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EXTREMAL ELEMENTS OF THE CONVEX CONE A4,
OF FUNCTIONS

Roy M. RAKESTRAW

Let A, be the set of nonnegative real functions f on [0, 1]
such that Vifx) = flx) — fle + h) =0, h >0, for [z,x + k] C
[0,1], and let A,, n > 1, be the set of functions belonging to
A,—; such that Vi f(x) = Vi ' f(®) — Vi ~'flx + h) < 0 for

[z, 2 +nh]c[0,1].

Since the sum of two functions in A, belongs to 4, and since
a nonnegative real multiple of an A4, function is an A, funec-
tion, the set of A, functions forms a convex cone, It is the
purpose of this paper to give the extremal elements (i.e., the
generators of extreme rays) of this cone, to prove that they
form a closed set in a compact convex set that does not con-
tain the origin but meets every ray of the cone, and to show
that for the functions of the cone an integral representation
in terms of extremal elements is possible., The intersection
of the A, cones is the class of functions alternating of order>.
Thus, the set of these functions, which will be denoted by
A., forms a convex cone also. The extremal elements for
the convex cone A.. are given too.

Let f be a function in A, which assumes exactly one positive
value in [0, 1]; that is, f(x) = 0,x¢€]0, &), f(x) = ¢ > 0,z e [, 1] where
0<é<L1, if f=f + f,, where f, and f,€ A, then 0 =7} f(x) =
Vi fi(@) + 73 fi(x) implies 7} fi(x) = 0 for ¢ = 1,2 and [z, x + k] C [§, 1].
Therefore, fi(x) =0,2¢€]0, &), filx) =¢; =0,z€[§ 1],72=1,2, where
¢, + ¢, =c¢. Hence, f is an extremal element of A,. On the other
hand, if f assumes at least two positive values in [0, 1], then a non-
proportional decomposition can be given by taking

fi@) = min {f(x), 1/2)[/(0) + D]}

and f, = f — f,. Therefore, the extremal elements of A, are precisely
the functions in A, which assume exactly one positive value in [0, 1].

Since a funection in A4,, » > 1, is nonnegative, nondecreasing, and
concave on [0, 1], it must be continuous on (0, 1] (cf. [6], p. 148). It
follows that the only extremal elements of A, which are in A4, are
those functions f such that f=¢>0 on (0,1] while f(0) =0 or
f(0) = ¢ and these functions are again extremal in 4,. If fe 4,,n > 1,
f is not constant and f(0) > 0, then a nonproportional decomposition
can be given by taking f, = f(0) and f, = f — f,.. If feA,, f(0) =0,
f is not constant on (0,1] and f is not continuous at 0 (that is,
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f(0+) > 0), then take f, = f(0+) on (0,1], /,(0) =0 and f,=f— f.
In so doing, f, and f,€ A4, and f, and f, are not proportional to f.
Therefore, for n > 1, the only extremal elements of A, such that
J(0) > 0 are the positive constant functions, and the only extremal
elements of A, which are discontinuous at 0 are those functions f
such that f(0) =0 and f =¢ > 0 on (0,1]. It will be shown that the
remaining extremal elements of A,, n > 1, are indefinite integrals of
the extremal elements of a cone which is similar to 4,. This cone is
given in the following definitions.

DEFINITION 1. If g is a real function continuous almost everywhere
on (0,1] and % is a positive integer, then g is said to satisfy property
P(n) if

. . Sftn—1 2t
limit S S cee S S g(t)dt dt, «-- dt,_,
1 1J1

-0 1

exists and is finite.

DEFINITION 2. Let K(n) denote the convex cone of nonnegative,
nonincreasing real functions on (0, 1] which satisfy property P(n).

In the same manner that the extremal elements of 4, were found,
it can be shown that the extremal elements of K(n) are precisely these
functions which assume exactly one positive value in (0,1]. Preliminary
to the determination of the extremal elements of A4,, it is shown in the
following two lemmas how the A, functions are related to the funec-
tions in K(n — 1), where n > 1.

