined in this way is made in [2].

Before going further, the reader familiar with [17] will recall the:
introduction of another norm (a more natural one) defined by ||z|’ =
sup {|| Tx||: Te B, || T|| £ 1}. These norms are equivalent if and only
if the B bounded sets are bounded in the given norm on X [17, Th..
4.6] and [17, Corollary 4.7] are equivalent whenever X, is complete
Let A" denote the finest locally convex topology on X agreeing with
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B on each set B, = {xe X: ||z||/ = r}. Since ||z|]’ < ||z|| clearly 8 <
B < B'. All further notation is taken from [17].

THEOREM 2.1. If We 9 1is B-closed, then W is a B-neighborhood
of 0.

Proof. By hypothesis and [17, Th. 3.1], for each positive integer
7 there is a T,e B such that WNnB,oB,NV, where V, = {xc X:
Tl <1}. Hence WoUJy-, (B,NV,) and therefore

W° = o' e X3 <o, p| < 1 for all we Wic) (B,N V.)° .

We will show that lim; sup {|<z, 2’ - E;, — 2> 2 e X,, ||2|| < 1} = 0 uni-
formly on «’c W°.

Let ¢ > 0 and choose » with 1/n < ¢/2. Then there is a )\, such
that » =\, implies || T,E; — T,|| < 1/n. For ze X,, ||z|| <1 let y, =
w(Ex —x) for N=x,. Then (1/2)y,e B,NV,CW since | E;|| < 1.
Therefore if «’'e W°, then [{(1/2)y,2>| <1 or |[{Ew —z, o) =
|z, @’ E;, — '] < 2/n < & for all A =\, and |jz|| < 1.

Finally since W is absorbent in X then W° is bounded in X; and
applying [17, Th. 4.8(2)] one has that W° is equicontinuous in X}
and hence that W°° is a B-neighborhood of 0. Since W is BS-closed
and absolutely convex, W = W°° and the proof is complete.

THEOREM 2.2. B8 =p8"=p4.

Proof. It suffices to show 8 = 4'. From [14, p. 12] B has a
base of B’'-closed absolutely convex neighborhoods of 0. If we can
show that the B’-closed convex sets are G-closed then by Theorem 2.1
we are through. By [14, p. 34] the closed convex sets are the same
in any topology of a dual pair. Hence it suffices to show that the
B’-continuous linear functionals on X are B-continuous.

Let f be a (B’-continuous linear functional. We can consider fe X’
and X' is a right Banach B-module under the multiplication (2’ - T')(z) =
#'(Tx). By [17, Th. 4.1(1)] and [13, Proposition 3.4] it suffices to show
that lim;sup {|f(Ex — 2)|: 2 X, ||| £1} = 0. If this were not so
there would exist an ¢ > 0 such that for each )\ there is a N =\
and an z, ¢ X, ||z|| £1, such that |f(E,x;, — )| =¢e Let IV =
{Merl: there is an x € B, such that |f(E,» —2)| =¢}. Then I” is a
nonempty directed set and if x; € {x: | f(E,® — x)| = ¢} for each M e I,
then ||2}||£1 and v, = E, @, —; is a net in X for which || E,x; —x, || 2.
Furthermore if 6 > 0 and T € B then there is a )\, and a A€ /" such
that v = \) = )\, implies || TE; — T|| < 6. Thus M elI”, N = )\{ implies

|| T(E, 2, —x,)]|<d. Therefore y,——éﬁ(). But being bounded, ¥; LO
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and therefore |f(y;)| = ¢ — 0, a contradiction.

