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EXTREMAL ELEMENTS OF THE CONVEX CONE A
n

OF FUNCTIONS

ROY M. RAKESTRAW

Let Aγ be the set of nonnegative real functions / on [0,1]
such that Viftx) = fix) - Ax + h) ^ 0, h> 0, for [x, x + h]a
[0,1], and let An, n > 1, be the set of functions belonging to
An-i such that Vtfix) = VΓVW - VΓ'/O + h) ^ 0 for

[x, x + nh]<z [0,1] .

Since the sum of two functions in An belongs to An and since
a nonnegative real multiple of an An function is an An func-
tion, the set of An functions forms a convex cone. It is the
purpose of this paper to give the extremal elements (i.e., the
generators of extreme rays) of this cone, to prove that they
form a closed set in a compact convex set that does not con-
tain the origin but meets every ray of the cone, and to show
that for the functions of the cone an integral representation
in terms of extremal elements is possible. The intersection
of the An cones is the class of functions alternating of order03.
Thus, the set of these functions, which will be denoted by
Aoo, forms a convex cone also. The extremal elements for
the convex cone A™ are given too.

Let / be a function in A1 which assumes exactly one positive

value in [0,1]; that is, f(x) = 0 ,xe [0, £), f(x) = c > 0, x e [ξ, 1] where

0 ^ ξ ^ 1, if / = /i + Λ, where f, and f2 e A19 then 0 = V\f{x) =

Flfi(%) + V\f%(x) implies V\ft(x) = 0 for i = 1, 2 and [x, x + h]a [ζ, 1].

Therefore, /,(<&) = 0, x e [0, £), ft(x) = ct ^ 0, x e [f, 1], i = 1, 2, where
cγ + c2 = c. Hence, / is an extremal element of At. On the other
hand, if / assumes at least two positive values in [0,1], then a non-
proportional decomposition can be given by taking

A(x) --= min {f(x), (l/2)[/(0) + /(I)]}

and /2 = / — ft. Therefore, the extremal elements of Ax are precisely
the functions in Aι which assume exactly one positive value in [0,1].

Since a function in An, n > 1, is nonnegative, nondecreasing, and
concave on [0,1], it must be continuous on (0,1] (cf. [6], p. 148). It
follows that the only extremal elements of A1 which are in An are
those functions / such that / = c > 0 on (0,1] while /(0) = 0 or
/(0) = c and these functions are again extremal in An. If fe An, n > 1,
/ is not constant and /(0) > 0, then a nonproportional decomposition
can be given by taking fx - /(0) and / , = / - / , . If fe Au, /(0) = 0,
/ is not constant on (0,1] and / is not continuous at 0 (that is,
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/(0+) > 0), then take Λ = /(0+) on (0,1], /x(0) = 0 and /a = / - fx.
In so doing, ft and f2 e An and /i and f2 are not proportional to /.
Therefore, for n > 1, the only extremal elements of An such that
/(0) > 0 are the positive constant functions, and the only extremal
elements of An which are discontinuous at 0 are those functions /
such that /(0) = 0 and / = c > 0 on (0,1]. It will be shown that the
remaining extremal elements of An, n > 1, are indefinite integrals of
the extremal elements of a cone which is similar to Ax. This cone is
given in the following definitions.

DEFINITION 1. If g is a real function continuous almost everywhere
on (0,1] and n is a positive integer, then g is said to satisfy property
P(n) if

limit I I 1 \ g(t)dt dt^-- dtn_x

exists and is finite.

DEFINITION 2. Let K(n) denote the convex cone of nonnegative,
nonincreasing real functions on (0,1] which satisfy property P(n).

In the same manner that the extremal elements of A1 were found,
it can be shown that the extremal elements of K(n) are precisely these
functions which assume exactly one positive value in (0,1]. Preliminary
to the determination of the extremal elements of An, it is shown in the
following two lemmas how the An functions are related to the func-
tions in K(n — 1), where n > 1.

LEMMA 1. If fe Any then {~l)nf^ι) e K(n - 1), where n>l.