LemmA 1. If fe A,, then (—1)"f{" Ve K(n — 1), where n > 1.

Proof. The proof will be by induction on n. If fe A,, then f
is nonnegative, nondecreasing and concave. It follows that f| is non-
negative and nonincreasing on (0, 1], where fi(1) = fi(1—) [6]. Also,

f@) = | st + 70+)

which implies that f| satisfies property P(1) [4].
Assume that fe A, implies (—1)"fi" e K(n — 1) for n = 2. If
feA,;, then

Vivi—fe) =Vitfle) = 0
for [z, ¢ + (n + 1)k] C [0, 1], which implies that
LY, e Th_ @) <0
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for [z, 2 + 2h + 6, + 0, + +-+ + 0,,] C[0,1] [2]. It then follows that
(=) fe (@) =0

for [z, x + 2R] —(0,1], and hence, (—1)""'f{"" is concave on (0, 1].
Therefore, f" = f{~V since f{" is continuous. It follows that
™ exists on (0,1], where f{(1) = f”(1—), and (—1)"*'f{™ is non-
negative and nonincreasing. It remains only to show that f{™ satis-
fies property P(n). If fe A,.,, then fe A,, and

ofty_1 tafty
limitSS S S Fbdtdt, - dt,

a0 1

3(tp—1 t3(tg
- limitS S S S Pt (8 )dt ity -+ db,,

30 1

0ty t3(t2
_ f(n~1)(1)S S .es S S dt,dt, --- dt,_,
1J1 1 J1

exists and is finite, since f "~ satisfies property P(n — 1) by the induc-
tion hypothesis.

DerFINITION 3. If g is a real function on (0,1] which satisfies
property P(n), then define the function I(g, »;) by the equation

I(g,1;2) = S:g(t)dt ,
0

I(g, n; x) = j gl

n=234,-..-, for x€|0, 1].

: Stzg“g(t)dtdtl e dt,

LemMA 2. If ge K(n — 1), then (—=1)"I(g, n — 1;)c A,, where
n > 1.

Proof. The proof will be by induction on n. If ge K(1), then
Ig, 1;9) = | gat = 0,
for z€[0,1]. If [z, ¢+ k] ][O0, 1], then
Mg, 150 = | gar =0

since g(t) = 0, where x < ¢ <« + h. Since g is nonincreasing on (0, 1],
then I(g, 1;) is concave on [0,1] and it follows that F3lI(g,1;x) <0,
for h >0 and [z, + 2k] < [0,1] [4]. Hence, I(g,1;) € A, whenever
g€ K(1).

Assume that (—1)"I(g,n — 1;)e A, for ge K(n — 1) and n > 1.
If g € K(n), then let
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sy = g,

for xe (0,1]. Since g€ K(n), it is easily seen that —fe K(n — 1) and
it follows from the induction hypothesis that
(=1)"I(g, n;) = (=1)"I(—=f,n — 1) e 4, .

By a repeated application of the mean value theorem for a Riemann
integral, it can be shown that

VimI(g, m; @) = (—h)"f(§)

for [z, + (n — 1h] ]0,1], where z < & <z + (n — 1)h. It follows
that
iy (—=1)*I(g, n; x)
= (=1)"rirI(g, w; @)
= (=" 7 f6) =0

for [x,« + (n + 1)h] [0, 1], since f is concave on (0,1] [4]. This
inequality, together with the fact that (—1)"*'I(g, n;)e 4,, implies
that (—1)*"I(g, n;) € Ays..

It is a consequence of Lemmas 1 and 2 that f = I(f{" ™", n — 1;)
whenever fe A,,n > 1, f(0+) =0 and fP1) =0 for 1=k <n—2.
If fe A,, then f is concave on [0, 1] and

f@) = | fivat = 141, 159

If feA,, n>2, then (—1)"2f"? is concave on (0, 1] (cf. proof of
Lemma 1). It follows that

st = | s,
which implies that f = I(f{"", n — 1;) [4].
PROPOSITION 1. The function f defined by

f@) = m[e" — (& — 2)"7]

for ©e|0, &] and mé&" for x|, 1], where 0 < £ <1 and m > 0, is
an extremal element of A,, n > 1.