Consequently B is the finest locally convex topology on X agreeing
with 8 on each set B,, extending the result of [7] to the general
setting. This is an improvement over [16] which was not apparent
until the topics in §4 were considered. From this we can obtain a
kind of minimal Banach algebra B defining the strict topology of a
given B on X. Let B, denote the minimal closed subalgebra of B
containing all the E,. Let 8, denote the strict topology on X defined

by B,.
COROLLARY 2.3. B = B,

Proof. Clearly 8, < 8 and k¥ < B, where £ is defined in [17].
But by [17, Th. 3.3(2)], £ = B on each set B, so that 8 = 8, on each
set B,. Hence 8 < B, and by Theorem 2.2 8 = 8,

COROLLARY 2.4. If E,E, = E.E; for all \, pel’, then B s de-
fined by the commutative Banach algebra B,.

Regarding Corollary 2.4 we point out the result in [11] that if B
is a C*-algebra with a positive element then B has a countable com-
mutative approximate identity and conversely. Finally from the de-
finition of B’ we have

COROLLARY 2.5. If E is a locally convex space and L is a linear
operator on X into E then L is B-continuous if and only +f L is S5-
continuous at 0 on each B,. Consequently i+f E s complete, then
L (X;, E) = {L: X;,— E: L is continuous} is complete under the topology
of uniform convergence on B,.

3. The case of a countable approximate identity. In this
section we obtain the very useful result that the strict topology on
each B, is determined by a single element A< B when, for example,
B has a countable approximate identity.

In [17] it is seen that X,={Tx: Te B,z X}={xe X: || Fx—x]||—0}
is a norm closed, B-dense subspace of X. Let U= {xeX,|lz|| <1}
and U° = {2’ e X: [{z,2’>| <1 for all xe U}. If Te B, then thinking
of T as a continuous linear operator on X, into X,, we have T"(X))c X}
where T'z'(x) = 2'(Tx) = ' - T(x) in the notation of [17].

THEOREM 3.1. Let F, be a bounded sequence in B such that
F x— x strictly for each x€ X and let 1 < a, — . Then

(a) H= Uz Q/a)F, (U°) is B-equicontinuous

(b) There is an A€ B such that x— Ax is one-to-one on X and
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[F,A7| = sup {| F, A7y [|: y € AX), llyll £ 1} = a,.

Proof. It is apparent that we can assume |[F, || <1 for each n.
Furthermore since A is bounded, then H° = {x e X: |{z, 2’>| < 1 for
all o' € H} is B-closed, absolutely convex and absorbent in X. If »>0¢
and a, > r for k = N, then it quickly follows that H° N B,>B,NV,
where V is the B-neighborhood of 0, V = {x: ||F,2| < a, for n =
1,2, ---, N}. By Theorem 2.1 H° is a S-neighborhood of 0 and hence
H is equicontinuous.

Furthermore since H° is a B-neighborhood then by [17, Th. 3.1]
there is an A € B such that H° Dfx: [|Az|| £ 1}. Thus if Ax = 0 then
axe H° for any «a >0 and consequently for all « >0 one has
[{ax, 1/a,)F x> <1 for all 2’ U°, or |{F,», o> < a,/a, which im-
plies F,x = 0 for each %, since F,xe X,. But since F,x — 2 in the
strict topology (which as defined in [17] is Hausdorff) one has « = 0
and A is one-to-one.

Finally if y = Az, ||y]| £1, then 2 € H° and again |{z, (l/a,)F,z">| =
[KF, A7y, x> < a, for all «’e U°. Consequently ||F,A™'||<a, on
A(X).

Consequently if B has a countable approximate unit {E,}, then
there is a one-to-one AeB such that [|E,A"'|| < a, on A(X) for a
given sequence a, — co. Conversely, suppose there is an A € B which
is one-to-one and for which a, = ||E,A™|| = sup {|| E; A~y ||: y € A(X),
llyl] £1} < o for each A. Then since {F,} is an approximate identity
for B one can choose a subsequence F, = E, with X, = \,_, such that
|AF, — A|| —0 and ||F,A — A]|—0. We then have

THEOREM 3.2. (a) F,x — 2 1n the strict topology, (b) If A(X) is
dense in X,, then ||F,x — z||— 0 for all x¢ X,.