Proof. The proof will be by induction on n. If feA2, t h e n /
is nonnegative, nondecreasing and concave. It follows that /+ is non-
negative and nonincreasing on (0,1], where /+(1) =/+(!--) [6]. Also,

f(x)= \'ft(t)dt+f(O + )
Jo

which implies that /+ satisfies property P(l) [4].
Assume that feAn implies (-I)*/!*"1* eK(n - 1) for n ^ 2. If

feAn+1, then

v\vrιf{x) = n+if(x) ^ o

for [x, x + (n + l)h] c [0,1], which implies that
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for [α, α + 2& + Sj. + δ2 + + dn_,] c [0,1] [2]. It then follows that

(~l)n-Ύlfin-1](x) ^ 0

for [x, x + 2h]cz(0,1], and hence, (-I)*-1/!*-" is concave on (0,1].
Therefore,/{*-1} = / ! Λ - 1 } , since /j*-1* is continuous. It follows that
fίn) exists on (0,1], where fin)(l) = fln)(l-), and (-l)-1"1/^ is non-
negative and nonincreasing. It remains only to show that / | n ) satis-
fies property P(ri). If /G.A W + 1 , then feAn, and

• \ I f^itjdtdt, - dt_x

ljl J l J l

= limit Π'*"1

δ-*0 J1 J l

exists and is finite, since f{n~1] satisfies property P(n — 1) by the induc-
tion hypothesis.

DEFINITION 3. If g is a real function on (0,1] which satisfies
property P(ri), then define the function I(g, n;) by the equation

I(g, 1; x) - \*g(t)dt ,
Jo

I(g, n; x) =

n = 2, 3, 4, •••, for O;G[O, 1].

LEMMA 2. If g£ K(n — 1), ί&ew (-l)w/(g, ^ - 1;) e An, where
n > 1.

Proof. The proof will be by induction on n. lί g e K(l), then

I(g, 1; α?) - ("flr(*)tf* ^ 0 ,
Jo

for x e [0,1]. If [x, x + A] c [0,1], then

Filfo, 1; x) = [ g(t)dt £ 0
Jx+h

since r̂(ί) ^ 0, where x <L t <^ x + h. Since # is nonincreasing on (0,1],
then I(g, 1;) is concave on [0,1] and it follows that V\I(g, 1; x) ^ 0,
for h>0 and [x, x + 2fe] c [0,1] [4]. Hence, % , 1 ; ) ^ Λ whenever
geK(l).

Assume that (—ϊ)nI(g, n — 1;) e 4̂W for sf e iί(w — 1) and n > 1.
If geK(n), then let
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/(*) =

for xe (0,1]. Since geK(ri), it is easily seen that —feK(n — 1) and
it follows from the induction hypothesis that

( — ϊ)n+1I(g, n;) — ( —1)*/(—/, n — 1;) e An .

By a repeated application of the mean value theorem for a Riemann
integral, it can be shown that

FΓ1I(flf,w;αj) = (-λ)- 1 /( ί )

for [#, x + (n — ϊ)h] c [0,1], where x<ξ<x + (n — l)h. It follows
that

for [x, x + (n + ϊ)h] c [0,1], since / is concave on (0,1] [4]. This
inequality, together with the fact that (-l)n+1I(g, n;) e An, implies
that (~ir+ίI(g,n;)eAn+1.

It is a consequence of Lemmas 1 and 2 that / — /(/| ί l~1), n — 1;)
whenever fe An, n > 1, /(0 + ) = 0 and f{h)(l) = 0 for 1 ̂  k ^ n - 2.
If /e^42, then / is concave on [0, 1] and

f(x) = [fί(t)dt = I(f'+, 1; x) .
JO

If feAn,n>2, then (_i)»-2/<»-2> is concave on (0,1] (cf. proof of
Lemma 1). It follows that

which implies that / = I{fln~ι\ n - 1;) [4].

PROPOSITION 1. Tfcβ function f defined by

fix) = mir- 1 - (f - a?)-1]

/or x e [0, <f] α^d mξn-1 for x e [ξ, 1], where 0 < ? ^ 1 α^ώ m > 0, is
an extremal element of An, n > 1.

Proof. If / is such a function, then

/i- l ϊ(») = ( - l ) " m ( n - l ) ! ,

α;6(0, f) and 0 for xe[f, 1], which implies that ( —I)*/!*-1* is an ex-



EXTREMAL ELEMENTS OF THE CONVEX CONE An 495

tremal element of K{n - 1). Since /(0) = 0 and /(fc)(l) = 0 for 1 ^
k ^ n - 2 (whenever n > 2), then / = /(/j*-1*, w - 1;) and it follows
from Lemma 2 that feAn.