Proof. If f is such a function, then
£ = (~1rm(n — DI,
xe (0,8 and 0 for xe[g 1], which implies that (—1)"f{"" is an ex-
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tremal element of K(n — 1). Since f(0) =0 and f*¥(1) =0 for 1 <
k< n — 2 (whenever n > 2), then f = I(f{*", n — 1;) and it follows
from Lemma 2 that fe A,.

If g and he A, such that f = g + h, then (—1)"¢{ " and

(—1)"he e K(n — 1)

and f{" = g + APV, Since (—1)"f" is extremal in K(n — 1),
there are constants N; = 0,7 =1,2, such that ¢{" ™ =X\ f{" and
R = N f{"Y, Since f(0) =0 and f¥1) =0 for 1<k=<mn-—2, it
follows that g(0) = ¢*”(1) = 0and h(0) = APA)=0for 1=k =n— 2.
Hence

9 =Ig¢=",n — 1)) = I fi*", m — 1))
= M(fEn — 1) = M,

and similarly, & = M\, f. Thus, if f(x) = m[é** — (& — x)* '],z €0, &]
and mé&"* for x € [, 1], where 0 < £ <1 and m > 0, then f is extremal
in A,,n > 1. Denote this latter function by e(m, & n — 1;).

If fe A, such that f(0+) = f(0) = 0, f = 0 and f # e(m, &, 1;), for
m > 0and 0 < & <1, then f! is not extremal in K(1), since f. assumes
at least two positive values in (0,1]. It follows that there are func-
tions ¢, and g,¢ K(1) such that f. =g, + g, and g, and g, are not
proportional to fi. Since f(0) =0, then f = I(f},1;) and it follows
that

f=I(fL,1;) = Ig, + 9, 1;) = I(g,, 1;) + I(g,, 1;) .

Thus, if f; = I(g;, 1;), then fie A,,7 =1, 2, and f = f, + f;. This gives
a nonproportional decomposition of f. Therefore, the extremal elements
of A, are the positive constant functions, the functions which are a
positive constant on (0, 1] and zero at 0 and the functions e(m, &, 1;),
where m > 0 and 0 < &£ £ 1. The remaining extremal elements of A4,,
n > 2, are given in the next proposition.

PROPOSITION 2. If m > 0, the function e(m, 1, k;) is an extremal
element of A, for n>2 and 1<k <n— 2.

Proof. Since A, is a subcone of A,,, and ¢(m, 1, k;) is an extremal
element of A,,,, it is sufficient to show that e(m, 1, k;)e 4,. If f =
e(m, 1, k;), then f = I(f*, k;) where

FE@) = (=1)"'m(k!)

for 0 <2 < 1. Since f** is constant on (0, 1], it follows from a re-
peated application of the mean value theorem for a Riemann integral
that
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Vitf@) = Filifl@) = (=) 7if* @) =0

for >0, [x,2 + (k + 1)k] < [0,1], and thus, F/jf(x) =0 for A >0,
[®, ¢ + ph] < [0,1] and p = k + 1. Hence, fc A, for every n, which
implies that f is extremal in A4,, for p = k + 1.

It will follow, as a consequence of the next three lemmas, that
no other functions in A, are extremal elements of 4,, n > 2.

LEemMMmA 3. Let feA,, n>2, such that f(0+) = f(0) =0 and
f+e(m,1,k;), where m >0 and 1 <k <n — 2. If there is an in-
teger k such that 1< k=<n—2 and f*©1) %0, then f is not an
extremal element of A,.

