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FIBRATIONS OF ANALYTIC VARIETIES

KEITH KENDIG

The induced continuous, differentiable, or analytic fibering
about any point of a continuous, differentiable, or analytic
group A, by a subgroup B is well known, as are generalizations
to various spaces with operators. One may ask about analogous
results for varieties per se. For instance, if C is any arc in
E2 and peC, then there is always a homeomorphism φ from
a neighborhood U of p to / X I (7 = (0,1)), so that φ{U n C) =
I X {J}. But there are arcs in Ez which are so wildly embedded
that at no point of the arc is there an analogous fibering.
This paper considers a general fibration problem for complex-
analytic varieties, and extends a result on fibering hypersurf-
aces due to Hassler Whitney.

Roughly, one can formulate a basic fibering question for complex-
analytic-varieties in this way: Try to decompose any variety V into dis-
join tfsubmanif olds, or "strata", so that V has a fibration about each
point p of V, using a piece of the submanifold through p as fiber (Con-
jecture 1.4). We require such a decomposition to be locally finite.
This problem is easily solved if we ask only for continuous fibrations,
but it is in general not solvable if one requires analytic fibrations (see

[Remark 1.6). A natural notion turns out to be "semi-analytic" fibra-
tion, in which analytic fibers vary continuously. For a hypersurface
W, Whitney has found such fibrations about all points off a subvariety
of codimension 2 in W. We extend his result to arbitrary varieties,
and using some of the ideas of the proof, we also answer a question
of his concerning the structure of any variety near a submanifold of
codimension 1.

1* Preliminaries; statement of the fibering theorem* Let V
be analytic of dimension r in an open set H of cg?n (where ^ denotes
the complex line).

DEFINITION 1.1. A set MQH is a manifold if about each point
p G M there is a ^w-open neighborhood U such that M Π U is the set
of common zeros in U of a set of functions analytic in U, and M is
nonsingular. A stratification of V is a splitting of V into a disjoint
union of a locally finite set of irreducible manifolds, called the strata,
such that the boundary of each stratum is the union of a set of lower
dimensional strata.

THEOREM 1.2. There is a stratification of any variety [3, p. 227].
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Let M be an s-dimensional stratum of V, and let Δr denote the
r-fold product of an open disk in <&.

DEFINITION 1.3. A r^n-open neighborhood U of peM has a semi-
analytic fibration if there is a homeomorphism σ from Δs x Δn~s to U
such that for each q e Δn~% σ(Δs x q) is biholomorphic to M Π U; for
q Φ Oe Δn~% σ(Δs x q) lies entirely in (V\M) n U or (ίf\F) Π C7, and

x 0) = M n U.

CONJECTURE 1.4. Any analytic variety V has a stratification such
that each point has a neighborhood with a semi-analytic fibration [3,
p. 230].

Our main fibering theorem is

THEOREM 1.5. V has a stratification so that about any point in
an (r — l)-dimensional stratum, there is a neighborhood which can be
semi-analytically fibered.

REMARK 1.6. An example of Whitney (see [3, p. 239]) shows σ
cannot be made biholomorphic in general.

We collect here some other definitions and facts used in the
sequel.

DEFINITION 1.7. The tangent cone C{V,p) of V at pe V is the
set of all qe ^ n such that there are sequences {a^ie ^ ) and qι~+p
(q, e V) so aiiqi - p)->q.

If V has pure dimension r at p, C(V, p) is a homogeneous algebraic
variety of pure dimension r. If I(V, p) denotes the ring of germs of
functions holomorphic in ^ n at p and vanishing on V, then ^(V, p)
is the variety of zeros in ^ n of the set of all initial polynomials of
each function in I(V, p). (The initial polynomial of / a t p is the poly-
nomial of all terms of lowest order in /'s expansion at p.)

DEFINITION 1.8. Let varieties V19 V2 have pure dimension r, s re-
spectively in a ^"-open neighborhood of a point p. Vι and V2 inter-
sect properly at p if the codimension of V1 Π V2 is the sum of the
codimensions n — r and n — s of VΊ and V2. V1 and V2 intersect
transversally at p if C{VX, p) and C(V2, p) intersect properly at p.

THEOREM 1.9. Suppose an (n — r — l)-dimensional linear variety
Lw_r_! intersects V in an isolated point p. Then [3, Lemma 9.7]
there is a ^n-open neighborhood U of p so that the points in U of
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the union of the parallel translates of Ln_r_γ through points of V Π U
form an analytic variety in U, called the cylinderization of V by
Ln_r_x near p. We denote it by V(Ln_r_ly p) or simply by F(Lw_r_i)
if the reference to p is clear.