If £ and fcei, such that / = g + h, then (-l)*^*""1* and

(-l^ί^ei^- 1)

and /I"-1* = flrVn"1} + ^?~1} Since (-l)Λ/jΛ-1 } is extremal in K(n - 1),
there are constants λ< ̂  0, i = 1, 2, such that ^ϊ1"15 = ^l/i*"1* a n d
A?-" - λ2/f-1}. Since /(0) - 0 and /(*>(1) = 0 for 1 ^ k ^ w - 2, it
follows that 0(0) - gik)(l) = 0 and A(0) = A(*}(1) = 0 for 1 ^ fc ^ n - 2.
Hence

%?» 1) / (JΊ«, n - 1;)

and similarly, h = X2f. Thus, if f(x) = m[ξn~ι - (ξ - x)*-1], xe [0, ξ]
and mί71""1 for x e [f, 1], where 0 < ζ ^ 1 and m > 0, then / is extremal
in An, n > 1. Denote this latter function by e(m, ξyn — 1;).

If fe A2 such that /(0+) = /(0) - 0, / Φ 0 and / Φ e(m, f, 1;), for
m > 0 and 0 < £ ̂  1, then /+ is not extremal in K(l), since /+ assumes
at least two positive values in (0,1]. It follows that there are func-
tions gt and g2 e K(ΐ) such that f[ = gι + g2 and g1 and g2 are not
proportional to f'+. Since /(0) = 0, then / = /(/; , 1;) and it follows
that

/ - I(fί, 1;) = I(ffl + g2y 1;) = I(glf 1;) + I(g2, 1;) .

Thus, if /, = /(Λ, 1;), then /, e A2, i = 1, 2, and / = Λ + /2. This gives
a nonproportional decomposition of / . Therefore, the extremal elements
of A2 are the positive constant functions, the functions which are a
positive constant on (0,1] and zero at 0 and the functions e(m, ξ, 1;),
where m > 0 and 0 < ξ ^ 1. The remaining extremal elements of An9

n > 2, are given in the next proposition.

PROPOSITION 2. If m> 0, £fce function e(m, 1, &;) is cm extremal
element of An for n > 2 α^ώ 1 ^ & ̂  ?ι — 2.

Proof. Since 4̂% is a subcone of Afc+1 and e(m, 1, fc;) is an extremal
element of Ak+ι, it is sufficient to show that e(m, 1, &;) e An. If / =
e(m, 1, fc;), then / = I(f{k\ k;) where

/«*)(») = (-l)h+1m(kl)

for 0 < a? ̂  1. Since /(/fc) is constant on (0,1], it follows from a re-
peated application of the mean value theorem for a Riemann integral
that
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Vϊ+ιf{x) = VWlf{x) = (-h)Ψif^(ξ) = 0

for h > 0, [x, x + (fc + l)h] c [0, 1], and thus, VIfix) = 0 for fc > 0,
[#, sc + pfc] c [0, 1] and p ^ k + 1. Hence, feAn for every w, which
implies that / is extremal in Ap, for p ^ k + 1.

It will follow, as a consequence of the next three lemmas, that
no other functions in An are extremal elements of An, n > 2.

LEMMA 3. Lβί feAn, n > 2, δ r i ίfeαί /(0+) = /(0) = 0 and
f Φ e(m, 1, fc;), where m > 0 αmZ 1 ^ & <̂  % — 2. 1/ there is an in-
teger k such that 1 ^ k ^ n — 2 and f{k)(l) Φ 0, then f is not an
extremal element of An.