Proof. Let k denote the smallest integer such that f*(1) == 0
Then fe A, C A,., implies that (—1) /¥ e K(k + 1), and it follows
from Lemma 2 that I(f{*", k + 1;) € A,.,. Since f(0) = 0 and f(1) =
0 for 1< p <k, then I(f*, k + 1;) = I(f®, k;) — f2Q)IQA, k;) =
S —e(m, 1, k;), where m = (—1)*'[1/(ED]f* (1) > 0. Since

e(m, 1, k;2) =0
for h > 0, [w,2 + ph] < [0,1] and » = k + 1 and fe A4,, it follows that
FAI(fE, k + Loy =Fifle) =0,

for [z, 2+ ph] 0,1,k + 1< p < n. Hence, f —e(m,1,k;)eA,,
where m = (—1)*'[1/(k!)]f*®(1), and a nonproportional decomposition
of f can be given by taking f, = e(m, 1, k;) and f, = f — fi.. Thus, f
is not extremal.

LeMMA 4. Let fe A, n> 2, such that f+ 0, (0+)=f(0) =20
and f+ e(m,1,k;), where m >0 and 1<k=<n—2. If f* " =0
on (0, 1], then f is not an extremal element of A,.

Proof. If fi»9 =0, then there is a positive integer k=< n — 2
such that f* == 0 and f® is constant on (0, 1]. Thus, f*(1) = 0 and
it follows from Lemma 3 that f is not extremal.

It follows from Lemmas 3 and 4 that if f is an extremal element
of A,,n>2, such that f(0+) = f(0) =0 and either f{"> =10 or
f®@1) # 0 for some k,1 < k < n — 2, then f = e(m, 1, k;), where m > 0
and 1<k <n— 2.

LEMMA 5. Let fe A,, n > 2, such that f(0+) = f(0) = 0, f{» = 0
and fP1) =0 for L<k<n—2. If f is an extremal element of
A,, then f=e(m, & n —1;), where m >0 and 0 < & < 1.
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Proof. Since f(0) = f*®1) =0 for 1 <k < n — 2, then
f=1(f",n—1;)
and it follows from Lemma 1 that (—1)"f""eK(n —1). If g, and
g.€ K(n — 1) such that (—1)"f{*" = g, + ¢,, then
f=Ifr"n—1,)=(—D"Lg, + g, n — 1)
= (=1)"Lg,n —1;) + (—=1)"L(gs, » — 1;) .
Then f; = (=1)"I(g;, » — 1;),% = 1,2, implies that f, and f,e 4, and
f=/fi+ f.. Since f is extremal in A,, there are numbers )\; = 0 such

that f; = N f, 7 = 1, 2, which implies that g, = N (=-1)"f» 2, ¢ =1, 2,
and (—1)"f{" " is therefore extremal in K(n — 1). Thus,

(=1)"fi (@) = ¢>0,2€(0,9)
and 0 for z € [£, 1], which implies that
f=If"",n—1;) =em, & n— 1),
where m = ¢/(n — 1)!.

Therefore, the extremal elements of A,, n > 2, are the positive
constant functions, the functions which are a positive constant on
(0, 1] and zero at 0, the functions e(m, 1, k;), where m > 0,1k <
n — 2, and the functions e(m, &, n — 1;), where m > 0 and 0 < £ < 1.

Since A.. is a subcone of A,, it follows that the function e(m, 1,
n;), m > 0, is an extremal element of A. for every positive integer

n. It is shown in the following proposition that A.. has no other
extremal elements which are continuous and zero at 0.

ProrosiTiON 3. If fe A. such that f(0+) = f(0) =0 and f=
e(m, 1, k;), where m > 0 and k is a positive integer, then f is mot an
extremal element of A..