THEOREM 3.3. If w denotes the morm topology on X defined by
the norm x — || Ax|| then

(a) £ <w < p (see [17, Th. 3.3)]).

M) kK =w =706 on each set B,.

(¢) If X is w complete or X, is complete and sup; || E,A™ || < e,
then B is the givem morm topology on X.

Proof of 3.2. (a) For a fixed \, ||E(Fx—2)||=|E,A7(AF,—A)x||<
a;||AF, — Al ljx]| — 0 as n — <. Since {F,x} is bounded in X then
F,o—2 o by [17, Th. 3.3(4)].

() If yeX, ¢>0 and |[Ax — y|| < ¢/3, then for n = N such
that ||F,Ax — Az|| < ¢/3, we have [|[F,y — y|| <.

Proof of 38.3. (a) Clearly w < 8. Since £ is defined by the
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seminorms » — || Ex|| and the sets {x: [|E, x|l =&\, +++, N, €[} form
a base of neighborhoods for £ and [|Az|| < min {¢/(a,, + 1):1 <@ < n}
implies || E;x|| < ||E, A7 || Az|| < &, then £ < o.

(b) This follows from [17, Th. 3.3(2)].

(¢) If X is w-complete and Az, —»ye X then {x,} is w-cauchy
and there is an x¢ X such that Ax = y. But then A has closed
range and by [17, Th. 2.4 and 3.2], B is the given norm topology on
X. In the case that M = sup;||E,A7'|| < e, if ||Az|| <1 then
[|Ex|| < M for all x. Hence the S-neighborhood V, = {a: || Az|| < 1}
is B-bounded and it quickly follows that p(x) = inf {\:2xeNA} is a
mnorm giving the strict topology on X. Since p(x) < [|4]| ||z]| and X
is complete it follows from the open-mapping theorem that the £ and
norm topologies are equivalent.

The sequence {F',} in 3.2 need not be an approximate identity for
B. For example if S is the union of two disjoint o-compact spaces
S, and S, and if B = C\(S) with X ={feC(S):f=0 on S;} (where
feC(S) if and only if f is bounded and continuous) then there is a
o€ Cy(S) such that ¢ =0 on S,, f— ¢f is one-to-one on X and {F,}
would only be an approximate identity for Cy(S,).

The results above, particularly 3.3(b) were crucial to the proof
of the main theorem in [16] because of a particular use of the follow-
ing observation.

COROLLARY 3.4. Under the conditions of 3.2, if E is a locally
convex space such that continuity of a linear mapping on E s deter-
mined by continuity on bounded sets in E and L: E— X 1s bounded,
then L: E— X; ts continuous vf and only +f L: B — X, 1is continuwous.

Consequently although the strict topology is in general not barelled,
bornological or Fréchet (see [17]), continuity on X, is determined on
bounded sets and continuity into X, can be determined in the case
just described by a single A e B.

4. Sequences in X;. The above results along with [17] indicate
that the strict topology has some rather nice properties. In particular
in the light of 3.3(b) and §2 one naturally wonders—when are sequences
enough? In considering this question we were fortunate to come upon
the work of Webb [18] and Dudley [8]. Following Webb’s notation
we denote by A+ the finest locally convex topology on X having the
isame convergent sequences as 8. By [18, Proposition 1.1], ¥ = {Vc X:
V is absolutely convex and each B-null sequence is eventually in V}
is a base at 0 for the topology B8*. Clearly 8 < B8+ so that X;c X}+.
(Note also [17, Th. 3.3] that a sequence {x,} is B-null if and only if
it is || - |/-bounded and E,x, — 0 for each \.)
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Furthermore, if X = {fe X": f(x,) — 0 for each B-null sequence:
{x.}}, then X;, = Xj = Xj+ = {fe X": f(x,)—0 for each 8+-null sequence:
{x,}}. Also by [18, Proposition 1.9], fe X} if and only if N(f) =
{o: f(w) = 0} is B-sequentially closed. Finally, a set KcCX; is called
B-limited if every G-null sequence {x,} converges to zero uniformly on.
K and by [18, Proposition 1.3], B+ is the topology of uniform con-
vergence on the B-limited subsets of Xj;.