Proof. Let k denote the smallest integer such that f{k)(ΐ) Φ 0
Then feAnczAk+2 implies that (-l)kfίk+1) e K(k + 1), and it follows
from Lemma 2 that I(fίk+1\ fc + 1;) e Ak+2. Since /(0) - 0 and / ( ί 3 )(l) -
0 for 1 rg p < fc, then I(/f+ 1 ), fc + 1;) = J(/ ( f c ), fc;) - / ( f c )(l)I(l, fc;) =
/ - β(m, 1, fc;), where m = ( - l ) ^ 1 ^ / ^ ! ) ] / ^ ^ ! ) > 0. Since

Fp

he(m, 1, fc; x) = 0

for h > 0, [x, x + pΛ] c [0, 1] and p ^ fc + 1 and fe An, it follows that

for [a;, a? + p/&] c [0,1], fc + 1 ^ p ^ n. Hence, / - β(m, 1, fc;) e ̂ 4W,
where m = ( — ly^ll/ikϊ)]/^^), and a nonproportional decomposition
of / can be given by taking f = e(m, 1, fc;) and /2 = / - /x. Thus, /
is not extremal.

LEMMA 4. Lβέ /<= AΛ, n > 2, ŝ cfe ίλαί / Φ 0, /(0+) - /(0) = 0
/ Φ e(m, 1, fc;), w/^erβ m > 0 α^ώ 1 ^ fc ^ w - 2. 7/ f^~1] = 0

(0,1], £/z,βπ / is %oί an extremal element of An.

Proof. If fln~1] — 0, then there is a positive integer k ^ n — 2
such that /(/e) Φ 0 and /( fc) is constant on (0, 1]. Thus, f{h](l) Φ 0 and
it follows from Lemma 3 that / is not extremal.

It follows from Lemmas 3 and 4 that if / is an extremal element
of An, n>2, such that /(0 + ) = / ( 0 ) = 0 and either fίn~1] = 0 or
fik)(l) Φ 0 for some k, 1 ^ fc g n - 2, then / = e(m, 1, fc;), where m > 0
and 1 g fc ^ ^ - 2.

LEMMA 5. Lβί / e An, n > 2, stccΛ ίΛαί /(0 + ) - /(0) = 0, fin~ι) Φ 0
/(A:)(1) = 0 for I <^ k ^ n — 2. If f is an extremal element of

An, then f = e(m, ξ, n — 1;), where m > 0 αwώ 0 < f <£ 1.
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Proof. Since /(0) = fik)(l) = 0 for 1 ̂  & ̂  n - 2, then

and it follows from Lemma 1 that (-l)nf^1} eK(n - 1). If g, and
g2eK(n - 1) such that (-l)Yf-1} = & + #2, then

/ = Iifl"-", n - 1;) = (-1)*%, + g2, n - 1;)

- (-iri(gi, n - 1;) + (-iyi(g2, n - 1;) .

Then fi = ( —l)w/(^, π — 1;), i = 1,2, implies that f and f2 e An and
f — fι + /2. Since / is extremal in Aw, there are numbers λ̂  ̂  0 such
that ^ - XJ, i = 1, 2, which implies that ^ - λ^-l)"/^-^, ί = 1, 2,
and (-l)nfίn~1] is therefore extremal in K(n - 1). Thus,

(_l)»/j -i)(a.) = c > o , a;e(0, f)

and 0 for ice [f, 1], which implies that

/ = I(/r- 1 ), n - 1;) = β(m, f, π - 1;) ,

where m = c/(?ι — 1)!.

Therefore, the extremal elements of An, n > 2, are the positive
constant functions, the functions which are a positive constant on
(0, 1] and zero at 0, the functions e(m, 1, k;), where m > 0, 1 ̂  k ^
n — 2, and the functions β(m, ί, n — 1;), where m > 0 and 0 < f ^ 1.

Since A^ is a subcone of An, it follows that the function e(m, 1,
%;), m > 0, is an extremal element of A^ for every positive integer
n. It is shown in the following proposition that A^ has no other
extremal elements which are continuous and zero at 0.

PROPOSITION 3. If feA* such that /(0+) =/(0) = 0 and fΦ
e(m, 1, &;), where m > 0 ami k is a positive integer, then f is not an
extremal element of A^.