Proof. Since fe A. is a function of class C~ on (0, 1], it follows
from a theorem of Bernstein, Theorem 13-31 in [1], that

foy = 50 @ 1y
=0 7!

for 0 < x < 1 by noting that the function ¢ defined by
g(x) = f(1) — f(1 — )

satisfies the hypothesis of the theorem. If there is a positive integer
k such that f*®(1) = 0, then assume, without loss of generality, that
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k is the least such integer. Then fe A.. C A,.. implies that
(=Dff* e Kk + 1)
from which it follows that I(f**", k + 1;)€ A,... Hence,
HF*, b+ 1) = I, ) — fOWIL k) = f = om, 1, &)

where m = (—1)*'[1/(ED)]F*®1) > 0. If fi =e(m, 1, k;) and f, = f — f,
then f, e A. since f,e A, for every n and f,¢c A.. since f,€ A,,, and

Vifo@) = Vilf@) — e(m, 1, k; @)] = Vi fle) =0,

for o >0, [z, + nh] C[0,1] and n = k + 3. Since f, is not propor-
tional to f, this gives a nonproportional decomposition of f, and f is
therefore not extremal. On the other hand, if f*(0) = 0 for each posi-
tive integer %, then f(z) = f(1) for 0 <2 <1, and f(0+) = f(0) =0
implies that f = 0.

The results to this point are summarized in the following theorem.

THEOREM. The extremal elements of A, are the functions which
assume exactly one positive value in [0,1]. The positive constant
Sunctions and the functions which are a positive constant on (0, 1]
and zero at 0 are extremal elements of A,,n > 1, and are therefore
extremal in A.. The functions e(m, & n — 1; 2) = m[&"* — (6 — 2)*7'],
xel0, ] and mé&™* for xel[é 1], where m >0 and 0 <& <1, are
extremal elements of A,, n = 2. The only other extremal elements of
A,, n = 3, are those functions e(m, 1, k;), L £k < n — 2. The extremal
elements of A.. which are continuous and zero at 0 are the functions
e(m,1,k;), k= 1.

The set of functions A4, — 4,, » =1, forms the smallest linear
space containing the convex cone A,. With the topology of simple
convergence, A, — A, is a Hausdorff locally convex space. Let C, be
the set of functions fe A, such that f(1) = 1. Then C, is a convex
set which meets every ray of A, once and only once but does not
contain the origin, that is the zero function. It then follows that f
is an extreme point of C, if, and only if, f is an extremal element of
A, which lies in C,. A proof similar to that found on page 992 of [5]
can be used here to show that C, is compact. It follows from the
next proposition that the set of extreme points of C, is compact.

PROPOSITION 4. The set of extreme points of C, is closed in C,,
n=1.

Proof. Since the topology of simple convergence is equivalent to
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the topology of pointwise convergence, it will suffice to show that if
{f:} is a net of functions in ext C, which converges pointwise to a
function f, then feextC,, » =1, where ext C, denotes the set of
extreme points of C,. The proof for » = 1 is obvious. Since all ex-
cept a finite number of the functions in ext C,,n > 1, are of the
form e((1/8)", &, n — 1;), where 0 < £ < 1, it can be assumed without
loss of generality that f; = e((1/&)"7%, &, n — 1;), for each 1.

If the net {&} of real numbers converges to 0, then it is easily
seen that

limit fi(x) = 1

for x ¢ (0, 1]. Since the topology is Hausdorff, it follows that f(0) = 0
and f(x) = 1,z e (0, 1], which implies that feextC,.

On the other hand, if {&]} does not converge to 0, then there is
a positive real number &, and a subnet {¢;} of {} such that {&;} con-
verges to &. If 0 <a < &, then

1

An—1
So

limit f;(x) = [&57 — (& — )]

Wwhereas
limit f;(x) = 1
J
if §, < o £ 1. Therefore, since the topology is Hausdorft,

f=e(1/5)" " &y n —15),

and it follows that feext C,.

Since ext C, and C, are both compact subsets of the locally convex
space A, — A,, n = 1, it follows from Theorem 39.4 of Choquet [3] that
for any function f,e C, there exists a probability measure £, on ext
C,, such that

@ = | f@dp,,

for x€[0,1]. Since C, meets every ray of 4, and does not contain
the origin, it follows that each function of A4, is a scalar multiple of
such a representation.
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