Dudley [8] takes a more general approach to sequential properties.
and we list his definitions in our context for purposes of discussion.
If {#,}JcX and miwc (or equivalently xn—&x), we will write:
w, —% @ where C = C(8) [8, p. 484]. Then T(C) = {Uc X: we U and
2, — & implies z, ¢ U for n = (some) N}, while T,(C) = {(VCX:ae V'
implies there is a convex U e T(C) such that e Uc V}. Both T(C) and
T.(C) are topologies on X. While (X, T(C)) need not be a topological
vector space it is straightforward to verify that 5+ = T,(C) since T.(C)
is a locally convex linear topology for X [8, pp. 492-3]. Among other
special spaces, Dudley goes on to single out spaces which he calls CS.
From what we have noted and [8, p. 493], X,+ is a CS-space since:
T(C(B*) = T,(C) = B+ and so X; is a CS-space when 8 = 5" and
conversely. Hence when 8 = B8+ [8, §6] applies.

We begin with a study of when A = 8% and then go on to show
that the ideas developed in §3 fit nicely into another general structure:
considered by Dudley.

The next result can be proven for arbitrary locally convex spaces.
E with suitable definitions, as is apparent from the proof, but we will
state it only for the case F = X,.

THEOREM 4.1. If B = B*, then every [-sequentially continuous
linear operator L on X imto a locally convexr space F 1is continuous
on X Conversely, if every [B-sequentially continuous linear operator
L on X into any space C(T) of all bounded continuous functions on
T with the sup norm topology is continuous, then 5 = 3~.

Proof. If V is an absolutely convex neighborhood of 0 in £,
then L%(V) is a S*-neighborhood of 0 when L is sequentially con-
tinuous. Hence L is B-continuous when 8 = 8. Conversely, let 77
be a [B-limited subset of X! and give T the weak* topology. If xe X,
then the restriction Lz of « to T is a bounded continuous function on
T. The correspondence x— La defines a B-sequentially continuous
linear operator on X into C(T) because 7T is B-limited. If L is 5-
continuous then {x:sup,.., |{x, "> <1} is a B-neighborhood of 0, and.
at the same time is the polar of 7 in X. By [18, Proposition 1.3j,
this means B = 5.



THE STRICT TOPOLOGY ON BOUNDED SETS _ 535

At this point we will give some results on special cases of the
strict topology with interjections of more general results; hopefully
the two will illuminate one another. In the sequel S is a locally com-
pact, Hausdorff space and the strict topology on C(S) is defined by
the algebra C(S).

THEOREM 4.2. S is pseudo-compact if and only if B is the norm
topology on C(S).

Proof. If S is pseudo-compact and f, — 0 in the strict topology
then by [1, Th. 2], ||f.]|— 0 since f,— 0 uniformly on compacta.
Hence B+ is finer than the norm topology and thus equivalent. Con-
versely, suppose B+ is the norm topology on C(S). By [1, Th. 3 and
1] it suffices to show that if Z is a countable, locally finite disjoint -
collection of open sets in S, then % is finite.

For each U, e % thereisa g, Cy(S) such that 0<¢g, <1, g.(x) = 1
for at least onexzc U, and g, = 0 on S\U,. Let f, = max{g,: 1 <k <n}
and f =max{g,:k=1,2, ---}. Because % is locally finite, f, — f in
the compact open topology and since the f, are all bounded by 1,
f.— f in the strict topology. This also means that fe C(S). Since
B+ is the norm topology, then [|f, — f|| — 0 and if 2 were not finite,
this would lead to a contradiction.

The next few results consider the general case and indicate that
the relationship between S and B is intimately related with the
topological structure of S in the case of C(S), while in the general
case, it appears that a characterization of equality for these two
topologies when B does not have a countable approximate identity
must involve the topological relationship of X, to X.