THEOREM 1.10. If W is any subvariety of V, there is a strati-
fication so W lies outside the strata of dimension > dim W.

This is clear from the proof of (1.3).

NOTATION 1.11. S(V) will denote the singular subvariety of V;
<^n, ^-dimensional complex protective space; and Gn>r1 the Grassmann
manifold of all r-subspaces of r^n. (xu --*,xn) will denote analytic
co-ordinates about a point p of an (r — l)-dimensional stratum M. x
will stand for (x19 , xr_lf 0, , 0), x for (0, , 0, xr, , xn), and
by abuse of notation, (x,x) for (xly •••,»»)• Throughout the paper,
any ^TO-open neighborhood U about p that we consider will be such
that MΠ U is an open subset of the (xlf , a;r_1)-plane (^7

Xv...fXr__1

(where ^x. denotes the αv-axis, ^XίXj, the (xίy ^ )-plane, etc.).

2. Proof of the ίibering theorem* The strategy of the proof
is this: We first prove the following theorem, which gives us the
stratification used in our main fibration theorem.

THEOREM 2.1. Any variety V of dimension r has a stratification
so each (r — l)~stratum M has the following three properties:

( i ) The dimension of V at any pe M is pure.
(ii) For any fixed p e M, for each q e V\M and each ε > 0, there

is a d > 0 such that distance^, p) < δ => d(C(V, q), p(q)) < ε. (p(q)
is the analytic r-plane containing q and the part of M near p, and
d is any Hausdorff metric on Gr>n.)

(iii) For any fixed peM, for each qeM and each e > 0, there
is a d > 0 such that distance(q, p) < d => for each x e C(V, q) {the
natural image of C(V, q) in έ^n~ί), there is a y e C ( 7 , p) within ε
of x (relative to a metric in &>n~ι).

REMARK 2.2. Property (ii) expresses a kind of continuity of C( V, q)
as q approaches a point p in M transversally, while property (iii) does
the same for q varying in M.

We next prove

THEOREM 2.3. Let V be stratified as in Theorem 2.1. For each
p in an (r — ΐ)-stratum M (where dimp V = r), and each (n — r)-plane
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P transverse to V at p, there is a ^n-open neighborhood U of p so
every translate P + q (q e V Π U) is transverse to V at q.

Using the above theorem, we can now easily prove our main re-
sult, Theorem 1.5, as follows: If peM and dim^ V = r, then, assum-
ing the part of ^Xr+1,...,Xn near p forms an open set of p, (2.1)
together with [3, p. 273, Zusatz II] shows that a F-open neighborhood
of any point of V\M near p may be represented in the form

(2.4) xi = fi(x19 , xr) (i = r + 1, • •, n; ft analytic) .

With these functions we easily construct a fibration of a neigh-
borhood of p using Whitney's method [3, §§11, 12].

If peM and dim^ V = r — 1, then Theorem 1.5 is trivial.

Proof of Theorem 2.1.
( i ) Suppose r < n. Write V = V U V" (V, V" varieties), V

having pure dimension r, dim V" < r, dim (V Π V") < r — 1. Then
we may stratify V so V Π V" is contained in the union of strata of
dimension <r — 1 (1.10).

To prove (ii) and (iii) we show that in any stratification satisfying
(i), those points of M where the conditions of (ii) and (iii) do not
hold are contained in an analytic subvariety of V having dimension
less than r — 1, and may therefore be put into lower dimensional
strata (again by 1.10). Any (r — l)-stratum of this new stratification
will then satisfy (i), (ii), and (iii).

(ii) The points of M satisfying (ii) are called regular points by
Whitney; that we can choose a stratification satisfying (ii) is essentially
done in [4, Th. 19.2].

(iii) We show the set of points where the condition in (iii) fails
is contained in the set A, defined as follows: Denote the topological
closure of the (countable) collection of (r — l)-strata by Mlf M2, •••.
Let Ai be the set of points of Mi having multiplicity in V (Definition
2.5) greater than the minimum assumed on M{. Then take A to be
UΠ=i A% To prove (iii) we must show

(a) A is an analytic subvariety of V (of dimension < r — 1);
(b) The condition of (iii) holds in M\A. The main part of the

proof of (b) is establishing

(bj For each peM\A, there is a neighborhood Uv such that
Sf = {(q, C(V, q)) \qeM\A] is analytic in ( I n Up) x <ifΛ; and

(b2) Each C( V,q) (qe M Π Uq) is a union of r-planes containing
M Γi Up. We will see (b) is an easy consequence of these two facts.