Proof. Since / e i M is a function of class C°° on (0,1], it follows
from a theorem of Bernstein, Theorem 13-31 in [1], that

ΐor 0 < x < 1 by noting that the function g defined by

g(x) = /(I) - /(I - x)

satisfies the hypothesis of the theorem. If there is a positive integer
k such that f{k)(l) Φ 0, then assume, without loss of generality, that
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k is the least such integer. Then feA^dAk+2 implies that

(-l)ψk+» e K(k + 1)

from which it follows that I(f(k+ί\ k + l;)eAk+2. Hence,

where m - (-l)k-ι[l/(kl)]Γk)(l) > 0. If/, - β(m, 1, fc;) and /2 = / - /,,
then /i G Aoα since /Ί 6 Aw for every n and /2 G ACO since /2 G Afc+2 and

VlMx) = Ft[f(x) - e(m, 1, jfc; a?)] - Fϊ/(α) £ 0 ,

for fe > 0, [x, x + wft] c [0, 1] and n ^ fc + 3. Since /x is not propor-
tional to /, this gives a nonproportional decomposition of /, and / is
therefore not extremal. On the other hand, if f{k)(0) — 0 for each posi-
tive integer k, then f(x) = /(I) for 0 < x ^ 1, and /(0 + ) = /(0) - 0
implies that / = 0.

The results to this point are summarized in the following theorem.

THEOREM. The extremal elements of A1 are the functions which
assume exactly one positive value in [0,1]. The positive constant
functions and the functions which are a positive constant on (0, 1]
and zero at 0 are extremal elements of An, n > 1, and are therefore
extremal in A^ The functions e(m, ξ, n — 1; x) = m[in^ — (ζ — x)n~%
xe[0, ξ] and mp" 1 for xe[ξ, 1], where m > 0 and 0 < £ ̂  1, are
extremal elements of An, n ^ 2. 77ιe (mi?/ o^er extremal elements of
An1 n ^ 3, are ί&ose functions e(m, 1, Λ;), 1 ^ & ̂  π — 2. ϊ%e extremal
elements of A^ which are continuous and zero at 0 are £&# functions
e(m, 1, Λ;), Λ ̂  1.

The set of functions An — An9 n ^ 1, forms the smallest linear
space containing the convex cone An. With the topology of simple
convergence, An — An is a Hausdorff locally convex space. Let Cn be
the set of functions feAn such that /(I) = 1. Then Cn is a convex
set which meets every ray of An once and only once but does not
contain the origin, that is the zero function. It then follows that /
is an extreme point of Cn if, and only if, / is an extremal element of
An which lies in Cn. A proof similar to that found on page 992 of [5]
can be used here to show that Cn is compact. It follows from the
next proposition that the set of extreme points of Cn is compact.

PROPOSITION 4. The set of extreme points of Cn is closed in Cn,

Proof. Since the topology of simple convergence is equivalent to



EXTREMAL ELEMENTS OF THE CONVEX CONE An 499

the topology of pointwise convergence, it will suffice to show that if
{fi} is a net of functions in ext Cn which converges pointwise to a
function /, then feextCn, % ̂ > 1, where ext Cn denotes the set of
extreme points of Cn. The proof foτn = l is obvious. Since all ex-
cept a finite number of the functions in ext Cn, n > 1, are of the
form e((l/ξ)n~\ ξ, n — 1;), where 0 < ζ ^ 1, it can be assumed without
loss of generality that f{ = e((l/ζi)n"\ ζi9 n — 1;), for each i.

If the net {ξJ of real numbers converges to 0, then it is easily
seen that

limit f^x) = 1
i

for xe (0, 1], Since the topology is Hausdorff, it follows that /(0) = 0
and f(x) = 1, x e (0, 1], which implies that fe ext Cn.

On the other hand, if {fj does not converge to 0, then there is
a positive real number ζ0 and a subnet {ζά} of {ξJ such that {ζj} con-
verges to ζ0. If 0 ^ x < f0, then

limit/y(a0 = -^rf^" 1 - (fo - a;)11-1]

whereas

limit /y(x) = 1
i

if f0 ^ x <̂  1. Therefore, since the topology is Hausdorff,

/ - e((l/ξoy-\ f0, n - 1;) ,

and it follows that /eextC n .
Since ext Cn and Cn are both compact subsets of the locally convex

space An — An, n ^ 1, it follows from Theorem 39.4 of Choquet [3] that
for any function /0 e Cn there exists a probability measure μϋ on ext
Cm such that

for xe [0, 1]. Since Cn meets every ray of An and does not contain
the origin, it follows that each function of An is a scalar multiple of
such a representation.
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