THEOREM 4.3. If there is a norm 7 on X which gives the strict
topology at 0 on each set B,, then B = B+.

Proof. Let U be an absolutely convex AB+*-neighborhood of 0 in
X and let W= {x:nx) <1}. Let » >0 be fixed. If there is no
a>0 such that UnB,oB,NaW, then for each =7 there is an
%, € B,N (1/n) W such that z, ¢ U. But then 7(x,) — 0 and hence z,e U
eventually. By Theorem 2.2 U is a B-neighborhood of 0.

COROLLARY 4.4. If B has a countable approximate identity or
the hypothesis of Theorem 3.2 holds, then B = B* and any B-sequenti-
ally continuous linear operator on X is [-continuous.

Proof. For the norm 7(x) = ||Ax|| satisfies the conditions of 4.3
according to 3.3(b).
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The next corollary is another version of the result given in [4,
Corollary 6.2].

COROLLARY 4.5. If S is g-compact, then 8 = B™.

This brings up an interesting problem. Characterize those S for
‘which 8 = #*. In particular, is 8 = 8+ when S is paracompact (and
perhaps even metrizable)? This case falls in between the extremes of
S o-compact and S pseudo-compact. Recalling [5, Th. 2.6], that 8 is
‘the Mackey topology on C(S) when S is paracompact, it is sufficient
to show that C(S)f = C(S); in order to obtain 8 = B*. Referring to
[17], [4, Th. 4.2], and the usual decomposition of a linear functional
into its positive and negative parts, one needs to prove or disprove
that a positive B*-continuous linear functional F' has the property
that F(p — 1) — 0 where {4z} is a PS-totally bounded approximate
{net) identity for C,(S). After some consideration of even the case of
C(8S)s, S discrete (studied by Collins [3]) there appears to be no obvious
answer. The work of Glicksburg [10] is related to this problem but
it too does not appear to provide a definitive conclusion. Finally,
‘Theorem 4.1 above and [16, Th. 2.1] indicates a relationship of sorts
between the B8+ and Mackey topologies on C(S);.

Returning to the general case, the converse of Theorem 4.2 does
not hold. To see this let X be a Hilbert space and let B be the
algebra of compact operators in X. The strict topology is then the
topology of uniform convergence on compacta in X and is the finest
locally convex topology agreeing with the weak topology on each B,
[17], [12]. Consequently a strictly convergent sequence is bounded
and weakly convergent and conversely. Hence B* is the finest locally
convex topology on X having the same convergent sequences as the
weak topology and

THEOREM 4.6. For B and X defined as above B = B*. When H
18 not separable there is no norm giving the strict topology on each B,.

Proof. Since B* is coarser than the norm topology on the reflexive
space X and since B is finer than the weak topology on X, then X} =
X; =X. Let K be a B-limited subset of Xi. From our remarks
above and [18, Proposition 1.3] it suffices to establish that K is norm
relatively compact.

If this were not so then there is an ¢ > 0 and a sequence {x,}]CK
such that ||, — a;||= ¢ for £ <n. Since K is norm bounded and
X = X', then by the Eberlein-Smulian theorem [9, V. 6.1] there is an
x€ X and subsequence {z,}c{x,} such that =, —a weakly. Since
U@n,,, — @, || = ¢, there is a y,eX such that |[yk||<1 and
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[(@n,,, — %us Yi)| > €/2. Again by the Eberlein-Smulian theorem there
is a ye X and a subsequence {yk;}C{y,} such that Yu; —Y weakly.
Hence y,,—y uniformly on the B-limited set K and there is a j,
such that j = j, implies |(,;, ¥, — ¥)| < ¢/8 for all 7. Hence &/4 >
[(@n, = Ty Y )| — | @y, — Tapy W) e Then there is a k&, such that
k = k, implies [(x,,,, — @, ¥)| < for a given 6 > 0. If j = j, such
that k; >k, then ¢/4> {(90,,,‘J,Jrl — Ty Yi;)| — 0 > ¢/2 —d. Hence
&/4 > ¢/2 — ¢ for all 6 > 0 and this is a contradiction.