Proof of (a). We recall the
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DEFINITION 2.5. Let p be any point of V, and suppose an (n — r)-
dimensional linear variety Ln__r intersects V transversally at p. Then
there is a ^%-open neighborhood U of p and an integer m(p) so that
at each q e U off a proper analytic subvariety of U, Ln_r + # intersects
V Π Ϊ7 in exactly m(p) distinct points. We call m(p) the multiplicity
of V at p.

We next note

LEMMA 2.6. ΓΛe ŝ £ of points of V with multiplicity greater
than a fixed integer forms a subvariety of V.

(One proof will appear in a forthcoming book on analytic varieties
by Whitney; a general ring-theoretic proof appears in [1, Th. 40.3].)

Now let Mi be the smallest number such that there is a point of
Mi having multiplicity m̂  in V. Then by Lemma 2.6, the set Vm.
of points of V having multiplicity greater than m{ is a subvariety of
V; since, by [3, Lemma 8.2], Mi is also a subvariety of V,

is a subvariety of V. And because Mt is irreducible, dim A+ < dim Mt.
Now by local finiteness of the Mi9 we see that (JS=i A% is a subvariety
of V having dimension less than r — 1.

REMARK 2.7. From here to the end of the proof of Theorem 2.3
a <g^-open neighborhood about a typical point in M\A (which we will
call 0) will be subjected to a finite succession of requirements. To
keep notation simple, denote by U & neighborhood small enough so
all requirements at any stage are satisfied.

Proof of (δj. Let 0e^n be a typical point of ifcf\A. We show
that for some U (Oe U), Sx? n ((M Π U) x <£*") is analytic. (Assume
U Π A — 0.) Since the proof is a bit long, we divide the proof into
three parts:

First, we show there is an open neighborhood N in the Grass-
mannian (?»,»_,._! of all (n — r — l)-subspaces of ^ * , so that the cylindri-
zations F(LJ_y_1) of V at 0 along each Lί_r_! in ΛΓ are all analytic in
some ^"-open U, and such that the multiplicity of each point in
M Π U is the same in any F(LJ_r_1) as it is in V. Second, using this
fact we show j^(L*» r^) = {(g, C(V(L*-r^), q))\qeMΓ\U} is analytic
in ((M\A) Π U) x ίT" for any Z/t-r-i above.

Finally, using the analyticity of each j^(L*_r_i), we prove (bΣ).
To establish the first assertion, let L*_r_x be a subspace of any

L%_r in (2.5) so that for almost every qe U, π(U Π V f] (Ln_r + g))
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consists of m points, where m = multiplicity of 0 in 7, and π = pro-
jection of Ln^r to L*-r-i From intersection theory it is clear that
the conclusion holds for some N about L*_r_15 and possibly smaller U.

To prove the analyticity of each j^(L*_r_i), we note there is a
function / holomorphic in U and vanishing on V and such that at
any qeMΠ U, F(L*_r-i) has multiplicity equal to the order of / at
q (essentially [1, (40.3)]). Therefore the order of / is m at each point
of M f] U, so the initial form is always the m-th-degree term of /.
The analyticity of the coefficients of any term then implies each
J*(L*-r-J is analytic in ((M\A) n U) x 9f \

We now prove (b^. We begin by showing

(2.8) C( V^Z/JU-i), 0) = (C(V, 0) (Lί_r_0 for any L * ^ transverse to C(V, 0).

Write c^% = Lr+1 x L*_r_x for some (r + l)-space Lr+1; let p be
the natural projection onto the first factor. Since 0 is isolated in

(This is just a restatement of [4, Lemma 9.7].) If ΐ ^ r + 2 , ..,*% =
Li_r_i, no germ in I(F(LJ_ r_1), 0) involves any of the variables xr+2,
•• ,a?Λ. The characterization in (1.7) of tangent cones in terms of
initial forms then gives (2.8).

Using this result, one easily checks that for each qeMΠ U, there
are subspaces

such that the analytic set

has fiber C(V, q) above q. Furthermore, the fiber of J^q over any
point g' in M f] U contains the tangent cone at q\ (Each
contains V, so

hence

It then follows that the analytic set

Π j^(L;_ r β l) n ((Λf n c/) x

is just S^ιf]((Mf) U) x ΐf%). We have thus proved (bx).