Finally, if there is a norm on X giving the strict topology on
each B,, then by [9, V. 5.2], X = X’ is separable.

The next two results are easy consequences of previous work. In
both of the special cases considered above, X = C(S) or X a Hilbert
space, it is well known that a norm-continuous linear functional on
X, has a unique B-continuous extension to X.

THEOREM 4.7. Let & be a topology on X which is finer than B
and having the same bounded sets. If each &-continuous linear fumnc-
tional on X, is B-continuous on X,, then (in the topology of uniform
convergence on the & = B bounded subsets of X) X! is the algebraic
and topological direct sum of X and the orthogonal complement of
X, in X

Proof. By [17, Corollary 3.4], X, is S-dense in X and hence the
restriction of an &’ € X! to X, has a unique S-continuous functional J(z')
on X. Since J®=J and J is continuous (because & and & have the
same bounded sets), then by [14, Proposition 30, p. 96], X! is the
algebraic-topological direct sum of X; and X? = J~(0).

COROLLARY 4.8. If each B*-continuous linear functional on X,
is B-continuous, then

Q) Xj = X? @ X; topologically and algebraically where Xo =
{o'e Xf:2' =0 on X},
and (2) Xi = X; if X, is Bt-dense in X.

Proof. For since B < B* any AB*-bounded set is S-bounded while
if M is B-bounded and V is a B*-neighborhood of 0 such that
z,€ M\nV for all n, then {(1/n)x,} is A-null but not eventually in V,
a contradiction. Hence £ and B* have the same bounded sets and
4.7 applies.

The introduction of the idea of a single Ae B which determined
B on each B, was a device for obtaining the main result in [16, Th.
5.1]. This idea dovetails nicely with a structure studied by Dudley
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[8, §'s 7 and 8]. Throughout we suppose A< B has the properties
assumed for Theorem 3.2. Let p(x, y) = ||Ax — Ayl|, f(&) = ||z|| =
sup {|| Tx|: Te B, || T|| < 1}. In the notation of [8, §5], C(o, f) is, by
Theorem 3.3(b) and [17, Th. 3.3], C(B) = B-convergence of sequences,
and (X, o, f) is a simple quasi-metric space. In the terminology of
[8] we will prove

THEOREM 4.9. (a) (X, C(B)) = (X, C(p, f)) is an L*-convexr, L*-
linear space which s also an LS-space (by (o, f))-
(b) (X, p, f) s a simple quasi-metric linear space.

Proof. (a) From [8, p. 492], (X, C(o, f)) is an L*-linear space
because X, is a linear topological space and C(p, f) = C(8) as noted
above.

To see that (X, C(o, f)) is L*-convex, let {x,} be a B8 = C(p, f)
null-sequence. By the definition [8, p. 496] it must be shown that if
Yy, is a convex combination of {x;: 5 = k}, then {y,} is B-null. If y, =

"k, a@;, Sk a; = 1,a; =0 for all j, then [|A4,,| < max {||Ax;|:
k<j<op}. Since ||Ax,||—0 and A determines S on bounded sets
and {z,} and {y,} are bounded, we are through.

Finally (X, C(p, f)) is an LS-space because p is an invariant
metric and f is an LS-function [8, p. 496]. This last follows because
Sfw) = |||/ =sup{||Tw|[: Te B, ||T|| =1} and consequently @,— @ in
C(o, f) implies that f(z) < lim sup f(x,).

(b) By [8, p. 496] (X, p, f) is simple quasi-metric linear because
(X, C(p, f)) is an L*-linear space.