FIBRATIONS OF ANALYTIC VARIETIES 447

NOTATION 2.9. By local ίiniteness, for some U, J^ Π ((MΠ U) x ^n)
is defined by finitely many cylindrizations; we denote them by fly , / s.

We next prove (b2). (b) will follow easily from (b^ and (b2).

Proof of (b2). Let U be a common neighborhood in which all the
cylindrizations above are defined. Now if the initial polynomial at
p e M Π U of any fk defining any cylindrization of V involved any
variables x19 , #r_i, the order of fk at p could not be a constant m
on points of I n U. Therefore if g e J / f L ί ^ ) , then

Hence a similar relation holds for s^f f] (M f) U) x ^n). This, together
with the fact that C( V, p) is homogeneous of pure dimension r, shows
that C(V, p) Π TΓ"1^) is the union of finitely many 1-subspaces of
π~\p) (π being the projection (x,x)—+(x).) This in turn gives (b2).

Proof of (b). From (b2) we may clearly assume that the x in
(2.1, (iii)) is contained in π~ι{G). (b) is then obvious when we observe
that the variety in (M f] U) x ^n~1 obtained from

j y n ((M n 17) x 7rι(M))

is of pure dimension 1 and its fiber above any x e Mi Π U has dimension
0.

We now assume V is stratified as in Theorem 2.1. A proof of
Theorem 2.3 can be given following Lemmas 2.10 and 2.11 which give
information on tangent spaces near, but off, any (r — l)-stratum M.

Let 0 be a typical point of ikf, and suppose ^xr+v--,xn is transverse
to C(V, 0). Let dist(,) be the usual distance on Φ; and let π be as
above.

LEMMA 2.10. For ε > 0, there is a δ > 0 such that if

(x,x)e V, \x\ < δ, \x'\ < δ

and 0 < \x\ < δ, then

dist((-|-), C(V, x') Π π-^x'ή < ε .

Proof. We may choose δ > 0 so C(V, xr) intersects π-^x') properly
for each x',\x'\<δ (using (b2)). The family C(V, %') Π π~ι{xf) is then
-easily seen to be continuous at all x' close to 0. We may therefore
assume xf = 0.
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Let gitΰ denote the initial polynomial of / { expanded about x. Let
S be the unit sphere in π~x (0), center 0. For e > 0, the set A of
all points in S at a distance 2̂ ε from C(V, 0) Π π~ι (0) is compact;
let a > 0 be the minimum of

on A. Then

implies

d i s t ( (- | - ) ) C(F,0)nπ- 1 (0))<ε .

One can easily find such a 5 so this holds; if {x, x) e V, then

(m< = deg(^)). The first difference is small for (x,x) near 0 by the
continuity of git^; the other difference is too, since /<(», S) — ̂  ,x(x, S)
is holomorphic of order at least m< + 1 at all x sufficiently near 0.

Now let P(q) be as in (2.4), and let d(,) be a metric in Grr>ft.

LEMMA 2.11. There is a ^n-open neighborhood V about 0 such
that if qe(V\M) Π 17, ίfeew

(1) d(C(V, q), P(q)) is small; and
(2) d(P(«), C(F, 0)) is small.

Proof. (1) is obvious, since 0 is regular. (2) follows easily from
Lemma 2.10 since C(F, 0) and P(q) are just the cylindrizations in ^ n

along ί f i of C(V, 0) n ^"'(0), and the analytic line through (0, 0) and
q, respectively.

Proof of Theorem 2.3. Suppose U has diameter δ; denote it by
U(δ). Then Lemma 2.11 shows

(2.12) for any e' > 0, there is a δ' > 0 so that for

q e (V\M) n U(δ>), d(C(V, q), C(V, 0)) < ε' .

Let W be the image in ^n~ί of a homogeneous variety P F g ^ \
and cί*, a metric in ^n~u

1 then
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(2.13) For ε > 0, there is a δ > 0 such that if qe V f] 17(3), then
for each pe C(V, q), there is a point of C(V, 0) within ε of p.

When p£M, this follows easily from (2.12) and the compactness of
C(V, q) and C(V, 0); when peikf, this is just (2.1, (ii)).

Now let P be any (n — r)-plane of ^ n transverse to V at 0.
P + q is transverse to F at q eM Π 17 if and only if JP and C(V, q)
are disjoint. Now let d0 be the inίimum of d*(x, y) over xe P, y eC(V, 0);
then d0 > 0. Choose ε in (2.13) to be £ do; any corresponding J7(δ) then
serves as the required U in the statement of Theorem 2.3.

3* Proof of the fibering theorem* Using Theorem 2.3, one
may now prove our main result, Theorem 1.5. Let 0 be a typical
point of any (r — l)-stratum M (Mf]A = 0 ) , and suppose ^a^,.•-,*,,
is transverse to V at 0. Then (e.g., from [2, p. 273, Zusatz II])
there is a ^ w -open U about 0 with the following property:

(3.1) There is a neighborhood N(q) open in U Π (^,ίCr» about any
qe UΠ ^;,Xr\M9 such that the points in (V\M) Π U above N(q) are
given by holomorphic functions &< = φi3 (x, , xr) (i = r + 1, , n;
j = 1, , m for some fixed m).

Now when xr Φ 0, define ^-(0, •••, 0, xrf x{) to be

\Xi-<Pu(0,

when for each k = 1, , m, x{ Φ <pi3(0, , 0, xr); let

iMO, , 0, xr, <pa(0, , 0, αr)) - δjk .

It easily follows from [3, §§ 11, 12] that for i = r + 1, , n>

hi(x19 , xr, xs) = Σ {Ψa(0, , 0, xr, Xi) [φiS(x19 , xr)

, 0, xr)]}

when xr Φ 0, and hi(x19 , α?r-1, 0, α?y) = xs define a semi-analytic fibra-
tion in a ^^-open neighborhood of 0. (An individual fiber is obtained
by setting xr and xs- equal to constants.)

4* A theorem on points of V near a submanifolcL Using
some of the above ideas (particularly Theorem 2.3) we can answer
another question raised by Whitney concerning the structure of V near
points of a submanifold M of codimension 1 in V. He showed the
sheets of V attach smoothly to M (Definition 4.1) off a closed nowhere
dense subset of M. We prove this nowhere dense may be taken to
be an analytic subvariety of M.
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DEFINITION 4.1. Let 0 be a typical point of M above. Then V
attaches smoothly to M near 0 if there is a ^"-open U of 0 such
that:

(a) Representation (3.1) holds;
(b) If Vi is any irreducible component of V f] U, then there is

a holomorphic vector field v*(x) = (0, , 0,1, vi+^x), , vι

n{x)) such
that C(Vif x) = <ĝ  x L(Vi(x)) (L(Vi(x)) is the 1-subspace of ^ through
v\x))\

(c) 0 is a regular point; and given ε > 0, there is a 8 > 0 so that
if y e V{ n (x + ^1) and 0 < | j/ - x\ < δ, then

distf V~s , viW

THEOREM 4.2. Lst M be any submanifold of codimensίon 1 in
V. Then there is a proper subvariety W of M so V attaches smoothly
to V near point of M\W.

Proof, (a) Let A' be the variety of § 2 having dimension < r — 1,
containing A and the nonregular points; we saw in § 3 that repre-
sentation (3.1) holds at any point of M\A.

(b) To find a proper subvariety of M off which (b) holds, let
& = Sf Π [M Π U) x c^i[ (with co-ordinates x, W as before). Assume
x, x are such that for each p e M f] U, the part in (^= + p) Π U of
the hyper plane K defined by xr — 1, intersects each of the 1-subspaces
of the fiber above p (see (2.1, (iii, b2))). Using standard arguments,
one may then show there is a proper subvariety D of M so that if
0 G M\(D U A'), the part of & above a small neighborhood in c^x>%r Π K
about the point x — 0, #r = 1 is representable by holomorphic functions
hr+ί(x), *- ,hn(x). D will be a "discriminant"—the union of

M n Clos [S(^)\M x (0)]

= singular variety of ^ ) and the set of points q of M where
^ fails to intersect (g, ^=) transversally. That there is an analytic
subvariety of V coinciding with this last set on V\S(&) may be seen
by noting that the closures of the set of tangent cones of any variety
F g Ξ i ϊ S ^ * is analytic in V x ^n, the fiber above any simple point
φeV being just the tangent space to V at p [3, Th. 5.1]. Hence D
is intrinsically defined. Hence (b) holds at each point of Λf\(D U A')

(c) Any point of M\A' is regular; further, one may verify that
the proof of the last part of (c) given in [4, § 14] at any point off
the dense set considered there, may be used at any point of M\(D U A').
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