As noted previously C(B) = C(o, f) and hence C(8%) = C(p, f).
But also as noted at the beginning of this section B+ = T, (C(B)) so
that 8+ = T.(C(p, f)) and [8, Th. 7.3] gives a new characterization
of the B*-neighborhoods of 0 in X. Furthermore in this setting
B = B*, by Corollary 4.4; hence this amounts to a new characteriza-
tion of the B-neighborhoods of 0 in X. That is, from [8, Th. 7.3].

COROLLARY 4.10. Under the hypothesis of Theorem 3.2, for each
sequence of positive numbers {0,}, let U{o,} = S2-, w,: w,€0,V.N B}
where V, = {we X: ||Az|| < 1} and B, = {x:||z|/' < n}. Then the col-
lection of all sets U{d,} is a base for the neighborhood system at O
for the strict topology.

COROLLARY 4.11. Under the conditions of Theorem 3.2, with
C =C(B), B = T,C) 1is the finest topology T weaker than T(C) such
that X, 1s a topological linear space.
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Proof. Referring to [8, Th. 7.4] we simply recall that under
these hypotheses, 8 = T,(C) by Theorem 4.3.

Finally, Dudley [8] goes on to study complete LS-spaces and our
final theorem shows that (X, C(8)) is complete by (o, f) when X; is
complete so that the results of [8, §8] apply.

THEOREM 4.12. If X, is complete, then (X, C(B)) is complete by
(0, f) and conversely.

Proof. By definition, if {x,} is a C(8) = C(o, f)-cauchy sequence
then z, — @,,, — 0 in C(p, f) for any choice of m(n) = n for all n.
Suppose {x,} is not bounded in the [|-|/. Then there is a sequence
m(n) = n such that f(®,.) = f(®,) + n where f(x) = ||x|/’ as before.
Since ®,.,, — ®,— 0 in C(p, f) then {f(2,., — «,)} is bounded by de-
finition. But f(@uwm — Zu) = f@mw) — f(®,) = n a contradiction.

Since {x,} is || |/-bounded and p(z,, ) — 2., 0) = || A(@p@m — ) || —0,
then by Theorem 3.3(b), {x,} is B-cauchy, hence B-convergent to some
xe X. But then {,} is C(B)-convergent to # and (X, C(8)) is complete.

Conversely if (X, C(8)) is complete by (o, f) then by Theorem
4.9(a) and [8, Th. 8.1], X is complete for 7T,(C). But 8= T,C) as
noted above.

Unfortunately, Theorem 4.12 along with 4.6 implies that [8, Th.
8.2] is false. In the notation of [8] and Theorem 4.6, if 4~ = {N(x):
N(x)=|(z, )| for some y € H, ||y||<1} then M(x) =sup {N@&): Ne 4"} =
[lz]], and hence M cannot be a continuous pseudo-norm for T,(C) =
B+t = B. Prof. Dudley acknowledges this and has pointed out to me
that [8, Th. 8.8] is probably also false, being dependent on 8.2. It
does appear however that the strict topology possesses several nice
sequential properties and that X, is a complete LS-space for a wide
choice of B and X.

Remark added in proof. Because the 8 and norm topologies on
X are locally convex, the mixed-topology defined by these [A. Wiweger,
Linear spaces with mixed topology, Studia Math. T.XX (1961), 47-68]
is locally convex. By Theorem 2.2 and [Wiweger, 2.2.2] 8 is then the
mixed topology and hence is the finest linear topology agreeing with
itself on each B,.

Regarding the paragraph following 4.5, [.[0, 1];+ = 1.[0,1]; =
1,[0,1] from 4.8 and the assumption of the continuum hypothesis,
which implies that [0, 1] has nonmeasurable cardinal and hence that
[0,1] has no atomless measure defined on all subsets. Hence the
matter appears to ultimately concern the so-called “problem of measure’
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for which H. J. Keisler and A. Tarski, F'rom accessible to inaccessible
cardinals, Fund. Math. 53 (1964), 225-308, and S. Ulam, Zur Mas-
stheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930),
141-150, are appropriate references.
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